1//===-- fp_div_impl.inc - Floating point division -----------------*- C -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements soft-float division with the IEEE-754 default
10// rounding (to nearest, ties to even).
11//
12//===----------------------------------------------------------------------===//
13
14#include "fp_lib.h"
15
16// The __divXf3__ function implements Newton-Raphson floating point division.
17// It uses 3 iterations for float32, 4 for float64 and 5 for float128,
18// respectively. Due to number of significant bits being roughly doubled
19// every iteration, the two modes are supported: N full-width iterations (as
20// it is done for float32 by default) and (N-1) half-width iteration plus one
21// final full-width iteration. It is expected that half-width integer
22// operations (w.r.t rep_t size) can be performed faster for some hardware but
23// they require error estimations to be computed separately due to larger
24// computational errors caused by truncating intermediate results.
25
26// Half the bit-size of rep_t
27#define HW (typeWidth / 2)
28// rep_t-sized bitmask with lower half of bits set to ones
29#define loMask (REP_C(-1) >> HW)
30
31#if NUMBER_OF_FULL_ITERATIONS < 1
32#error At least one full iteration is required
33#endif
34
35static __inline fp_t __divXf3__(fp_t a, fp_t b) {
36
37  const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
38  const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
39  const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
40
41  rep_t aSignificand = toRep(a) & significandMask;
42  rep_t bSignificand = toRep(b) & significandMask;
43  int scale = 0;
44
45  // Detect if a or b is zero, denormal, infinity, or NaN.
46  if (aExponent - 1U >= maxExponent - 1U ||
47      bExponent - 1U >= maxExponent - 1U) {
48
49    const rep_t aAbs = toRep(a) & absMask;
50    const rep_t bAbs = toRep(b) & absMask;
51
52    // NaN / anything = qNaN
53    if (aAbs > infRep)
54      return fromRep(toRep(a) | quietBit);
55    // anything / NaN = qNaN
56    if (bAbs > infRep)
57      return fromRep(toRep(b) | quietBit);
58
59    if (aAbs == infRep) {
60      // infinity / infinity = NaN
61      if (bAbs == infRep)
62        return fromRep(qnanRep);
63      // infinity / anything else = +/- infinity
64      else
65        return fromRep(aAbs | quotientSign);
66    }
67
68    // anything else / infinity = +/- 0
69    if (bAbs == infRep)
70      return fromRep(quotientSign);
71
72    if (!aAbs) {
73      // zero / zero = NaN
74      if (!bAbs)
75        return fromRep(qnanRep);
76      // zero / anything else = +/- zero
77      else
78        return fromRep(quotientSign);
79    }
80    // anything else / zero = +/- infinity
81    if (!bAbs)
82      return fromRep(infRep | quotientSign);
83
84    // One or both of a or b is denormal.  The other (if applicable) is a
85    // normal number.  Renormalize one or both of a and b, and set scale to
86    // include the necessary exponent adjustment.
87    if (aAbs < implicitBit)
88      scale += normalize(&aSignificand);
89    if (bAbs < implicitBit)
90      scale -= normalize(&bSignificand);
91  }
92
93  // Set the implicit significand bit.  If we fell through from the
94  // denormal path it was already set by normalize( ), but setting it twice
95  // won't hurt anything.
96  aSignificand |= implicitBit;
97  bSignificand |= implicitBit;
98
99  int writtenExponent = (aExponent - bExponent + scale) + exponentBias;
100
101  const rep_t b_UQ1 = bSignificand << (typeWidth - significandBits - 1);
102
103  // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
104  // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
105  // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
106  // The max error for this approximation is achieved at endpoints, so
107  //   abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
108  // which is about 4.5 bits.
109  // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
110
111  // Then, refine the reciprocal estimate using a quadratically converging
112  // Newton-Raphson iteration:
113  //     x_{n+1} = x_n * (2 - x_n * b)
114  //
115  // Let b be the original divisor considered "in infinite precision" and
116  // obtained from IEEE754 representation of function argument (with the
117  // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
118  // UQ1.(W-1).
119  //
120  // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
121  // bits of divisor significand (with the implicit bit set). Corresponds to
122  // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
123  // version of b_UQ1.
