1 //===-- interception_linux.cpp ----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 //
11 // Windows-specific interception methods.
12 //
13 // This file is implementing several hooking techniques to intercept calls
14 // to functions. The hooks are dynamically installed by modifying the assembly
15 // code.
16 //
17 // The hooking techniques are making assumptions on the way the code is
18 // generated and are safe under these assumptions.
19 //
20 // On 64-bit architecture, there is no direct 64-bit jump instruction. To allow
21 // arbitrary branching on the whole memory space, the notion of trampoline
22 // region is used. A trampoline region is a memory space withing 2G boundary
23 // where it is safe to add custom assembly code to build 64-bit jumps.
24 //
25 // Hooking techniques
26 // ==================
27 //
28 // 1) Detour
29 //
30 //    The Detour hooking technique is assuming the presence of an header with
31 //    padding and an overridable 2-bytes nop instruction (mov edi, edi). The
32 //    nop instruction can safely be replaced by a 2-bytes jump without any need
33 //    to save the instruction. A jump to the target is encoded in the function
34 //    header and the nop instruction is replaced by a short jump to the header.
35 //
36 //        head:  5 x nop                 head:  jmp <hook>
37 //        func:  mov edi, edi    -->     func:  jmp short <head>
38 //               [...]                   real:  [...]
39 //
40 //    This technique is only implemented on 32-bit architecture.
41 //    Most of the time, Windows API are hookable with the detour technique.
42 //
43 // 2) Redirect Jump
44 //
45 //    The redirect jump is applicable when the first instruction is a direct
46 //    jump. The instruction is replaced by jump to the hook.
47 //
48 //        func:  jmp <label>     -->     func:  jmp <hook>
49 //
50 //    On an 64-bit architecture, a trampoline is inserted.
51 //
52 //        func:  jmp <label>     -->     func:  jmp <tramp>
53 //                                              [...]
54 //
55 //                                   [trampoline]
56 //                                      tramp:  jmp QWORD [addr]
57 //                                       addr:  .bytes <hook>
58 //
59 //    Note: <real> is equivalent to <label>.
60 //
61 // 3) HotPatch
62 //
63 //    The HotPatch hooking is assuming the presence of an header with padding
64 //    and a first instruction with at least 2-bytes.
65 //
66 //    The reason to enforce the 2-bytes limitation is to provide the minimal
67 //    space to encode a short jump. HotPatch technique is only rewriting one
68 //    instruction to avoid breaking a sequence of instructions containing a
69 //    branching target.
70 //
71 //    Assumptions are enforced by MSVC compiler by using the /HOTPATCH flag.
72 //      see: https://msdn.microsoft.com/en-us/library/ms173507.aspx
73 //    Default padding length is 5 bytes in 32-bits and 6 bytes in 64-bits.
74 //
75 //        head:   5 x nop                head:  jmp <hook>
76 //        func:   <instr>        -->     func:  jmp short <head>
77 //                [...]                  body:  [...]
78 //
79 //                                   [trampoline]
80 //                                       real:  <instr>
81 //                                              jmp <body>
82 //
83 //    On an 64-bit architecture:
84 //
85 //        head:   6 x nop                head:  jmp QWORD [addr1]
86 //        func:   <instr>        -->     func:  jmp short <head>
87 //                [...]                  body:  [...]
88 //
89 //                                   [trampoline]
90 //                                      addr1:  .bytes <hook>
91 //                                       real:  <instr>
92 //                                              jmp QWORD [addr2]
93 //                                      addr2:  .bytes <body>
94 //
95 // 4) Trampoline
96 //
97 //    The Trampoline hooking technique is the most aggressive one. It is
98 //    assuming that there is a sequence of instructions that can be safely
99 //    replaced by a jump (enough room and no incoming branches).
100 //
101 //    Unfortunately, these assumptions can't be safely presumed and code may
102 //    be broken after hooking.
103 //
104 //        func:   <instr>        -->     func:  jmp <hook>
105 //                <instr>
106 //                [...]                  body:  [...]
107 //
108 //                                   [trampoline]
109 //                                       real:  <instr>
110 //                                              <instr>
111 //                                              jmp <body>
112 //
113 //    On an 64-bit architecture:
114 //
115 //        func:   <instr>        -->     func:  jmp QWORD [addr1]
116 //                <instr>
117 //                [...]                  body:  [...]
118 //
119 //                                   [trampoline]
120 //                                      addr1:  .bytes <hook>
121 //                                       real:  <instr>
122 //                                              <instr>
123 //                                              jmp QWORD [addr2]
124 //                                      addr2:  .bytes <body>
125 //===----------------------------------------------------------------------===//
126 
127 #include "interception.h"
128 
129 #if SANITIZER_WINDOWS
130 #include "sanitizer_common/sanitizer_platform.h"
131 #define WIN32_LEAN_AND_MEAN
132 #include <windows.h>
133 
134 namespace __interception {
135 
136 static const int kAddressLength = FIRST_32_SECOND_64(4, 8);
137 static const int kJumpInstructionLength = 5;
138 static const int kShortJumpInstructionLength = 2;
139 UNUSED static const int kIndirectJumpInstructionLength = 6;
140 static const int kBranchLength =
141     FIRST_32_SECOND_64(kJumpInstructionLength, kIndirectJumpInstructionLength);
142 static const int kDirectBranchLength = kBranchLength + kAddressLength;
143 
144 static void InterceptionFailed() {
145   // Do we have a good way to abort with an error message here?
