1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main internal TSan header file.
12 //
13 // Ground rules:
14 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15 //     function-scope locals)
16 //   - All functions/classes/etc reside in namespace __tsan, except for those
17 //     declared in tsan_interface.h.
18 //   - Platform-specific files should be used instead of ifdefs (*).
19 //   - No system headers included in header files (*).
20 //   - Platform specific headres included only into platform-specific files (*).
21 //
22 //  (*) Except when inlining is critical for performance.
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef TSAN_RTL_H
26 #define TSAN_RTL_H
27 
28 #include "sanitizer_common/sanitizer_allocator.h"
29 #include "sanitizer_common/sanitizer_allocator_internal.h"
30 #include "sanitizer_common/sanitizer_asm.h"
31 #include "sanitizer_common/sanitizer_common.h"
32 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33 #include "sanitizer_common/sanitizer_libignore.h"
34 #include "sanitizer_common/sanitizer_suppressions.h"
35 #include "sanitizer_common/sanitizer_thread_registry.h"
36 #include "sanitizer_common/sanitizer_vector.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_mman.h"
41 #include "tsan_sync.h"
42 #include "tsan_trace.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48 
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52 
53 namespace __tsan {
54 
55 #if !SANITIZER_GO
56 struct MapUnmapCallback;
57 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
58 
59 struct AP32 {
60   static const uptr kSpaceBeg = 0;
61   static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
62   static const uptr kMetadataSize = 0;
63   typedef __sanitizer::CompactSizeClassMap SizeClassMap;
64   static const uptr kRegionSizeLog = 20;
65   using AddressSpaceView = LocalAddressSpaceView;
66   typedef __tsan::MapUnmapCallback MapUnmapCallback;
67   static const uptr kFlags = 0;
68 };
69 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
70 #else
71 struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
72   static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
73   static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
74   static const uptr kMetadataSize = 0;
75   typedef DefaultSizeClassMap SizeClassMap;
76   typedef __tsan::MapUnmapCallback MapUnmapCallback;
77   static const uptr kFlags = 0;
78   using AddressSpaceView = LocalAddressSpaceView;
79 };
80 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
81 #endif
82 typedef CombinedAllocator<PrimaryAllocator> Allocator;
83 typedef Allocator::AllocatorCache AllocatorCache;
84 Allocator *allocator();
85 #endif
86 
87 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
88 
89 // FastState (from most significant bit):
90 //   ignore          : 1
91 //   tid             : kTidBits
92 //   unused          : -
93 //   history_size    : 3
94 //   epoch           : kClkBits
95 class FastState {
96  public:
97   FastState(u64 tid, u64 epoch) {
98     x_ = tid << kTidShift;
99     x_ |= epoch;
100     DCHECK_EQ(tid, this->tid());
101     DCHECK_EQ(epoch, this->epoch());
102     DCHECK_EQ(GetIgnoreBit(), false);
103   }
104 
105   explicit FastState(u64 x)
106       : x_(x) {
107   }
108 
109   u64 raw() const {
110     return x_;
111   }
112 
113   u64 tid() const {
114     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
115     return res;
116   }
117 
118   u64 TidWithIgnore() const {
119     u64 res = x_ >> kTidShift;
120     return res;
121   }
122 
123   u64 epoch() const {
124     u64 res = x_ & ((1ull << kClkBits) - 1);
125     return res;
126   }
127 
128   void IncrementEpoch() {
129     u64 old_epoch = epoch();
130     x_ += 1;
131     DCHECK_EQ(old_epoch + 1, epoch());
132     (void)old_epoch;
133   }
134 
135   void SetIgnoreBit() { x_ |= kIgnoreBit; }
136   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
137   bool GetIgnoreBit() const { return (s64)x_ < 0; }
138 
139   void SetHistorySize(int hs) {
140     CHECK_GE(hs, 0);
141     CHECK_LE(hs, 7);
142     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
143   }
144 
145   ALWAYS_INLINE
146   int GetHistorySize() const {
147     return (int)((x_ >> kHistoryShift) & kHistoryMask);
148   }
149 
150   void ClearHistorySize() {
151     SetHistorySize(0);
152   }
153 
154   ALWAYS_INLINE
155   u64 GetTracePos() const {
156     const int hs = GetHistorySize();
157     // When hs == 0, the trace consists of 2 parts.
