1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "COFFLinkerContext.h"
11 #include "Chunks.h"
12 #include "Config.h"
13 #include "DebugTypes.h"
14 #include "Driver.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "lld/Common/DWARF.h"
18 #include "llvm-c/lto.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
23 #include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
24 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
26 #include "llvm/DebugInfo/PDB/Native/NativeSession.h"
27 #include "llvm/DebugInfo/PDB/Native/PDBFile.h"
28 #include "llvm/LTO/LTO.h"
29 #include "llvm/Object/Binary.h"
30 #include "llvm/Object/COFF.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/Endian.h"
33 #include "llvm/Support/Error.h"
34 #include "llvm/Support/ErrorOr.h"
35 #include "llvm/Support/FileSystem.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/TargetParser/Triple.h"
39 #include <cstring>
40 #include <optional>
41 #include <system_error>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace llvm::COFF;
46 using namespace llvm::codeview;
47 using namespace llvm::object;
48 using namespace llvm::support::endian;
49 using namespace lld;
50 using namespace lld::coff;
51 
52 using llvm::Triple;
53 using llvm::support::ulittle32_t;
54 
55 // Returns the last element of a path, which is supposed to be a filename.
56 static StringRef getBasename(StringRef path) {
57   return sys::path::filename(path, sys::path::Style::windows);
58 }
59 
60 // Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
61 std::string lld::toString(const coff::InputFile *file) {
62   if (!file)
63     return "<internal>";
64   if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
65     return std::string(file->getName());
66 
67   return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
68           ")")
69       .str();
70 }
71 
72 /// Checks that Source is compatible with being a weak alias to Target.
73 /// If Source is Undefined and has no weak alias set, makes it a weak
74 /// alias to Target.
75 static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f,
76                                  Symbol *source, Symbol *target) {
77   if (auto *u = dyn_cast<Undefined>(source)) {
78     if (u->weakAlias && u->weakAlias != target) {
79       // Weak aliases as produced by GCC are named in the form
80       // .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
81       // of another symbol emitted near the weak symbol.
82       // Just use the definition from the first object file that defined
83       // this weak symbol.
84       if (ctx.config.mingw)
85         return;
86       ctx.symtab.reportDuplicate(source, f);
87     }
88     u->weakAlias = target;
89   }
90 }
91 
92 static bool ignoredSymbolName(StringRef name) {
93   return name == "@feat.00" || name == "@comp.id";
94 }
95 
96 ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
97     : InputFile(ctx, ArchiveKind, m) {}
98 
99 void ArchiveFile::parse() {
100   // Parse a MemoryBufferRef as an archive file.
101   file = CHECK(Archive::create(mb), this);
102 
103   // Read the symbol table to construct Lazy objects.
104   for (const Archive::Symbol &sym : file->symbols())
105     ctx.symtab.addLazyArchive(this, sym);
106 }
107 
108 // Returns a buffer pointing to a member file containing a given symbol.
109 void ArchiveFile::addMember(const Archive::Symbol &sym) {
110   const Archive::Child &c =
111       CHECK(sym.getMember(),
112             "could not get the member for symbol " + toCOFFString(ctx, sym));
113 
114   // Return an empty buffer if we have already returned the same buffer.
115   if (!seen.insert(c.getChildOffset()).second)
116     return;
117 
118   ctx.driver.enqueueArchiveMember(c, sym, getName());
119 }
120 
121 std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
122   std::vector<MemoryBufferRef> v;
123   Error err = Error::success();
124   for (const Archive::Child &c : file->children(err)) {
125     MemoryBufferRef mbref =
126         CHECK(c.getMemoryBufferRef(),
127               file->getFileName() +
128                   ": could not get the buffer for a child of the archive");
129     v.push_back(mbref);
130   }
131   if (err)
132     fatal(file->getFileName() +
133           ": Archive::children failed: " + toString(std::move(err)));
134   return v;
135 }
136 
137 void ObjFile::parseLazy() {
138   // Native object file.