146   __debugbreak();
147 }
148 
149 static bool DistanceIsWithin2Gig(uptr from, uptr target) {
150 #if SANITIZER_WINDOWS64
151   if (from < target)
152     return target - from <= (uptr)0x7FFFFFFFU;
153   else
154     return from - target <= (uptr)0x80000000U;
155 #else
156   // In a 32-bit address space, the address calculation will wrap, so this check
157   // is unnecessary.
158   return true;
159 #endif
160 }
161 
162 static uptr GetMmapGranularity() {
163   SYSTEM_INFO si;
164   GetSystemInfo(&si);
165   return si.dwAllocationGranularity;
166 }
167 
168 UNUSED static uptr RoundUpTo(uptr size, uptr boundary) {
169   return (size + boundary - 1) & ~(boundary - 1);
170 }
171 
172 // FIXME: internal_str* and internal_mem* functions should be moved from the
173 // ASan sources into interception/.
174 
175 static size_t _strlen(const char *str) {
176   const char* p = str;
177   while (*p != '\0') ++p;
178   return p - str;
179 }
180 
181 static char* _strchr(char* str, char c) {
182   while (*str) {
183     if (*str == c)
184       return str;
185     ++str;
186   }
187   return nullptr;
188 }
189 
190 static void _memset(void *p, int value, size_t sz) {
191   for (size_t i = 0; i < sz; ++i)
192     ((char*)p)[i] = (char)value;
193 }
194 
195 static void _memcpy(void *dst, void *src, size_t sz) {
196   char *dst_c = (char*)dst,
197        *src_c = (char*)src;
198   for (size_t i = 0; i < sz; ++i)
199     dst_c[i] = src_c[i];
200 }
201 
202 static bool ChangeMemoryProtection(
203     uptr address, uptr size, DWORD *old_protection) {
204   return ::VirtualProtect((void*)address, size,
205                           PAGE_EXECUTE_READWRITE,
206                           old_protection) != FALSE;
207 }
208 
209 static bool RestoreMemoryProtection(
210     uptr address, uptr size, DWORD old_protection) {
211   DWORD unused;
212   return ::VirtualProtect((void*)address, size,
213                           old_protection,
214                           &unused) != FALSE;
215 }
216 
217 static bool IsMemoryPadding(uptr address, uptr size) {
218   u8* function = (u8*)address;
219   for (size_t i = 0; i < size; ++i)
220     if (function[i] != 0x90 && function[i] != 0xCC)
221       return false;
222   return true;
223 }
224 
225 static const u8 kHintNop8Bytes[] = {
226   0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00
227 };
228 
229 template<class T>
230 static bool FunctionHasPrefix(uptr address, const T &pattern) {
231   u8* function = (u8*)address - sizeof(pattern);
232   for (size_t i = 0; i < sizeof(pattern); ++i)
233     if (function[i] != pattern[i])
234       return false;
235   return true;
236 }
237 
238 static bool FunctionHasPadding(uptr address, uptr size) {
239   if (IsMemoryPadding(address - size, size))
240     return true;
241   if (size <= sizeof(kHintNop8Bytes) &&
242       FunctionHasPrefix(address, kHintNop8Bytes))
243     return true;
244   return false;
245 }
246 
247 static void WritePadding(uptr from, uptr size) {
248   _memset((void*)from, 0xCC, (size_t)size);
249 }
250 
251 static void WriteJumpInstruction(uptr from, uptr target) {
252   if (!DistanceIsWithin2Gig(from + kJumpInstructionLength, target))
253     InterceptionFailed();
254   ptrdiff_t offset = target - from - kJumpInstructionLength;
255   *(u8*)from = 0xE9;
256   *(u32*)(from + 1) = offset;
257 }
258 
259 static void WriteShortJumpInstruction(uptr from, uptr target) {
260   sptr offset = target - from - kShortJumpInstructionLength;
261   if (offset < -128 || offset > 127)
262     InterceptionFailed();
263   *(u8*)from = 0xEB;
264   *(u8*)(from + 1) = (u8)offset;
265 }
266 
267 #if SANITIZER_WINDOWS64
268 static void WriteIndirectJumpInstruction(uptr from, uptr indirect_target) {
269   // jmp [rip + <offset>] = FF 25 <offset> where <offset> is a relative
270   // offset.
271   // The offset is the distance from then end of the jump instruction to the
272   // memory location containing the targeted address. The displacement is still
273   // 32-bit in x64, so indirect_target must be located within +/- 2GB range.
274   int offset = indirect_target - from - kIndirectJumpInstructionLength;
275   if (!DistanceIsWithin2Gig(from + kIndirectJumpInstructionLength,
276                             indirect_target)) {
277     InterceptionFailed();
278   }
279   *(u16*)from = 0x25FF;
280   *(u32*)(from + 2) = offset;
281 }
282 #endif
283 
284 static void WriteBranch(
285     uptr from, uptr indirect_target, uptr target) {
286 #if SANITIZER_WINDOWS64
287   WriteIndirectJumpInstruction(from, indirect_target);
288   *(u64*)indirect_target = target;
289 #else
290   (void)indirect_target;
291   WriteJumpInstruction(from, target);
292 #endif
293 }
294 
295 static void WriteDirectBranch(uptr from, uptr target) {
296 #if SANITIZER_WINDOWS64
297   // Emit an indirect jump through immediately following bytes:
298   //   jmp [rip + kBranchLength]
299   //   .quad <target>
300   WriteBranch(from, from + kBranchLength, target);
301 #else
302   WriteJumpInstruction(from, target);
303 #endif
304 }
305 
306 struct TrampolineMemoryRegion {
307   uptr content;
308   uptr allocated_size;
309   uptr max_size;
310 };
311 
312 UNUSED static const uptr kTrampolineScanLimitRange = 1 << 31;  // 2 gig
313 static const int kMaxTrampolineRegion = 1024;
314 static TrampolineMemoryRegion TrampolineRegions[kMaxTrampolineRegion];
315 
316 static void *AllocateTrampolineRegion(uptr image_address, size_t granularity) {
317 #if SANITIZER_WINDOWS64
318   uptr address = image_address;
319   uptr scanned = 0;
320   while (scanned < kTrampolineScanLimitRange) {
321     MEMORY_BASIC_INFORMATION info;
322     if (!::VirtualQuery((void*)address, &info, sizeof(info)))
323       return nullptr;
324 
325     // Check whether a region can be allocated at |address|.