158     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
159     return epoch() & mask;
160   }
161 
162  private:
163   friend class Shadow;
164   static const int kTidShift = 64 - kTidBits - 1;
165   static const u64 kIgnoreBit = 1ull << 63;
166   static const u64 kFreedBit = 1ull << 63;
167   static const u64 kHistoryShift = kClkBits;
168   static const u64 kHistoryMask = 7;
169   u64 x_;
170 };
171 
172 // Shadow (from most significant bit):
173 //   freed           : 1
174 //   tid             : kTidBits
175 //   is_atomic       : 1
176 //   is_read         : 1
177 //   size_log        : 2
178 //   addr0           : 3
179 //   epoch           : kClkBits
180 class Shadow : public FastState {
181  public:
182   explicit Shadow(u64 x)
183       : FastState(x) {
184   }
185 
186   explicit Shadow(const FastState &s)
187       : FastState(s.x_) {
188     ClearHistorySize();
189   }
190 
191   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
192     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
193     DCHECK_LE(addr0, 7);
194     DCHECK_LE(kAccessSizeLog, 3);
195     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
196     DCHECK_EQ(kAccessSizeLog, size_log());
197     DCHECK_EQ(addr0, this->addr0());
198   }
199 
200   void SetWrite(unsigned kAccessIsWrite) {
201     DCHECK_EQ(x_ & kReadBit, 0);
202     if (!kAccessIsWrite)
203       x_ |= kReadBit;
204     DCHECK_EQ(kAccessIsWrite, IsWrite());
205   }
206 
207   void SetAtomic(bool kIsAtomic) {
208     DCHECK(!IsAtomic());
209     if (kIsAtomic)
210       x_ |= kAtomicBit;
211     DCHECK_EQ(IsAtomic(), kIsAtomic);
212   }
213 
214   bool IsAtomic() const {
215     return x_ & kAtomicBit;
216   }
217 
218   bool IsZero() const {
219     return x_ == 0;
220   }
221 
222   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
223     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
224     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
225     return shifted_xor == 0;
226   }
227 
228   static ALWAYS_INLINE
229   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
230     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
231     return masked_xor == 0;
232   }
233 
234   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
235       unsigned kS2AccessSize) {
236     bool res = false;
237     u64 diff = s1.addr0() - s2.addr0();
238     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0
239       // if (s1.addr0() + size1) > s2.addr0()) return true;
240       if (s1.size() > -diff)
241         res = true;
242     } else {
243       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
244       if (kS2AccessSize > diff)
245         res = true;
246     }
247     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
248     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
249     return res;
250   }
251 
252   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
253   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
254   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
255   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
256 
257   // The idea behind the freed bit is as follows.
258   // When the memory is freed (or otherwise unaccessible) we write to the shadow
259   // values with tid/epoch related to the free and the freed bit set.
260   // During memory accesses processing the freed bit is considered
261   // as msb of tid. So any access races with shadow with freed bit set
262   // (it is as if write from a thread with which we never synchronized before).
263   // This allows us to detect accesses to freed memory w/o additional
264   // overheads in memory access processing and at the same time restore
265   // tid/epoch of free.
266   void MarkAsFreed() {
267      x_ |= kFreedBit;
268   }
269 
270   bool IsFreed() const {
271     return x_ & kFreedBit;
272   }
273 
274   bool GetFreedAndReset() {
275     bool res = x_ & kFreedBit;
276     x_ &= ~kFreedBit;
277     return res;
278   }
279 
280   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
281     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
282         | (u64(kIsAtomic) << kAtomicShift));
283     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
284     return v;
285   }
286 
287   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
288     bool v = ((x_ >> kReadShift) & 3)
289         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
290     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
291         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
292     return v;
293   }
294 
295   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
296     bool v = ((x_ >> kReadShift) & 3)
297         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
298     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
299         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
300     return v;
301   }
302 
303  private:
304   static const u64 kReadShift   = 5 + kClkBits;
305   static const u64 kReadBit     = 1ull << kReadShift;
306   static const u64 kAtomicShift = 6 + kClkBits;
307   static const u64 kAtomicBit   = 1ull << kAtomicShift;
308 
309   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
310 
311   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
312     if (s1.addr0() == s2.addr0()) return true;
313     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
314       return true;
315     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
316       return true;
317     return false;
318   }
319 };
320 
321 struct ThreadSignalContext;
322 
323 struct JmpBuf {
324   uptr sp;
325   int int_signal_send;
326   bool in_blocking_func;
327   uptr in_signal_handler;
328   uptr *shadow_stack_pos;
329 };
330 
331 // A Processor represents a physical thread, or a P for Go.