139   std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
140   COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
141   uint32_t numSymbols = coffObj->getNumberOfSymbols();
142   for (uint32_t i = 0; i < numSymbols; ++i) {
143     COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
144     if (coffSym.isUndefined() || !coffSym.isExternal() ||
145         coffSym.isWeakExternal())
146       continue;
147     StringRef name = check(coffObj->getSymbolName(coffSym));
148     if (coffSym.isAbsolute() && ignoredSymbolName(name))
149       continue;
150     ctx.symtab.addLazyObject(this, name);
151     i += coffSym.getNumberOfAuxSymbols();
152   }
153 }
154 
155 void ObjFile::parse() {
156   // Parse a memory buffer as a COFF file.
157   std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
158 
159   if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
160     bin.release();
161     coffObj.reset(obj);
162   } else {
163     fatal(toString(this) + " is not a COFF file");
164   }
165 
166   // Read section and symbol tables.
167   initializeChunks();
168   initializeSymbols();
169   initializeFlags();
170   initializeDependencies();
171 }
172 
173 const coff_section *ObjFile::getSection(uint32_t i) {
174   auto sec = coffObj->getSection(i);
175   if (!sec)
176     fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
177   return *sec;
178 }
179 
180 // We set SectionChunk pointers in the SparseChunks vector to this value
181 // temporarily to mark comdat sections as having an unknown resolution. As we
182 // walk the object file's symbol table, once we visit either a leader symbol or
183 // an associative section definition together with the parent comdat's leader,
184 // we set the pointer to either nullptr (to mark the section as discarded) or a
185 // valid SectionChunk for that section.
186 static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
187 
188 void ObjFile::initializeChunks() {
189   uint32_t numSections = coffObj->getNumberOfSections();
190   sparseChunks.resize(numSections + 1);
191   for (uint32_t i = 1; i < numSections + 1; ++i) {
192     const coff_section *sec = getSection(i);
193     if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
194       sparseChunks[i] = pendingComdat;
195     else
196       sparseChunks[i] = readSection(i, nullptr, "");
197   }
198 }
199 
200 SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
201                                    const coff_aux_section_definition *def,
202                                    StringRef leaderName) {
203   const coff_section *sec = getSection(sectionNumber);
204 
205   StringRef name;
206   if (Expected<StringRef> e = coffObj->getSectionName(sec))
207     name = *e;
208   else
209     fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
210           toString(e.takeError()));
211 
212   if (name == ".drectve") {
213     ArrayRef<uint8_t> data;
214     cantFail(coffObj->getSectionContents(sec, data));
215     directives = StringRef((const char *)data.data(), data.size());
216     return nullptr;
217   }
218 
219   if (name == ".llvm_addrsig") {
220     addrsigSec = sec;
221     return nullptr;
222   }
223 
224   if (name == ".llvm.call-graph-profile") {
225     callgraphSec = sec;
226     return nullptr;
227   }
228 
229   // Object files may have DWARF debug info or MS CodeView debug info
230   // (or both).
231   //
232   // DWARF sections don't need any special handling from the perspective
233   // of the linker; they are just a data section containing relocations.
234   // We can just link them to complete debug info.
235   //
236   // CodeView needs linker support. We need to interpret debug info,
237   // and then write it to a separate .pdb file.
238 
239   // Ignore DWARF debug info unless /debug is given.
240   if (!ctx.config.debug && name.starts_with(".debug_"))
241     return nullptr;
242 
243   if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
244     return nullptr;
245   auto *c = make<SectionChunk>(this, sec);
246   if (def)
247     c->checksum = def->CheckSum;
248 
249   // CodeView sections are stored to a different vector because they are not
250   // linked in the regular manner.
251   if (c->isCodeView())
252     debugChunks.push_back(c);
253   else if (name == ".gfids$y")
254     guardFidChunks.push_back(c);
255   else if (name == ".giats$y")
256     guardIATChunks.push_back(c);
257   else if (name == ".gljmp$y")
258     guardLJmpChunks.push_back(c);
259   else if (name == ".gehcont$y")
260     guardEHContChunks.push_back(c);
261   else if (name == ".sxdata")
262     sxDataChunks.push_back(c);
263   else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 &&
264            name == ".rdata" && leaderName.starts_with("??_C@"))
265     // COFF sections that look like string literal sections (i.e. no
266     // relocations, in .rdata, leader symbol name matches the MSVC name mangling
267     // for string literals) are subject to string tail merging.