326     if (info.State == MEM_FREE && info.RegionSize >= granularity) {
327       void *page = ::VirtualAlloc((void*)RoundUpTo(address, granularity),
328                                   granularity,
329                                   MEM_RESERVE | MEM_COMMIT,
330                                   PAGE_EXECUTE_READWRITE);
331       return page;
332     }
333 
334     // Move to the next region.
335     address = (uptr)info.BaseAddress + info.RegionSize;
336     scanned += info.RegionSize;
337   }
338   return nullptr;
339 #else
340   return ::VirtualAlloc(nullptr,
341                         granularity,
342                         MEM_RESERVE | MEM_COMMIT,
343                         PAGE_EXECUTE_READWRITE);
344 #endif
345 }
346 
347 // Used by unittests to release mapped memory space.
348 void TestOnlyReleaseTrampolineRegions() {
349   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
350     TrampolineMemoryRegion *current = &TrampolineRegions[bucket];
351     if (current->content == 0)
352       return;
353     ::VirtualFree((void*)current->content, 0, MEM_RELEASE);
354     current->content = 0;
355   }
356 }
357 
358 static uptr AllocateMemoryForTrampoline(uptr image_address, size_t size) {
359   // Find a region within 2G with enough space to allocate |size| bytes.
360   TrampolineMemoryRegion *region = nullptr;
361   for (size_t bucket = 0; bucket < kMaxTrampolineRegion; ++bucket) {
362     TrampolineMemoryRegion* current = &TrampolineRegions[bucket];
363     if (current->content == 0) {
364       // No valid region found, allocate a new region.
365       size_t bucket_size = GetMmapGranularity();
366       void *content = AllocateTrampolineRegion(image_address, bucket_size);
367       if (content == nullptr)
368         return 0U;
369 
370       current->content = (uptr)content;
371       current->allocated_size = 0;
372       current->max_size = bucket_size;
373       region = current;
374       break;
375     } else if (current->max_size - current->allocated_size > size) {
376 #if SANITIZER_WINDOWS64
377         // In 64-bits, the memory space must be allocated within 2G boundary.
378         uptr next_address = current->content + current->allocated_size;
379         if (next_address < image_address ||
380             next_address - image_address >= 0x7FFF0000)
381           continue;
382 #endif
383       // The space can be allocated in the current region.
384       region = current;
385       break;
386     }
387   }
388 
389   // Failed to find a region.
390   if (region == nullptr)
391     return 0U;
392 
393   // Allocate the space in the current region.
394   uptr allocated_space = region->content + region->allocated_size;
395   region->allocated_size += size;
396   WritePadding(allocated_space, size);
397 
398   return allocated_space;
399 }
400 
401 // The following prologues cannot be patched because of the short jump
402 // jumping to the patching region.
403 
404 #if SANITIZER_WINDOWS64
405 // ntdll!wcslen in Win11
406 //   488bc1          mov     rax,rcx
407 //   0fb710          movzx   edx,word ptr [rax]
408 //   4883c002        add     rax,2
409 //   6685d2          test    dx,dx
410 //   75f4            jne     -12
411 static const u8 kPrologueWithShortJump1[] = {
412     0x48, 0x8b, 0xc1, 0x0f, 0xb7, 0x10, 0x48, 0x83,
413     0xc0, 0x02, 0x66, 0x85, 0xd2, 0x75, 0xf4,
414 };
415 
416 // ntdll!strrchr in Win11
417 //   4c8bc1          mov     r8,rcx
418 //   8a01            mov     al,byte ptr [rcx]
419 //   48ffc1          inc     rcx
420 //   84c0            test    al,al
421 //   75f7            jne     -9
422 static const u8 kPrologueWithShortJump2[] = {
423     0x4c, 0x8b, 0xc1, 0x8a, 0x01, 0x48, 0xff, 0xc1,
424     0x84, 0xc0, 0x75, 0xf7,
425 };
426 #endif
427 
428 // Returns 0 on error.
429 static size_t GetInstructionSize(uptr address, size_t* rel_offset = nullptr) {
430 #if SANITIZER_WINDOWS64
431   if (memcmp((u8*)address, kPrologueWithShortJump1,
432              sizeof(kPrologueWithShortJump1)) == 0 ||
433       memcmp((u8*)address, kPrologueWithShortJump2,
434              sizeof(kPrologueWithShortJump2)) == 0) {
435     return 0;
436   }
437 #endif
438 
439   switch (*(u64*)address) {
440     case 0x90909090909006EB:  // stub: jmp over 6 x nop.
