1 //===-- sanitizer_deadlock_detector.h ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of Sanitizer runtime.
10 // The deadlock detector maintains a directed graph of lock acquisitions.
11 // When a lock event happens, the detector checks if the locks already held by
12 // the current thread are reachable from the newly acquired lock.
13 //
14 // The detector can handle only a fixed amount of simultaneously live locks
15 // (a lock is alive if it has been locked at least once and has not been
16 // destroyed). When the maximal number of locks is reached the entire graph
17 // is flushed and the new lock epoch is started. The node ids from the old
18 // epochs can not be used with any of the detector methods except for
19 // nodeBelongsToCurrentEpoch().
20 //
21 // FIXME: this is work in progress, nothing really works yet.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef SANITIZER_DEADLOCK_DETECTOR_H
26 #define SANITIZER_DEADLOCK_DETECTOR_H
27 
28 #include "sanitizer_bvgraph.h"
29 #include "sanitizer_common.h"
30 
31 namespace __sanitizer {
32 
33 // Thread-local state for DeadlockDetector.
34 // It contains the locks currently held by the owning thread.
35 template <class BV>
36 class DeadlockDetectorTLS {
37  public:
38   // No CTOR.
39   void clear() {
40     bv_.clear();
41     epoch_ = 0;
42     n_recursive_locks = 0;
43     n_all_locks_ = 0;
44   }
45 
46   bool empty() const { return bv_.empty(); }
47 
48   void ensureCurrentEpoch(uptr current_epoch) {
49     if (epoch_ == current_epoch) return;
50     bv_.clear();
51     epoch_ = current_epoch;
52     n_recursive_locks = 0;
53     n_all_locks_ = 0;
54   }
55 
56   uptr getEpoch() const { return epoch_; }
57 
58   // Returns true if this is the first (non-recursive) acquisition of this lock.
59   bool addLock(uptr lock_id, uptr current_epoch, u32 stk) {
60     CHECK_EQ(epoch_, current_epoch);
61     if (!bv_.setBit(lock_id)) {
62       // The lock is already held by this thread, it must be recursive.
63       CHECK_LT(n_recursive_locks, ARRAY_SIZE(recursive_locks));
64       recursive_locks[n_recursive_locks++] = lock_id;
65       return false;
66     }
67     CHECK_LT(n_all_locks_, ARRAY_SIZE(all_locks_with_contexts_));
68     // lock_id < BV::kSize, can cast to a smaller int.
69     u32 lock_id_short = static_cast<u32>(lock_id);
70     LockWithContext l = {lock_id_short, stk};
71     all_locks_with_contexts_[n_all_locks_++] = l;
72     return true;
73   }
74 
75   void removeLock(uptr lock_id) {
76     if (n_recursive_locks) {
77       for (sptr i = n_recursive_locks - 1; i >= 0; i--) {
78         if (recursive_locks[i] == lock_id) {
79           n_recursive_locks--;
80           Swap(recursive_locks[i], recursive_locks[n_recursive_locks]);
81           return;
82         }
83       }
84     }
85     if (!bv_.clearBit(lock_id))
86       return;  // probably addLock happened before flush
87     if (n_all_locks_) {
88       for (sptr i = n_all_locks_ - 1; i >= 0; i--) {
89         if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id)) {
90           Swap(all_locks_with_contexts_[i],
91                all_locks_with_contexts_[n_all_locks_ - 1]);
92           n_all_locks_--;
93           break;
94         }
95       }
96     }
97   }
98 
99   u32 findLockContext(uptr lock_id) {
100     for (uptr i = 0; i < n_all_locks_; i++)
101       if (all_locks_with_contexts_[i].lock == static_cast<u32>(lock_id))
102         return all_locks_with_contexts_[i].stk;
103     return 0;
104   }
105 
106   const BV &getLocks(uptr current_epoch) const {
107     CHECK_EQ(epoch_, current_epoch);
108     return bv_;
109   }
110 
111   uptr getNumLocks() const { return n_all_locks_; }
112   uptr getLock(uptr idx) const { return all_locks_with_contexts_[idx].lock; }
113 
114  private:
115   BV bv_;
116   uptr epoch_;
117   uptr recursive_locks[64];
118   uptr n_recursive_locks;
119   struct LockWithContext {
120     u32 lock;
121     u32 stk;
122   };
123   LockWithContext all_locks_with_contexts_[64];
124   uptr n_all_locks_;
125 };
126 
127 // DeadlockDetector.