332 // It is used to store internal resources like allocate cache, and does not
333 // participate in race-detection logic (invisible to end user).
334 // In C++ it is tied to an OS thread just like ThreadState, however ideally
335 // it should be tied to a CPU (this way we will have fewer allocator caches).
336 // In Go it is tied to a P, so there are significantly fewer Processor's than
337 // ThreadState's (which are tied to Gs).
338 // A ThreadState must be wired with a Processor to handle events.
339 struct Processor {
340   ThreadState *thr; // currently wired thread, or nullptr
341 #if !SANITIZER_GO
342   AllocatorCache alloc_cache;
343   InternalAllocatorCache internal_alloc_cache;
344 #endif
345   DenseSlabAllocCache block_cache;
346   DenseSlabAllocCache sync_cache;
347   DenseSlabAllocCache clock_cache;
348   DDPhysicalThread *dd_pt;
349 };
350 
351 #if !SANITIZER_GO
352 // ScopedGlobalProcessor temporary setups a global processor for the current
353 // thread, if it does not have one. Intended for interceptors that can run
354 // at the very thread end, when we already destroyed the thread processor.
355 struct ScopedGlobalProcessor {
356   ScopedGlobalProcessor();
357   ~ScopedGlobalProcessor();
358 };
359 #endif
360 
361 // This struct is stored in TLS.
362 struct ThreadState {
363   FastState fast_state;
364   // Synch epoch represents the threads's epoch before the last synchronization
365   // action. It allows to reduce number of shadow state updates.
366   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
367   // if we are processing write to X from the same thread at epoch=200,
368   // we do nothing, because both writes happen in the same 'synch epoch'.
369   // That is, if another memory access does not race with the former write,
370   // it does not race with the latter as well.
371   // QUESTION: can we can squeeze this into ThreadState::Fast?
372   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
373   // taken by epoch between synchs.
374   // This way we can save one load from tls.
375   u64 fast_synch_epoch;
376   // Technically `current` should be a separate THREADLOCAL variable;
377   // but it is placed here in order to share cache line with previous fields.
378   ThreadState* current;
379   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
380   // We do not distinguish beteween ignoring reads and writes
381   // for better performance.
382   int ignore_reads_and_writes;
383   int ignore_sync;
384   int suppress_reports;
385   // Go does not support ignores.
386 #if !SANITIZER_GO
387   IgnoreSet mop_ignore_set;
388   IgnoreSet sync_ignore_set;
389 #endif
390   // C/C++ uses fixed size shadow stack embed into Trace.
391   // Go uses malloc-allocated shadow stack with dynamic size.
392   uptr *shadow_stack;
393   uptr *shadow_stack_end;
394   uptr *shadow_stack_pos;
395   u64 *racy_shadow_addr;
396   u64 racy_state[2];
397   MutexSet mset;
398   ThreadClock clock;
399 #if !SANITIZER_GO
400   Vector<JmpBuf> jmp_bufs;
401   int ignore_interceptors;
402 #endif
403   const u32 tid;
404   const int unique_id;
405   bool in_symbolizer;
406   bool in_ignored_lib;
407   bool is_inited;
408   bool is_dead;
409   bool is_freeing;
410   bool is_vptr_access;
411   const uptr stk_addr;
412   const uptr stk_size;
413   const uptr tls_addr;
414   const uptr tls_size;
415   ThreadContext *tctx;
416 
417   DDLogicalThread *dd_lt;
418 
419   // Current wired Processor, or nullptr. Required to handle any events.
420   Processor *proc1;
421 #if !SANITIZER_GO
422   Processor *proc() { return proc1; }
423 #else
424   Processor *proc();
425 #endif
426 
427   atomic_uintptr_t in_signal_handler;
428   ThreadSignalContext *signal_ctx;
429 
430 #if !SANITIZER_GO
431   u32 last_sleep_stack_id;
432   ThreadClock last_sleep_clock;
433 #endif
434 
435   // Set in regions of runtime that must be signal-safe and fork-safe.
436   // If set, malloc must not be called.