441       return 8;
442   }
443 
444   switch (*(u8*)address) {
445     case 0x90:  // 90 : nop
446       return 1;
447 
448     case 0x50:  // push eax / rax
449     case 0x51:  // push ecx / rcx
450     case 0x52:  // push edx / rdx
451     case 0x53:  // push ebx / rbx
452     case 0x54:  // push esp / rsp
453     case 0x55:  // push ebp / rbp
454     case 0x56:  // push esi / rsi
455     case 0x57:  // push edi / rdi
456     case 0x5D:  // pop ebp / rbp
457       return 1;
458 
459     case 0x6A:  // 6A XX = push XX
460       return 2;
461 
462     case 0xb8:  // b8 XX XX XX XX : mov eax, XX XX XX XX
463     case 0xB9:  // b9 XX XX XX XX : mov ecx, XX XX XX XX
464       return 5;
465 
466     // Cannot overwrite control-instruction. Return 0 to indicate failure.
467     case 0xE9:  // E9 XX XX XX XX : jmp <label>
468     case 0xE8:  // E8 XX XX XX XX : call <func>
469     case 0xC3:  // C3 : ret
470     case 0xEB:  // EB XX : jmp XX (short jump)
471     case 0x70:  // 7Y YY : jy XX (short conditional jump)
472     case 0x71:
473     case 0x72:
474     case 0x73:
475     case 0x74:
476     case 0x75:
477     case 0x76:
478     case 0x77:
479     case 0x78:
480     case 0x79:
481     case 0x7A:
482     case 0x7B:
483     case 0x7C:
484     case 0x7D:
485     case 0x7E:
486     case 0x7F:
487       return 0;
488   }
489 
490   switch (*(u16*)(address)) {
491     case 0x018A:  // 8A 01 : mov al, byte ptr [ecx]
492     case 0xFF8B:  // 8B FF : mov edi, edi
493     case 0xEC8B:  // 8B EC : mov ebp, esp
494     case 0xc889:  // 89 C8 : mov eax, ecx
495     case 0xC18B:  // 8B C1 : mov eax, ecx
496     case 0xC033:  // 33 C0 : xor eax, eax
497     case 0xC933:  // 33 C9 : xor ecx, ecx
498     case 0xD233:  // 33 D2 : xor edx, edx
499       return 2;
500 
501     // Cannot overwrite control-instruction. Return 0 to indicate failure.
502     case 0x25FF:  // FF 25 XX XX XX XX : jmp [XXXXXXXX]
503       return 0;
504   }
505 
506   switch (0x00FFFFFF & *(u32*)address) {
507     case 0x24A48D:  // 8D A4 24 XX XX XX XX : lea esp, [esp + XX XX XX XX]
508       return 7;
509   }
510 
511 #if SANITIZER_WINDOWS64
512   switch (*(u8*)address) {
513     case 0xA1:  // A1 XX XX XX XX XX XX XX XX :
514                 //   movabs eax, dword ptr ds:[XXXXXXXX]
515       return 9;
516 
517     case 0x83:
518       const u8 next_byte = *(u8*)(address + 1);
519       const u8 mod = next_byte >> 6;
520       const u8 rm = next_byte & 7;
521       if (mod == 1 && rm == 4)
522         return 5;  // 83 ModR/M SIB Disp8 Imm8
523                    //   add|or|adc|sbb|and|sub|xor|cmp [r+disp8], imm8
524   }
525 
526   switch (*(u16*)address) {
527     case 0x5040:  // push rax
528     case 0x5140:  // push rcx
529     case 0x5240:  // push rdx
530     case 0x5340:  // push rbx
531     case 0x5440:  // push rsp
532     case 0x5540:  // push rbp
533     case 0x5640:  // push rsi
534     case 0x5740:  // push rdi
535     case 0x5441:  // push r12
536     case 0x5541:  // push r13
537     case 0x5641:  // push r14
538     case 0x5741:  // push r15
539     case 0x9066:  // Two-byte NOP
540     case 0xc084:  // test al, al
541     case 0x018a:  // mov al, byte ptr [rcx]
542       return 2;
543 
544     case 0x058B:  // 8B 05 XX XX XX XX : mov eax, dword ptr [XX XX XX XX]
545       if (rel_offset)
546         *rel_offset = 2;
547       return 6;
548   }
549 
550   switch (0x00FFFFFF & *(u32*)address) {
551     case 0xe58948:    // 48 8b c4 : mov rbp, rsp
552     case 0xc18b48:    // 48 8b c1 : mov rax, rcx
553     case 0xc48b48:    // 48 8b c4 : mov rax, rsp
554     case 0xd9f748:    // 48 f7 d9 : neg rcx
555     case 0xd12b48:    // 48 2b d1 : sub rdx, rcx
556     case 0x07c1f6:    // f6 c1 07 : test cl, 0x7
557     case 0xc98548:    // 48 85 C9 : test rcx, rcx
558     case 0xd28548:    // 48 85 d2 : test rdx, rdx
559     case 0xc0854d:    // 4d 85 c0 : test r8, r8
560     case 0xc2b60f:    // 0f b6 c2 : movzx eax, dl
561     case 0xc03345:    // 45 33 c0 : xor r8d, r8d
562     case 0xc93345:    // 45 33 c9 : xor r9d, r9d