268     MergeChunk::addSection(ctx, c);
269   else if (name == ".rsrc" || name.starts_with(".rsrc$"))
270     resourceChunks.push_back(c);
271   else
272     chunks.push_back(c);
273 
274   return c;
275 }
276 
277 void ObjFile::includeResourceChunks() {
278   chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
279 }
280 
281 void ObjFile::readAssociativeDefinition(
282     COFFSymbolRef sym, const coff_aux_section_definition *def) {
283   readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
284 }
285 
286 void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
287                                         const coff_aux_section_definition *def,
288                                         uint32_t parentIndex) {
289   SectionChunk *parent = sparseChunks[parentIndex];
290   int32_t sectionNumber = sym.getSectionNumber();
291 
292   auto diag = [&]() {
293     StringRef name = check(coffObj->getSymbolName(sym));
294 
295     StringRef parentName;
296     const coff_section *parentSec = getSection(parentIndex);
297     if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
298       parentName = *e;
299     error(toString(this) + ": associative comdat " + name + " (sec " +
300           Twine(sectionNumber) + ") has invalid reference to section " +
301           parentName + " (sec " + Twine(parentIndex) + ")");
302   };
303 
304   if (parent == pendingComdat) {
305     // This can happen if an associative comdat refers to another associative
306     // comdat that appears after it (invalid per COFF spec) or to a section
307     // without any symbols.
308     diag();
309     return;
310   }
311 
312   // Check whether the parent is prevailing. If it is, so are we, and we read
313   // the section; otherwise mark it as discarded.
314   if (parent) {
315     SectionChunk *c = readSection(sectionNumber, def, "");
316     sparseChunks[sectionNumber] = c;
317     if (c) {
318       c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
319       parent->addAssociative(c);
320     }
321   } else {
322     sparseChunks[sectionNumber] = nullptr;
323   }
324 }
325 
326 void ObjFile::recordPrevailingSymbolForMingw(
327     COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
328   // For comdat symbols in executable sections, where this is the copy
329   // of the section chunk we actually include instead of discarding it,
330   // add the symbol to a map to allow using it for implicitly
331   // associating .[px]data$<func> sections to it.
332   // Use the suffix from the .text$<func> instead of the leader symbol
333   // name, for cases where the names differ (i386 mangling/decorations,
334   // cases where the leader is a weak symbol named .weak.func.default*).
335   int32_t sectionNumber = sym.getSectionNumber();
336   SectionChunk *sc = sparseChunks[sectionNumber];
337   if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
338     StringRef name = sc->getSectionName().split('$').second;
339     prevailingSectionMap[name] = sectionNumber;
340   }
341 }
342 
343 void ObjFile::maybeAssociateSEHForMingw(
344     COFFSymbolRef sym, const coff_aux_section_definition *def,
345     const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
346   StringRef name = check(coffObj->getSymbolName(sym));
347   if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
348       name.consume_front(".eh_frame$")) {
349     // For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
350     // associative to the symbol <func>.
351     auto parentSym = prevailingSectionMap.find(name);
352     if (parentSym != prevailingSectionMap.end())
353       readAssociativeDefinition(sym, def, parentSym->second);
354   }
355 }
356 
357 Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
358   SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
359   if (sym.isExternal()) {
360     StringRef name = check(coffObj->getSymbolName(sym));
361     if (sc)
362       return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
363                                    sym.getValue());
364     // For MinGW symbols named .weak.* that point to a discarded section,
365     // don't create an Undefined symbol. If nothing ever refers to the symbol,
366     // everything should be fine. If something actually refers to the symbol
367     // (e.g. the undefined weak alias), linking will fail due to undefined
368     // references at the end.
369     if (ctx.config.mingw && name.starts_with(".weak."))