128 // For deadlock detection to work we need one global DeadlockDetector object
129 // and one DeadlockDetectorTLS object per evey thread.
130 // This class is not thread safe, all concurrent accesses should be guarded
131 // by an external lock.
132 // Most of the methods of this class are not thread-safe (i.e. should
133 // be protected by an external lock) unless explicitly told otherwise.
134 template <class BV>
135 class DeadlockDetector {
136  public:
137   typedef BV BitVector;
138 
139   uptr size() const { return g_.size(); }
140 
141   // No CTOR.
142   void clear() {
143     current_epoch_ = 0;
144     available_nodes_.clear();
145     recycled_nodes_.clear();
146     g_.clear();
147     n_edges_ = 0;
148   }
149 
150   // Allocate new deadlock detector node.
151   // If we are out of available nodes first try to recycle some.
152   // If there is nothing to recycle, flush the graph and increment the epoch.
153   // Associate 'data' (opaque user's object) with the new node.
154   uptr newNode(uptr data) {
155     if (!available_nodes_.empty())
156       return getAvailableNode(data);
157     if (!recycled_nodes_.empty()) {
158       for (sptr i = n_edges_ - 1; i >= 0; i--) {
159         if (recycled_nodes_.getBit(edges_[i].from) ||
160             recycled_nodes_.getBit(edges_[i].to)) {
161           Swap(edges_[i], edges_[n_edges_ - 1]);
162           n_edges_--;
163         }
164       }
165       CHECK(available_nodes_.empty());
166       // removeEdgesFrom was called in removeNode.
167       g_.removeEdgesTo(recycled_nodes_);
168       available_nodes_.setUnion(recycled_nodes_);
169       recycled_nodes_.clear();
170       return getAvailableNode(data);
171     }
172     // We are out of vacant nodes. Flush and increment the current_epoch_.
173     current_epoch_ += size();
174     recycled_nodes_.clear();
175     available_nodes_.setAll();
176     g_.clear();
177     n_edges_ = 0;
178     return getAvailableNode(data);
179   }
180 
181   // Get data associated with the node created by newNode().
182   uptr getData(uptr node) const { return data_[nodeToIndex(node)]; }
183 
184   bool nodeBelongsToCurrentEpoch(uptr node) {
185     return node && (node / size() * size()) == current_epoch_;
186   }
187 
188   void removeNode(uptr node) {
189     uptr idx = nodeToIndex(node);
190     CHECK(!available_nodes_.getBit(idx));
191     CHECK(recycled_nodes_.setBit(idx));
192     g_.removeEdgesFrom(idx);
193   }
194 
195   void ensureCurrentEpoch(DeadlockDetectorTLS<BV> *dtls) {
196     dtls->ensureCurrentEpoch(current_epoch_);
197   }
198 
199   // Returns true if there is a cycle in the graph after this lock event.
200   // Ideally should be called before the lock is acquired so that we can
201   // report a deadlock before a real deadlock happens.
202   bool onLockBefore(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
203     ensureCurrentEpoch(dtls);
204     uptr cur_idx = nodeToIndex(cur_node);
205     return g_.isReachable(cur_idx, dtls->getLocks(current_epoch_));
206   }
207 
208   u32 findLockContext(DeadlockDetectorTLS<BV> *dtls, uptr node) {
209     return dtls->findLockContext(nodeToIndex(node));
210   }
211 
212   // Add cur_node to the set of locks held currently by dtls.