563     case 0xdb3345:    // 45 33 DB : xor r11d, r11d
564     case 0xd98b4c:    // 4c 8b d9 : mov r11, rcx
565     case 0xd28b4c:    // 4c 8b d2 : mov r10, rdx
566     case 0xc98b4c:    // 4C 8B C9 : mov r9, rcx
567     case 0xc18b4c:    // 4C 8B C1 : mov r8, rcx
568     case 0xd2b60f:    // 0f b6 d2 : movzx edx, dl
569     case 0xca2b48:    // 48 2b ca : sub rcx, rdx
570     case 0x10b70f:    // 0f b7 10 : movzx edx, WORD PTR [rax]
571     case 0xc00b4d:    // 3d 0b c0 : or r8, r8
572     case 0xc08b41:    // 41 8b c0 : mov eax, r8d
573     case 0xd18b48:    // 48 8b d1 : mov rdx, rcx
574     case 0xdc8b4c:    // 4c 8b dc : mov r11, rsp
575     case 0xd18b4c:    // 4c 8b d1 : mov r10, rcx
576     case 0xE0E483:    // 83 E4 E0 : and esp, 0xFFFFFFE0
577       return 3;
578 
579     case 0xec8348:    // 48 83 ec XX : sub rsp, XX
580     case 0xf88349:    // 49 83 f8 XX : cmp r8, XX
581     case 0x588948:    // 48 89 58 XX : mov QWORD PTR[rax + XX], rbx
582       return 4;
583 
584     case 0xec8148:    // 48 81 EC XX XX XX XX : sub rsp, XXXXXXXX
585       return 7;
586 
587     case 0x058b48:    // 48 8b 05 XX XX XX XX :
588                       //   mov rax, QWORD PTR [rip + XXXXXXXX]
589     case 0x25ff48:    // 48 ff 25 XX XX XX XX :
590                       //   rex.W jmp QWORD PTR [rip + XXXXXXXX]
591 
592       // Instructions having offset relative to 'rip' need offset adjustment.
593       if (rel_offset)
594         *rel_offset = 3;
595       return 7;
596 
597     case 0x2444c7:    // C7 44 24 XX YY YY YY YY
598                       //   mov dword ptr [rsp + XX], YYYYYYYY
599       return 8;
600   }
601 
602   switch (*(u32*)(address)) {
603     case 0x24448b48:  // 48 8b 44 24 XX : mov rax, QWORD ptr [rsp + XX]
604     case 0x246c8948:  // 48 89 6C 24 XX : mov QWORD ptr [rsp + XX], rbp
605     case 0x245c8948:  // 48 89 5c 24 XX : mov QWORD PTR [rsp + XX], rbx
606     case 0x24748948:  // 48 89 74 24 XX : mov QWORD PTR [rsp + XX], rsi
607     case 0x247c8948:  // 48 89 7c 24 XX : mov QWORD PTR [rsp + XX], rdi
608     case 0x244C8948:  // 48 89 4C 24 XX : mov QWORD PTR [rsp + XX], rcx
609     case 0x24548948:  // 48 89 54 24 XX : mov QWORD PTR [rsp + XX], rdx
610     case 0x244c894c:  // 4c 89 4c 24 XX : mov QWORD PTR [rsp + XX], r9
611     case 0x2444894c:  // 4c 89 44 24 XX : mov QWORD PTR [rsp + XX], r8
612       return 5;
613     case 0x24648348:  // 48 83 64 24 XX : and QWORD PTR [rsp + XX], YY
614       return 6;
615   }
616 
617 #else
618 
619   switch (*(u8*)address) {
620     case 0xA1:  // A1 XX XX XX XX :  mov eax, dword ptr ds:[XXXXXXXX]
621       return 5;
622   }
623   switch (*(u16*)address) {
624     case 0x458B:  // 8B 45 XX : mov eax, dword ptr [ebp + XX]
625     case 0x5D8B:  // 8B 5D XX : mov ebx, dword ptr [ebp + XX]
626     case 0x7D8B:  // 8B 7D XX : mov edi, dword ptr [ebp + XX]
627     case 0xEC83:  // 83 EC XX : sub esp, XX
628     case 0x75FF:  // FF 75 XX : push dword ptr [ebp + XX]
629       return 3;
630     case 0xC1F7:  // F7 C1 XX YY ZZ WW : test ecx, WWZZYYXX
631     case 0x25FF:  // FF 25 XX YY ZZ WW : jmp dword ptr ds:[WWZZYYXX]
632       return 6;
633     case 0x3D83:  // 83 3D XX YY ZZ WW TT : cmp TT, WWZZYYXX
634       return 7;
635     case 0x7D83:  // 83 7D XX YY : cmp dword ptr [ebp + XX], YY
636       return 4;
637   }
638 
639   switch (0x00FFFFFF & *(u32*)address) {
640     case 0x24448A:  // 8A 44 24 XX : mov eal, dword ptr [esp + XX]
641     case 0x24448B:  // 8B 44 24 XX : mov eax, dword ptr [esp + XX]
642     case 0x244C8B:  // 8B 4C 24 XX : mov ecx, dword ptr [esp + XX]
643     case 0x24548B:  // 8B 54 24 XX : mov edx, dword ptr [esp + XX]
644     case 0x24748B:  // 8B 74 24 XX : mov esi, dword ptr [esp + XX]
645     case 0x247C8B:  // 8B 7C 24 XX : mov edi, dword ptr [esp + XX]
646       return 4;
647   }
648 
649   switch (*(u32*)address) {
650     case 0x2444B60F:  // 0F B6 44 24 XX : movzx eax, byte ptr [esp + XX]
651       return 5;
652   }
653 #endif
654 
655   // Unknown instruction!