124  //
125  // Let e_n := x_n - 1/b_hw
126  //     E_n := x_n - 1/b
127  // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
128  //           = abs(e_n) + (b - b_hw) / (b*b_hw)
129  //          <= abs(e_n) + 2 * 2^-HW
130
131  // rep_t-sized iterations may be slower than the corresponding half-width
132  // variant depending on the handware and whether single/double/quad precision
133  // is selected.
134  // NB: Using half-width iterations increases computation errors due to
135  // rounding, so error estimations have to be computed taking the selected
136  // mode into account!
137#if NUMBER_OF_HALF_ITERATIONS > 0
138  // Starting with (n-1) half-width iterations
139  const half_rep_t b_UQ1_hw = bSignificand >> (significandBits + 1 - HW);
140
141  // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
142  // with W0 being either 16 or 32 and W0 <= HW.
143  // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
144  // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
145#if defined(SINGLE_PRECISION)
146  // Use 16-bit initial estimation in case we are using half-width iterations
147  // for float32 division. This is expected to be useful for some 16-bit
148  // targets. Not used by default as it requires performing more work during
149  // rounding and would hardly help on regular 32- or 64-bit targets.
150  const half_rep_t C_hw = HALF_REP_C(0x7504);
151#else
152  // HW is at least 32. Shifting into the highest bits if needed.
153  const half_rep_t C_hw = HALF_REP_C(0x7504F333) << (HW - 32);
154#endif
155
156  // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
157  // so x0 fits to UQ0.HW without wrapping.
158  half_rep_t x_UQ0_hw = C_hw - (b_UQ1_hw /* exact b_hw/2 as UQ0.HW */);
159  // An e_0 error is comprised of errors due to
160  // * x0 being an inherently imprecise first approximation of 1/b_hw
161  // * C_hw being some (irrational) number **truncated** to W0 bits
162  // Please note that e_0 is calculated against the infinitely precise
163  // reciprocal of b_hw (that is, **truncated** version of b).
164  //
165  // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
166
167  // By construction, 1 <= b < 2
168  // f(x)  = x * (2 - b*x) = 2*x - b*x^2
169  // f'(x) = 2 * (1 - b*x)
170  //
171  // On the [0, 1] interval, f(0)   = 0,
172  // then it increses until  f(1/b) = 1 / b, maximum on (0, 1),
173  // then it decreses to     f(1)   = 2 - b
174  //
175  // Let g(x) = x - f(x) = b*x^2 - x.
176  // On (0, 1/b), g(x) < 0 <=> f(x) > x
177  // On (1/b, 1], g(x) > 0 <=> f(x) < x
178  //
179  // For half-width iterations, b_hw is used instead of b.
180  REPEAT_N_TIMES(NUMBER_OF_HALF_ITERATIONS, {
181    // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
182    // of corr_UQ1_hw.
183    // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
184    // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
185    // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
186    // expected to be strictly positive because b_UQ1_hw has its highest bit set
187    // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
188    half_rep_t corr_UQ1_hw = 0 - ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW);
189
190    // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
191    // obtaining an UQ1.(HW-1) number and proving its highest bit could be
192    // considered to be 0 to be able to represent it in UQ0.HW.
193    // From the above analysis of f(x), if corr_UQ1_hw would be represented
194    // without any intermediate loss of precision (that is, in twice_rep_t)
195    // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
196    // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
197    // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
198    // to 1.0 being not representable as UQ0.HW).
199    // The fact corr_UQ1_hw was virtually round up (due to result of
200    // multiplication being **first** truncated, then negated - to improve
201    // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
202    x_UQ0_hw = (rep_t)x_UQ0_hw * corr_UQ1_hw >> (HW - 1);
203    // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
204    // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
205    // any number of iterations, so just subtract 2 from the reciprocal
206    // approximation after last iteration.
207
208    // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
209    // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
210    //             = 1 - e_n * b_hw + 2*eps1
211    // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
212    //          = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
213    //          = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
214    // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
215    //         = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
216    //                        \------ >0 -------/   \-- >0 ---/
217    // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
218  })
219  // For initial half-width iterations, U = 2^-HW
220  // Let  abs(e_n)     <= u_n * U,
221  // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
222  // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
223
224  // Account for possible overflow (see above). For an overflow to occur for the
225  // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
226  // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
227  // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
228  // be not below that value (see g(x) above), so it is safe to decrement just
229  // once after the final iteration. On the other hand, an effective value of
230  // divisor changes after this point (from b_hw to b), so adjust here.