437   int nomalloc;
438 
439   const ReportDesc *current_report;
440 
441   explicit ThreadState(Context *ctx, u32 tid, int unique_id, u64 epoch,
442                        unsigned reuse_count, uptr stk_addr, uptr stk_size,
443                        uptr tls_addr, uptr tls_size);
444 };
445 
446 #if !SANITIZER_GO
447 #if SANITIZER_MAC || SANITIZER_ANDROID
448 ThreadState *cur_thread();
449 void set_cur_thread(ThreadState *thr);
450 void cur_thread_finalize();
451 inline void cur_thread_init() { }
452 #else
453 __attribute__((tls_model("initial-exec")))
454 extern THREADLOCAL char cur_thread_placeholder[];
455 inline ThreadState *cur_thread() {
456   return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
457 }
458 inline void cur_thread_init() {
459   ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
460   if (UNLIKELY(!thr->current))
461     thr->current = thr;
462 }
463 inline void set_cur_thread(ThreadState *thr) {
464   reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
465 }
466 inline void cur_thread_finalize() { }
467 #endif  // SANITIZER_MAC || SANITIZER_ANDROID
468 #endif  // SANITIZER_GO
469 
470 class ThreadContext final : public ThreadContextBase {
471  public:
472   explicit ThreadContext(int tid);
473   ~ThreadContext();
474   ThreadState *thr;
475   u32 creation_stack_id;
476   SyncClock sync;
477   // Epoch at which the thread had started.
478   // If we see an event from the thread stamped by an older epoch,
479   // the event is from a dead thread that shared tid with this thread.
480   u64 epoch0;
481   u64 epoch1;
482 
483   // Override superclass callbacks.
484   void OnDead() override;
485   void OnJoined(void *arg) override;
486   void OnFinished() override;
487   void OnStarted(void *arg) override;
488   void OnCreated(void *arg) override;
489   void OnReset() override;
490   void OnDetached(void *arg) override;
491 };
492 
493 struct RacyStacks {
494   MD5Hash hash[2];
495   bool operator==(const RacyStacks &other) const {
496     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
497       return true;
498     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
499       return true;
500     return false;
501   }
502 };
503 
504 struct RacyAddress {
505   uptr addr_min;
506   uptr addr_max;
507 };
508 
509 struct FiredSuppression {
510   ReportType type;
511   uptr pc_or_addr;
512   Suppression *supp;
513 };
514 
515 struct Context {
516   Context();
517 
518   bool initialized;
519 #if !SANITIZER_GO
520   bool after_multithreaded_fork;
521 #endif
522 
523   MetaMap metamap;
524 
525   Mutex report_mtx;
526   int nreported;
527   int nmissed_expected;
528   atomic_uint64_t last_symbolize_time_ns;
529 
530   void *background_thread;
531   atomic_uint32_t stop_background_thread;
532 
533   ThreadRegistry *thread_registry;
534 
535   Mutex racy_mtx;
536   Vector<RacyStacks> racy_stacks;
537   Vector<RacyAddress> racy_addresses;
538   // Number of fired suppressions may be large enough.
539   Mutex fired_suppressions_mtx;
540   InternalMmapVector<FiredSuppression> fired_suppressions;
541   DDetector *dd;
542 
543   ClockAlloc clock_alloc;
544 
545   Flags flags;
546 
547   u64 int_alloc_cnt[MBlockTypeCount];
548   u64 int_alloc_siz[MBlockTypeCount];
549 };
550 
551 extern Context *ctx;  // The one and the only global runtime context.
552 
553 ALWAYS_INLINE Flags *flags() {
554   return &ctx->flags;
555 }
556 
557 struct ScopedIgnoreInterceptors {
558   ScopedIgnoreInterceptors() {
559 #if !SANITIZER_GO
560     cur_thread()->ignore_interceptors++;
561 #endif
562   }
563 
564   ~ScopedIgnoreInterceptors() {
565 #if !SANITIZER_GO
566     cur_thread()->ignore_interceptors--;
567 #endif
568   }
569 };
570 
571 const char *GetObjectTypeFromTag(uptr tag);
572 const char *GetReportHeaderFromTag(uptr tag);
573 uptr TagFromShadowStackFrame(uptr pc);
574 
575 class ScopedReportBase {
576  public:
577   void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
578                        const MutexSet *mset);
579   void AddStack(StackTrace stack, bool suppressable = false);
580   void AddThread(const ThreadContext *tctx, bool suppressable = false);
581   void AddThread(int unique_tid, bool suppressable = false);
582   void AddUniqueTid(int unique_tid);
583   void AddMutex(const SyncVar *s);
584   u64 AddMutex(u64 id);
585   void AddLocation(uptr addr, uptr size);
586   void AddSleep(u32 stack_id);
587   void SetCount(int count);
588 
589   const ReportDesc *GetReport() const;
590 
591  protected:
592   ScopedReportBase(ReportType typ, uptr tag);
593   ~ScopedReportBase();
594 
595  private:
596   ReportDesc *rep_;
597   // Symbolizer makes lots of intercepted calls. If we try to process them,
598   // at best it will cause deadlocks on internal mutexes.