213   void onLockAfter(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
214     ensureCurrentEpoch(dtls);
215     uptr cur_idx = nodeToIndex(cur_node);
216     dtls->addLock(cur_idx, current_epoch_, stk);
217   }
218 
219   // Experimental *racy* fast path function.
220   // Returns true if all edges from the currently held locks to cur_node exist.
221   bool hasAllEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node) {
222     uptr local_epoch = dtls->getEpoch();
223     // Read from current_epoch_ is racy.
224     if (cur_node && local_epoch == current_epoch_ &&
225         local_epoch == nodeToEpoch(cur_node)) {
226       uptr cur_idx = nodeToIndexUnchecked(cur_node);
227       for (uptr i = 0, n = dtls->getNumLocks(); i < n; i++) {
228         if (!g_.hasEdge(dtls->getLock(i), cur_idx))
229           return false;
230       }
231       return true;
232     }
233     return false;
234   }
235 
236   // Adds edges from currently held locks to cur_node,
237   // returns the number of added edges, and puts the sources of added edges
238   // into added_edges[].
239   // Should be called before onLockAfter.
240   uptr addEdges(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk,
241                 int unique_tid) {
242     ensureCurrentEpoch(dtls);
243     uptr cur_idx = nodeToIndex(cur_node);
244     uptr added_edges[40];
245     uptr n_added_edges = g_.addEdges(dtls->getLocks(current_epoch_), cur_idx,
246                                      added_edges, ARRAY_SIZE(added_edges));
247     for (uptr i = 0; i < n_added_edges; i++) {
248       if (n_edges_ < ARRAY_SIZE(edges_)) {
249         Edge e = {(u16)added_edges[i], (u16)cur_idx,
250                   dtls->findLockContext(added_edges[i]), stk,
251                   unique_tid};
252         edges_[n_edges_++] = e;
253       }
254     }
255     return n_added_edges;
256   }
257 
258   bool findEdge(uptr from_node, uptr to_node, u32 *stk_from, u32 *stk_to,
259                 int *unique_tid) {
260     uptr from_idx = nodeToIndex(from_node);
261     uptr to_idx = nodeToIndex(to_node);
262     for (uptr i = 0; i < n_edges_; i++) {
263       if (edges_[i].from == from_idx && edges_[i].to == to_idx) {
264         *stk_from = edges_[i].stk_from;
265         *stk_to = edges_[i].stk_to;
266         *unique_tid = edges_[i].unique_tid;
267         return true;
268       }
269     }
270     return false;
271   }
272 
273   // Test-only function. Handles the before/after lock events,
274   // returns true if there is a cycle.
275   bool onLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
276     ensureCurrentEpoch(dtls);
277     bool is_reachable = !isHeld(dtls, cur_node) && onLockBefore(dtls, cur_node);
278     addEdges(dtls, cur_node, stk, 0);
279     onLockAfter(dtls, cur_node, stk);
280     return is_reachable;
281   }
282 
283   // Handles the try_lock event, returns false.
284   // When a try_lock event happens (i.e. a try_lock call succeeds) we need
285   // to add this lock to the currently held locks, but we should not try to
286   // change the lock graph or to detect a cycle.  We may want to investigate
287   // whether a more aggressive strategy is possible for try_lock.
288   bool onTryLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, u32 stk = 0) {
289     ensureCurrentEpoch(dtls);
290     uptr cur_idx = nodeToIndex(cur_node);
291     dtls->addLock(cur_idx, current_epoch_, stk);
292     return false;
293   }
294 
295   // Returns true iff dtls is empty (no locks are currently held) and we can
296   // add the node to the currently held locks w/o changing the global state.
297   // This operation is thread-safe as it only touches the dtls.
298   bool onFirstLock(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
299     if (!dtls->empty()) return false;
300     if (dtls->getEpoch() && dtls->getEpoch() == nodeToEpoch(node)) {
301       dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
302       return true;
303     }
304     return false;
305   }
306 
307   // Finds a path between the lock 'cur_node' (currently not held in dtls)
308   // and some currently held lock, returns the length of the path
309   // or 0 on failure.