231  x_UQ0_hw -= 1U;
232  rep_t x_UQ0 = (rep_t)x_UQ0_hw << HW;
233  x_UQ0 -= 1U;
234
235#else
236  // C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
237  const rep_t C = REP_C(0x7504F333) << (typeWidth - 32);
238  rep_t x_UQ0 = C - b_UQ1;
239  // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
240#endif
241
242  // Error estimations for full-precision iterations are calculated just
243  // as above, but with U := 2^-W and taking extra decrementing into account.
244  // We need at least one such iteration.
245
246#ifdef USE_NATIVE_FULL_ITERATIONS
247  REPEAT_N_TIMES(NUMBER_OF_FULL_ITERATIONS, {
248    rep_t corr_UQ1 = 0 - ((twice_rep_t)x_UQ0 * b_UQ1 >> typeWidth);
249    x_UQ0 = (twice_rep_t)x_UQ0 * corr_UQ1 >> (typeWidth - 1);
250  })
251#else
252#if NUMBER_OF_FULL_ITERATIONS != 1
253#error Only a single emulated full iteration is supported
254#endif
255#if !(NUMBER_OF_HALF_ITERATIONS > 0)
256  // Cannot normally reach here: only one full-width iteration is requested and
257  // the total number of iterations should be at least 3 even for float32.
258#error Check NUMBER_OF_HALF_ITERATIONS, NUMBER_OF_FULL_ITERATIONS and USE_NATIVE_FULL_ITERATIONS.
259#endif
260  // Simulating operations on a twice_rep_t to perform a single final full-width
261  // iteration. Using ad-hoc multiplication implementations to take advantage
262  // of particular structure of operands.
263  rep_t blo = b_UQ1 & loMask;
264  // x_UQ0 = x_UQ0_hw * 2^HW - 1
265  // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
266  //
267  //   <--- higher half ---><--- lower half --->
268  //   [x_UQ0_hw * b_UQ1_hw]
269  // +            [  x_UQ0_hw *  blo  ]
270  // -                      [      b_UQ1       ]
271  // = [      result       ][.... discarded ...]
272  rep_t corr_UQ1 = 0U - (   (rep_t)x_UQ0_hw * b_UQ1_hw
273                         + ((rep_t)x_UQ0_hw * blo >> HW)
274                         - REP_C(1)); // account for *possible* carry
275  rep_t lo_corr = corr_UQ1 & loMask;
276  rep_t hi_corr = corr_UQ1 >> HW;
277  // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
278  x_UQ0 =   ((rep_t)x_UQ0_hw * hi_corr << 1)
279          + ((rep_t)x_UQ0_hw * lo_corr >> (HW - 1))
280          - REP_C(2); // 1 to account for the highest bit of corr_UQ1 can be 1
281                      // 1 to account for possible carry
282  // Just like the case of half-width iterations but with possibility
283  // of overflowing by one extra Ulp of x_UQ0.
284  x_UQ0 -= 1U;
285  // ... and then traditional fixup by 2 should work
286
287  // On error estimation:
288  // abs(E_{N-1}) <=   (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
289  //                 + (2^-HW + 2^-W))
290  // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
291
292  // Then like for the half-width iterations:
293  // With 0 <= eps1, eps2 < 2^-W
294  // E_N  = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
295  // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
296  // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
297#endif
298
299  // Finally, account for possible overflow, as explained above.
300  x_UQ0 -= 2U;
301
302  // u_n for different precisions (with N-1 half-width iterations):
303  // W0 is the precision of C
304  //   u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
305
306  // Estimated with bc:
307  //   define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
308  //   define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
309  //   define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
310  //   define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
311
312  //             | f32 (0 + 3) | f32 (2 + 1)  | f64 (3 + 1)  | f128 (4 + 1)
313  // u_0         | < 184224974 | < 2812.1     | < 184224974  | < 791240234244348797
314  // u_1         | < 15804007  | < 242.7      | < 15804007   | < 67877681371350440
315  // u_2         | < 116308    | < 2.81       | < 116308     | < 499533100252317
316  // u_3         | < 7.31      |              | < 7.31       | < 27054456580
317  // u_4         |             |              |              | < 80.4
318  // Final (U_N) | same as u_3 | < 72         | < 218        | < 13920
319
320  // Add 2 to U_N due to final decrement.