599   ScopedIgnoreInterceptors ignore_interceptors_;
600 
601   void AddDeadMutex(u64 id);
602 
603   ScopedReportBase(const ScopedReportBase &) = delete;
604   void operator=(const ScopedReportBase &) = delete;
605 };
606 
607 class ScopedReport : public ScopedReportBase {
608  public:
609   explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
610   ~ScopedReport();
611 
612  private:
613   ScopedErrorReportLock lock_;
614 };
615 
616 bool ShouldReport(ThreadState *thr, ReportType typ);
617 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
618 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
619                   MutexSet *mset, uptr *tag = nullptr);
620 
621 // The stack could look like:
622 //   <start> | <main> | <foo> | tag | <bar>
623 // This will extract the tag and keep:
624 //   <start> | <main> | <foo> | <bar>
625 template<typename StackTraceTy>
626 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
627   if (stack->size < 2) return;
628   uptr possible_tag_pc = stack->trace[stack->size - 2];
629   uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
630   if (possible_tag == kExternalTagNone) return;
631   stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
632   stack->size -= 1;
633   if (tag) *tag = possible_tag;
634 }
635 
636 template<typename StackTraceTy>
637 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
638                         uptr *tag = nullptr) {
639   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
640   uptr start = 0;
641   if (size + !!toppc > kStackTraceMax) {
642     start = size + !!toppc - kStackTraceMax;
643     size = kStackTraceMax - !!toppc;
644   }
645   stack->Init(&thr->shadow_stack[start], size, toppc);
646   ExtractTagFromStack(stack, tag);
647 }
648 
649 #define GET_STACK_TRACE_FATAL(thr, pc) \
650   VarSizeStackTrace stack; \
651   ObtainCurrentStack(thr, pc, &stack); \
652   stack.ReverseOrder();
653 
654 void MapShadow(uptr addr, uptr size);
655 void MapThreadTrace(uptr addr, uptr size, const char *name);
656 void DontNeedShadowFor(uptr addr, uptr size);
657 void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
658 void InitializeShadowMemory();
659 void InitializeInterceptors();
660 void InitializeLibIgnore();
661 void InitializeDynamicAnnotations();
662 
663 void ForkBefore(ThreadState *thr, uptr pc);
664 void ForkParentAfter(ThreadState *thr, uptr pc);
665 void ForkChildAfter(ThreadState *thr, uptr pc);
666 
667 void ReportRace(ThreadState *thr);
668 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
669 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
670 bool IsExpectedReport(uptr addr, uptr size);
671 void PrintMatchedBenignRaces();
672 
673 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
674 # define DPrintf Printf
675 #else
676 # define DPrintf(...)
677 #endif
678 
679 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
680 # define DPrintf2 Printf
681 #else
682 # define DPrintf2(...)