656   // FIXME: Unknown instruction failures might happen when we add a new
657   // interceptor or a new compiler version. In either case, they should result
658   // in visible and readable error messages. However, merely calling abort()
659   // leads to an infinite recursion in CheckFailed.
660   InterceptionFailed();
661   return 0;
662 }
663 
664 // Returns 0 on error.
665 static size_t RoundUpToInstrBoundary(size_t size, uptr address) {
666   size_t cursor = 0;
667   while (cursor < size) {
668     size_t instruction_size = GetInstructionSize(address + cursor);
669     if (!instruction_size)
670       return 0;
671     cursor += instruction_size;
672   }
673   return cursor;
674 }
675 
676 static bool CopyInstructions(uptr to, uptr from, size_t size) {
677   size_t cursor = 0;
678   while (cursor != size) {
679     size_t rel_offset = 0;
680     size_t instruction_size = GetInstructionSize(from + cursor, &rel_offset);
681     _memcpy((void*)(to + cursor), (void*)(from + cursor),
682             (size_t)instruction_size);
683     if (rel_offset) {
684       uptr delta = to - from;
685       uptr relocated_offset = *(u32*)(to + cursor + rel_offset) - delta;
686 #if SANITIZER_WINDOWS64
687       if (relocated_offset + 0x80000000U >= 0xFFFFFFFFU)
688         return false;
689 #endif
690       *(u32*)(to + cursor + rel_offset) = relocated_offset;
691     }
692     cursor += instruction_size;
693   }
694   return true;
695 }
696 
697 
698 #if !SANITIZER_WINDOWS64
699 bool OverrideFunctionWithDetour(
700     uptr old_func, uptr new_func, uptr *orig_old_func) {
701   const int kDetourHeaderLen = 5;
702   const u16 kDetourInstruction = 0xFF8B;
703 
704   uptr header = (uptr)old_func - kDetourHeaderLen;
705   uptr patch_length = kDetourHeaderLen + kShortJumpInstructionLength;
706 
707   // Validate that the function is hookable.
708   if (*(u16*)old_func != kDetourInstruction ||
709       !IsMemoryPadding(header, kDetourHeaderLen))
710     return false;
711 
712   // Change memory protection to writable.
713   DWORD protection = 0;
714   if (!ChangeMemoryProtection(header, patch_length, &protection))
715     return false;
716 
717   // Write a relative jump to the redirected function.
718   WriteJumpInstruction(header, new_func);
719 
720   // Write the short jump to the function prefix.
721   WriteShortJumpInstruction(old_func, header);
722 
723   // Restore previous memory protection.
724   if (!RestoreMemoryProtection(header, patch_length, protection))
725     return false;
726 
727   if (orig_old_func)
728     *orig_old_func = old_func + kShortJumpInstructionLength;
729 
730   return true;
731 }
732 #endif
733 
734 bool OverrideFunctionWithRedirectJump(
735     uptr old_func, uptr new_func, uptr *orig_old_func) {
736   // Check whether the first instruction is a relative jump.
737   if (*(u8*)old_func != 0xE9)
738     return false;
739 
740   if (orig_old_func) {
741     uptr relative_offset = *(u32*)(old_func + 1);
742     uptr absolute_target = old_func + relative_offset + kJumpInstructionLength;
743     *orig_old_func = absolute_target;
744   }
745 
746 #if SANITIZER_WINDOWS64
747   // If needed, get memory space for a trampoline jump.
748   uptr trampoline = AllocateMemoryForTrampoline(old_func, kDirectBranchLength);
749   if (!trampoline)
750     return false;
751   WriteDirectBranch(trampoline, new_func);
752 #endif
753 
754   // Change memory protection to writable.
755   DWORD protection = 0;
756   if (!ChangeMemoryProtection(old_func, kJumpInstructionLength, &protection))
757     return false;
758 
759   // Write a relative jump to the redirected function.
760   WriteJumpInstruction(old_func, FIRST_32_SECOND_64(new_func, trampoline));
761 
762   // Restore previous memory protection.
763   if (!RestoreMemoryProtection(old_func, kJumpInstructionLength, protection))
764     return false;
765 
766   return true;
767 }
768 
769 bool OverrideFunctionWithHotPatch(
770     uptr old_func, uptr new_func, uptr *orig_old_func) {
771   const int kHotPatchHeaderLen = kBranchLength;
772 
773   uptr header = (uptr)old_func - kHotPatchHeaderLen;
774   uptr patch_length = kHotPatchHeaderLen + kShortJumpInstructionLength;
775 
776   // Validate that the function is hot patchable.
777   size_t instruction_size = GetInstructionSize(old_func);
778   if (instruction_size < kShortJumpInstructionLength ||
779       !FunctionHasPadding(old_func, kHotPatchHeaderLen))
780     return false;
781 
782   if (orig_old_func) {
783     // Put the needed instructions into the trampoline bytes.
784     uptr trampoline_length = instruction_size + kDirectBranchLength;
785     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
786     if (!trampoline)
787       return false;
788     if (!CopyInstructions(trampoline, old_func, instruction_size))
789       return false;
790     WriteDirectBranch(trampoline + instruction_size,
791                       old_func + instruction_size);
792     *orig_old_func = trampoline;
793   }
794 
795   // If needed, get memory space for indirect address.
796   uptr indirect_address = 0;
797 #if SANITIZER_WINDOWS64
798   indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
799   if (!indirect_address)
800     return false;
801 #endif
802 
803   // Change memory protection to writable.