310   uptr findPathToLock(DeadlockDetectorTLS<BV> *dtls, uptr cur_node, uptr *path,
311                       uptr path_size) {
312     tmp_bv_.copyFrom(dtls->getLocks(current_epoch_));
313     uptr idx = nodeToIndex(cur_node);
314     CHECK(!tmp_bv_.getBit(idx));
315     uptr res = g_.findShortestPath(idx, tmp_bv_, path, path_size);
316     for (uptr i = 0; i < res; i++)
317       path[i] = indexToNode(path[i]);
318     if (res)
319       CHECK_EQ(path[0], cur_node);
320     return res;
321   }
322 
323   // Handle the unlock event.
324   // This operation is thread-safe as it only touches the dtls.
325   void onUnlock(DeadlockDetectorTLS<BV> *dtls, uptr node) {
326     if (dtls->getEpoch() == nodeToEpoch(node))
327       dtls->removeLock(nodeToIndexUnchecked(node));
328   }
329 
330   // Tries to handle the lock event w/o writing to global state.
331   // Returns true on success.
332   // This operation is thread-safe as it only touches the dtls
333   // (modulo racy nature of hasAllEdges).
334   bool onLockFast(DeadlockDetectorTLS<BV> *dtls, uptr node, u32 stk = 0) {
335     if (hasAllEdges(dtls, node)) {
336       dtls->addLock(nodeToIndexUnchecked(node), nodeToEpoch(node), stk);
337       return true;
338     }
339     return false;
340   }
341 
342   bool isHeld(DeadlockDetectorTLS<BV> *dtls, uptr node) const {
343     return dtls->getLocks(current_epoch_).getBit(nodeToIndex(node));
344   }
345 
346   uptr testOnlyGetEpoch() const { return current_epoch_; }
347   bool testOnlyHasEdge(uptr l1, uptr l2) {
348     return g_.hasEdge(nodeToIndex(l1), nodeToIndex(l2));
349   }
350   // idx1 and idx2 are raw indices to g_, not lock IDs.
351   bool testOnlyHasEdgeRaw(uptr idx1, uptr idx2) {
352     return g_.hasEdge(idx1, idx2);
353   }
354 
355   void Print() {
356     for (uptr from = 0; from < size(); from++)
357       for (uptr to = 0; to < size(); to++)
358         if (g_.hasEdge(from, to))
359           Printf("  %zx => %zx\n", from, to);
360   }
361 
362  private:
363   void check_idx(uptr idx) const { CHECK_LT(idx, size()); }
364 
365   void check_node(uptr node) const {
366     CHECK_GE(node, size());
367     CHECK_EQ(current_epoch_, nodeToEpoch(node));
368   }
369 
370   uptr indexToNode(uptr idx) const {
371     check_idx(idx);
372     return idx + current_epoch_;
373   }
374 
375   uptr nodeToIndexUnchecked(uptr node) const { return node % size(); }
376 
377   uptr nodeToIndex(uptr node) const {
378     check_node(node);
379     return nodeToIndexUnchecked(node);
380   }
381 
382   uptr nodeToEpoch(uptr node) const { return node / size() * size(); }
383 
384   uptr getAvailableNode(uptr data) {
385     uptr idx = available_nodes_.getAndClearFirstOne();
386     data_[idx] = data;
387     return indexToNode(idx);
388   }
389 
390   struct Edge {
391     u16 from;
392     u16 to;
393     u32 stk_from;
394     u32 stk_to;
395     int unique_tid;
396   };
397 
398   uptr current_epoch_;
399   BV available_nodes_;
400   BV recycled_nodes_;
401   BV tmp_bv_;
402   BVGraph<BV> g_;
403   uptr data_[BV::kSize];
404   Edge edges_[BV::kSize * 32];
405   uptr n_edges_;
406 };
407 
408 } // namespace __sanitizer
409 
410 #endif // SANITIZER_DEADLOCK_DETECTOR_H
411