321
322#if defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 2 && NUMBER_OF_FULL_ITERATIONS == 1
323#define RECIPROCAL_PRECISION REP_C(74)
324#elif defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 0 && NUMBER_OF_FULL_ITERATIONS == 3
325#define RECIPROCAL_PRECISION REP_C(10)
326#elif defined(DOUBLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 3 && NUMBER_OF_FULL_ITERATIONS == 1
327#define RECIPROCAL_PRECISION REP_C(220)
328#elif defined(QUAD_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 4 && NUMBER_OF_FULL_ITERATIONS == 1
329#define RECIPROCAL_PRECISION REP_C(13922)
330#else
331#error Invalid number of iterations
332#endif
333
334  // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
335  x_UQ0 -= RECIPROCAL_PRECISION;
336  // Now 1/b - (2*P) * 2^-W < x < 1/b
337  // FIXME Is x_UQ0 still >= 0.5?
338
339  rep_t quotient_UQ1, dummy;
340  wideMultiply(x_UQ0, aSignificand << 1, &quotient_UQ1, &dummy);
341  // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
342
343  // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
344  // adjust it to be in [1.0, 2.0) as UQ1.SB.
345  rep_t residualLo;
346  if (quotient_UQ1 < (implicitBit << 1)) {
347    // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
348    // effectively doubling its value as well as its error estimation.
349    residualLo = (aSignificand << (significandBits + 1)) - quotient_UQ1 * bSignificand;
350    writtenExponent -= 1;
351    aSignificand <<= 1;
352  } else {
353    // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
354    // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
355    quotient_UQ1 >>= 1;
356    residualLo = (aSignificand << significandBits) - quotient_UQ1 * bSignificand;
357  }
358  // NB: residualLo is calculated above for the normal result case.
359  //     It is re-computed on denormal path that is expected to be not so
360  //     performance-sensitive.
361
362  // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
363  // Each NextAfter() increments the floating point value by at least 2^-SB
364  // (more, if exponent was incremented).
365  // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
366  //   q
367  //   |   | * |   |   |       |       |
368  //       <--->      2^t
369  //   |   |   |   |   |   *   |       |
370  //               q
371  // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
372  //   (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
373  //   (8*P) * 2^-W         < 0.5 * 2^-SB
374  //   P < 2^(W-4-SB)
375  // Generally, for at most R NextAfter() to be enough,
376  //   P < (2*R - 1) * 2^(W-4-SB)
377  // For f32 (0+3): 10 < 32 (OK)
378  // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
379  // For f64: 220 < 256 (OK)
380  // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
381
382  // If we have overflowed the exponent, return infinity
383  if (writtenExponent >= maxExponent)
384    return fromRep(infRep | quotientSign);
385
386  // Now, quotient_UQ1_SB <= the correctly-rounded result
387  // and may need taking NextAfter() up to 3 times (see error estimates above)
388  // r = a - b * q
389  rep_t absResult;
390  if (writtenExponent > 0) {
391    // Clear the implicit bit
392    absResult = quotient_UQ1 & significandMask;
393    // Insert the exponent
394    absResult |= (rep_t)writtenExponent << significandBits;
395    residualLo <<= 1;
396  } else {
397    // Prevent shift amount from being negative
398    if (significandBits + writtenExponent < 0)
399      return fromRep(quotientSign);
400
401    absResult = quotient_UQ1 >> (-writtenExponent + 1);
402
403    // multiplied by two to prevent shift amount to be negative
404    residualLo = (aSignificand << (significandBits + writtenExponent)) - (absResult * bSignificand << 1);
405  }
406
407  // Round
408  residualLo += absResult & 1; // tie to even
409  // The above line conditionally turns the below LT comparison into LTE
410  absResult += residualLo > bSignificand;
411#if defined(QUAD_PRECISION) || (defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS > 0)
412  // Do not round Infinity to NaN
413  absResult += absResult < infRep && residualLo > (2 + 1) * bSignificand;
414#endif
415#if defined(QUAD_PRECISION)
416  absResult += absResult < infRep && residualLo > (4 + 1) * bSignificand;
417#endif
418  return fromRep(absResult | quotientSign);
419}
420