804   DWORD protection = 0;
805   if (!ChangeMemoryProtection(header, patch_length, &protection))
806     return false;
807 
808   // Write jumps to the redirected function.
809   WriteBranch(header, indirect_address, new_func);
810   WriteShortJumpInstruction(old_func, header);
811 
812   // Restore previous memory protection.
813   if (!RestoreMemoryProtection(header, patch_length, protection))
814     return false;
815 
816   return true;
817 }
818 
819 bool OverrideFunctionWithTrampoline(
820     uptr old_func, uptr new_func, uptr *orig_old_func) {
821 
822   size_t instructions_length = kBranchLength;
823   size_t padding_length = 0;
824   uptr indirect_address = 0;
825 
826   if (orig_old_func) {
827     // Find out the number of bytes of the instructions we need to copy
828     // to the trampoline.
829     instructions_length = RoundUpToInstrBoundary(kBranchLength, old_func);
830     if (!instructions_length)
831       return false;
832 
833     // Put the needed instructions into the trampoline bytes.
834     uptr trampoline_length = instructions_length + kDirectBranchLength;
835     uptr trampoline = AllocateMemoryForTrampoline(old_func, trampoline_length);
836     if (!trampoline)
837       return false;
838     if (!CopyInstructions(trampoline, old_func, instructions_length))
839       return false;
840     WriteDirectBranch(trampoline + instructions_length,
841                       old_func + instructions_length);
842     *orig_old_func = trampoline;
843   }
844 
845 #if SANITIZER_WINDOWS64
846   // Check if the targeted address can be encoded in the function padding.
847   // Otherwise, allocate it in the trampoline region.
848   if (IsMemoryPadding(old_func - kAddressLength, kAddressLength)) {
849     indirect_address = old_func - kAddressLength;
850     padding_length = kAddressLength;
851   } else {
852     indirect_address = AllocateMemoryForTrampoline(old_func, kAddressLength);
853     if (!indirect_address)
854       return false;
855   }
856 #endif
857 
858   // Change memory protection to writable.
859   uptr patch_address = old_func - padding_length;
860   uptr patch_length = instructions_length + padding_length;
861   DWORD protection = 0;
862   if (!ChangeMemoryProtection(patch_address, patch_length, &protection))
863     return false;
864 
865   // Patch the original function.
866   WriteBranch(old_func, indirect_address, new_func);
867 
868   // Restore previous memory protection.
869   if (!RestoreMemoryProtection(patch_address, patch_length, protection))
870     return false;
871 
872   return true;
873 }
874 
875 bool OverrideFunction(
876     uptr old_func, uptr new_func, uptr *orig_old_func) {
877 #if !SANITIZER_WINDOWS64
878   if (OverrideFunctionWithDetour(old_func, new_func, orig_old_func))
879     return true;
880 #endif
881   if (OverrideFunctionWithRedirectJump(old_func, new_func, orig_old_func))
882     return true;
883   if (OverrideFunctionWithHotPatch(old_func, new_func, orig_old_func))
884     return true;
885   if (OverrideFunctionWithTrampoline(old_func, new_func, orig_old_func))
886     return true;
887   return false;
888 }
889 
890 static void **InterestingDLLsAvailable() {
891   static const char *InterestingDLLs[] = {
892       "kernel32.dll",
893       "msvcr100.dll",      // VS2010
894       "msvcr110.dll",      // VS2012
895       "msvcr120.dll",      // VS2013
896       "vcruntime140.dll",  // VS2015
897       "ucrtbase.dll",      // Universal CRT
898       // NTDLL should go last as it exports some functions that we should
899       // override in the CRT [presumably only used internally].
900       "ntdll.dll", NULL};
901   static void *result[ARRAY_SIZE(InterestingDLLs)] = { 0 };
902   if (!result[0]) {
903     for (size_t i = 0, j = 0; InterestingDLLs[i]; ++i) {
904       if (HMODULE h = GetModuleHandleA(InterestingDLLs[i]))
905         result[j++] = (void *)h;
906     }
907   }
908   return &result[0];
909 }
910 
911 namespace {
912 // Utility for reading loaded PE images.
913 template <typename T> class RVAPtr {
914  public:
915   RVAPtr(void *module, uptr rva)
916       : ptr_(reinterpret_cast<T *>(reinterpret_cast<char *>(module) + rva)) {}
917   operator T *() { return ptr_; }
918   T *operator->() { return ptr_; }
919   T *operator++() { return ++ptr_; }
920 
921  private:
922   T *ptr_;
923 };
924 } // namespace
925 
926 // Internal implementation of GetProcAddress. At least since Windows 8,
927 // GetProcAddress appears to initialize DLLs before returning function pointers
928 // into them. This is problematic for the sanitizers, because they typically
929 // want to intercept malloc *before* MSVCRT initializes. Our internal
930 // implementation walks the export list manually without doing initialization.
931 uptr InternalGetProcAddress(void *module, const char *func_name) {
932   // Check that the module header is full and present.