683 #endif
684 
685 u32 CurrentStackId(ThreadState *thr, uptr pc);
686 ReportStack *SymbolizeStackId(u32 stack_id);
687 void PrintCurrentStack(ThreadState *thr, uptr pc);
688 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
689 
690 void Initialize(ThreadState *thr);
691 void MaybeSpawnBackgroundThread();
692 int Finalize(ThreadState *thr);
693 
694 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
695 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
696 
697 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
698     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
699 void MemoryAccessImpl(ThreadState *thr, uptr addr,
700     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
701     u64 *shadow_mem, Shadow cur);
702 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
703     uptr size, bool is_write);
704 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
705     uptr size, uptr step, bool is_write);
706 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
707     int size, bool kAccessIsWrite, bool kIsAtomic);
708 
709 const int kSizeLog1 = 0;
710 const int kSizeLog2 = 1;
711 const int kSizeLog4 = 2;
712 const int kSizeLog8 = 3;
713 
714 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
715                                      uptr addr, int kAccessSizeLog) {
716   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
717 }
718 
719 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
720                                       uptr addr, int kAccessSizeLog) {
721   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
722 }
723 
724 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
725                                            uptr addr, int kAccessSizeLog) {
726   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
727 }
728 
729 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
730                                             uptr addr, int kAccessSizeLog) {
731   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
732 }
733 
734 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
735 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
736 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
737 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
738                                          uptr size);
739 
740 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true);
741 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
742 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true);
743 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
744 
745 void FuncEntry(ThreadState *thr, uptr pc);
746 void FuncExit(ThreadState *thr);
747 
748 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
749 void ThreadStart(ThreadState *thr, int tid, tid_t os_id,
750                  ThreadType thread_type);
751 void ThreadFinish(ThreadState *thr);
752 int ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
753 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
754 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
755 void ThreadFinalize(ThreadState *thr);
756 void ThreadSetName(ThreadState *thr, const char *name);
757 int ThreadCount(ThreadState *thr);
758 void ProcessPendingSignals(ThreadState *thr);
759 void ThreadNotJoined(ThreadState *thr, uptr pc, int tid, uptr uid);
760 
761 Processor *ProcCreate();
762 void ProcDestroy(Processor *proc);
763 void ProcWire(Processor *proc, ThreadState *thr);
764 void ProcUnwire(Processor *proc, ThreadState *thr);
765 
766 // Note: the parameter is called flagz, because flags is already taken
767 // by the global function that returns flags.
768 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
769 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
770 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
771 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
772     int rec = 1);
773 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
774 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
775 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
776 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
777 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
778 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
779 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
780 
781 void Acquire(ThreadState *thr, uptr pc, uptr addr);
782 // AcquireGlobal synchronizes the current thread with all other threads.
783 // In terms of happens-before relation, it draws a HB edge from all threads
784 // (where they happen to execute right now) to the current thread. We use it to
785 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
786 // right before executing finalizers. This provides a coarse, but simple
787 // approximation of the actual required synchronization.
788 void AcquireGlobal(ThreadState *thr, uptr pc);
789 void Release(ThreadState *thr, uptr pc, uptr addr);
790 void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
791 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
792 void AfterSleep(ThreadState *thr, uptr pc);
793 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
794 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
795 void ReleaseStoreAcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
796 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
797 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
798 
799 // The hacky call uses custom calling convention and an assembly thunk.
800 // It is considerably faster that a normal call for the caller
801 // if it is not executed (it is intended for slow paths from hot functions).
802 // The trick is that the call preserves all registers and the compiler
803 // does not treat it as a call.
804 // If it does not work for you, use normal call.
805 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
806 // The caller may not create the stack frame for itself at all,
807 // so we create a reserve stack frame for it (1024b must be enough).
808 #define HACKY_CALL(f) \
809   __asm__ __volatile__("sub $1024, %%rsp;" \
810                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
811                        ".hidden " #f "_thunk;" \
812                        "call " #f "_thunk;" \
813                        "add $1024, %%rsp;" \
814                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
815                        ::: "memory", "cc");
816 #else
817 #define HACKY_CALL(f) f()
818 #endif
819 
820 void TraceSwitch(ThreadState *thr);
821 uptr TraceTopPC(ThreadState *thr);
822 uptr TraceSize();
823 uptr TraceParts();
824 Trace *ThreadTrace(int tid);
825 
826 extern "C" void __tsan_trace_switch();
827 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
828                                         EventType typ, u64 addr) {
829   if (!kCollectHistory)
830     return;
831   DCHECK_GE((int)typ, 0);
832   DCHECK_LE((int)typ, 7);
833   DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
834   u64 pos = fs.GetTracePos();
835   if (UNLIKELY((pos % kTracePartSize) == 0)) {
836 #if !SANITIZER_GO
837     HACKY_CALL(__tsan_trace_switch);
838 #else
839     TraceSwitch(thr);
840 #endif
841   }
842   Event *trace = (Event*)GetThreadTrace(fs.tid());
843   Event *evp = &trace[pos];
844   Event ev = (u64)addr | ((u64)typ << kEventPCBits);
845   *evp = ev;
846 }
847 
848 #if !SANITIZER_GO
849 uptr ALWAYS_INLINE HeapEnd() {
850   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
851 }
852 #endif
853 
854 ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
855 void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
856 void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
857 
858 // These need to match __tsan_switch_to_fiber_* flags defined in
859 // tsan_interface.h. See documentation there as well.
860 enum FiberSwitchFlags {
861   FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
862 };
863 
864 }  // namespace __tsan
865 
866 #endif  // TSAN_RTL_H
867