933   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
934   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
935   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
936       headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
937       headers->FileHeader.SizeOfOptionalHeader <
938           sizeof(IMAGE_OPTIONAL_HEADER)) {
939     return 0;
940   }
941 
942   IMAGE_DATA_DIRECTORY *export_directory =
943       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];
944   if (export_directory->Size == 0)
945     return 0;
946   RVAPtr<IMAGE_EXPORT_DIRECTORY> exports(module,
947                                          export_directory->VirtualAddress);
948   RVAPtr<DWORD> functions(module, exports->AddressOfFunctions);
949   RVAPtr<DWORD> names(module, exports->AddressOfNames);
950   RVAPtr<WORD> ordinals(module, exports->AddressOfNameOrdinals);
951 
952   for (DWORD i = 0; i < exports->NumberOfNames; i++) {
953     RVAPtr<char> name(module, names[i]);
954     if (!strcmp(func_name, name)) {
955       DWORD index = ordinals[i];
956       RVAPtr<char> func(module, functions[index]);
957 
958       // Handle forwarded functions.
959       DWORD offset = functions[index];
960       if (offset >= export_directory->VirtualAddress &&
961           offset < export_directory->VirtualAddress + export_directory->Size) {
962         // An entry for a forwarded function is a string with the following
963         // format: "<module> . <function_name>" that is stored into the
964         // exported directory.
965         char function_name[256];
966         size_t funtion_name_length = _strlen(func);
967         if (funtion_name_length >= sizeof(function_name) - 1)
968           InterceptionFailed();
969 
970         _memcpy(function_name, func, funtion_name_length);
971         function_name[funtion_name_length] = '\0';
972         char* separator = _strchr(function_name, '.');
973         if (!separator)
974           InterceptionFailed();
975         *separator = '\0';
976 
977         void* redirected_module = GetModuleHandleA(function_name);
978         if (!redirected_module)
979           InterceptionFailed();
980         return InternalGetProcAddress(redirected_module, separator + 1);
981       }
982 
983       return (uptr)(char *)func;
984     }
985   }
986 
987   return 0;
988 }
989 
990 bool OverrideFunction(
991     const char *func_name, uptr new_func, uptr *orig_old_func) {
992   bool hooked = false;
993   void **DLLs = InterestingDLLsAvailable();
994   for (size_t i = 0; DLLs[i]; ++i) {
995     uptr func_addr = InternalGetProcAddress(DLLs[i], func_name);
996     if (func_addr &&
997         OverrideFunction(func_addr, new_func, orig_old_func)) {
998       hooked = true;
999     }
1000   }
1001   return hooked;
1002 }
1003 
1004 bool OverrideImportedFunction(const char *module_to_patch,
1005                               const char *imported_module,
1006                               const char *function_name, uptr new_function,
1007                               uptr *orig_old_func) {
1008   HMODULE module = GetModuleHandleA(module_to_patch);
1009   if (!module)
1010     return false;
1011 
1012   // Check that the module header is full and present.
1013   RVAPtr<IMAGE_DOS_HEADER> dos_stub(module, 0);
1014   RVAPtr<IMAGE_NT_HEADERS> headers(module, dos_stub->e_lfanew);
1015   if (!module || dos_stub->e_magic != IMAGE_DOS_SIGNATURE ||  // "MZ"
1016       headers->Signature != IMAGE_NT_SIGNATURE ||             // "PE\0\0"
1017       headers->FileHeader.SizeOfOptionalHeader <
1018           sizeof(IMAGE_OPTIONAL_HEADER)) {
1019     return false;
1020   }
1021 
1022   IMAGE_DATA_DIRECTORY *import_directory =
1023       &headers->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
1024 
1025   // Iterate the list of imported DLLs. FirstThunk will be null for the last
1026   // entry.
1027   RVAPtr<IMAGE_IMPORT_DESCRIPTOR> imports(module,
1028                                           import_directory->VirtualAddress);
1029   for (; imports->FirstThunk != 0; ++imports) {
1030     RVAPtr<const char> modname(module, imports->Name);
1031     if (_stricmp(&*modname, imported_module) == 0)
1032       break;
1033   }
1034   if (imports->FirstThunk == 0)
1035     return false;
1036 
1037   // We have two parallel arrays: the import address table (IAT) and the table
1038   // of names. They start out containing the same data, but the loader rewrites
1039   // the IAT to hold imported addresses and leaves the name table in
1040   // OriginalFirstThunk alone.
1041   RVAPtr<IMAGE_THUNK_DATA> name_table(module, imports->OriginalFirstThunk);
1042   RVAPtr<IMAGE_THUNK_DATA> iat(module, imports->FirstThunk);
1043   for (; name_table->u1.Ordinal != 0; ++name_table, ++iat) {
1044     if (!IMAGE_SNAP_BY_ORDINAL(name_table->u1.Ordinal)) {
1045       RVAPtr<IMAGE_IMPORT_BY_NAME> import_by_name(
1046           module, name_table->u1.ForwarderString);
1047       const char *funcname = &import_by_name->Name[0];
1048       if (strcmp(funcname, function_name) == 0)
1049         break;
1050     }
1051   }
1052   if (name_table->u1.Ordinal == 0)
1053     return false;
1054 
1055   // Now we have the correct IAT entry. Do the swap. We have to make the page
1056   // read/write first.
1057   if (orig_old_func)
1058     *orig_old_func = iat->u1.AddressOfData;
1059   DWORD old_prot, unused_prot;
1060   if (!VirtualProtect(&iat->u1.AddressOfData, 4, PAGE_EXECUTE_READWRITE,
1061                       &old_prot))
1062     return false;
1063   iat->u1.AddressOfData = new_function;
1064   if (!VirtualProtect(&iat->u1.AddressOfData, 4, old_prot, &unused_prot))
1065     return false;  // Not clear if this failure bothers us.
1066   return true;
1067 }
1068 
1069 }  // namespace __interception
1070 
1071 #endif  // SANITIZER_MAC
1072