370       return nullptr;
371     return ctx.symtab.addUndefined(name, this, false);
372   }
373   if (sc)
374     return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
375                                 /*IsExternal*/ false, sym.getGeneric(), sc);
376   return nullptr;
377 }
378 
379 void ObjFile::initializeSymbols() {
380   uint32_t numSymbols = coffObj->getNumberOfSymbols();
381   symbols.resize(numSymbols);
382 
383   SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
384   std::vector<uint32_t> pendingIndexes;
385   pendingIndexes.reserve(numSymbols);
386 
387   DenseMap<StringRef, uint32_t> prevailingSectionMap;
388   std::vector<const coff_aux_section_definition *> comdatDefs(
389       coffObj->getNumberOfSections() + 1);
390 
391   for (uint32_t i = 0; i < numSymbols; ++i) {
392     COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
393     bool prevailingComdat;
394     if (coffSym.isUndefined()) {
395       symbols[i] = createUndefined(coffSym);
396     } else if (coffSym.isWeakExternal()) {
397       symbols[i] = createUndefined(coffSym);
398       uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
399       weakAliases.emplace_back(symbols[i], tagIndex);
400     } else if (std::optional<Symbol *> optSym =
401                    createDefined(coffSym, comdatDefs, prevailingComdat)) {
402       symbols[i] = *optSym;
403       if (ctx.config.mingw && prevailingComdat)
404         recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
405     } else {
406       // createDefined() returns std::nullopt if a symbol belongs to a section
407       // that was pending at the point when the symbol was read. This can happen
408       // in two cases:
409       // 1) section definition symbol for a comdat leader;
410       // 2) symbol belongs to a comdat section associated with another section.
411       // In both of these cases, we can expect the section to be resolved by
412       // the time we finish visiting the remaining symbols in the symbol
413       // table. So we postpone the handling of this symbol until that time.
414       pendingIndexes.push_back(i);
415     }
416     i += coffSym.getNumberOfAuxSymbols();
417   }
418 
419   for (uint32_t i : pendingIndexes) {
420     COFFSymbolRef sym = check(coffObj->getSymbol(i));
421     if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
422       if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
423         readAssociativeDefinition(sym, def);
424       else if (ctx.config.mingw)
425         maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
426     }
427     if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
428       StringRef name = check(coffObj->getSymbolName(sym));
429       log("comdat section " + name +
430           " without leader and unassociated, discarding");
431       continue;
432     }
433     symbols[i] = createRegular(sym);
434   }
435 
436   for (auto &kv : weakAliases) {
437     Symbol *sym = kv.first;
438     uint32_t idx = kv.second;
439     checkAndSetWeakAlias(ctx, this, sym, symbols[idx]);
440   }
441 
442   // Free the memory used by sparseChunks now that symbol loading is finished.
443   decltype(sparseChunks)().swap(sparseChunks);
444 }
445 
446 Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
447   StringRef name = check(coffObj->getSymbolName(sym));
448   return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
449 }
450 
451 static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
452                                                          int32_t section) {
453   uint32_t numSymbols = obj->getNumberOfSymbols();
454   for (uint32_t i = 0; i < numSymbols; ++i) {
455     COFFSymbolRef sym = check(obj->getSymbol(i));
456     if (sym.getSectionNumber() != section)
457       continue;
458     if (const coff_aux_section_definition *def = sym.getSectionDefinition())
459       return def;
460   }
461   return nullptr;
462 }
463 
464 void ObjFile::handleComdatSelection(
465     COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
466     DefinedRegular *leader,
467     const llvm::object::coff_aux_section_definition *def) {
468   if (prevailing)
469     return;
470   // There's already an existing comdat for this symbol: `Leader`.
471   // Use the comdats's selection field to determine if the new
472   // symbol in `Sym` should be discarded, produce a duplicate symbol
473   // error, etc.
474 
475   SectionChunk *leaderChunk = leader->getChunk();
476   COMDATType leaderSelection = leaderChunk->selection;
477 
478   assert(leader->data && "Comdat leader without SectionChunk?");
479   if (isa<BitcodeFile>(leader->file)) {
480     // If the leader is only a LTO symbol, we don't know e.g. its final size
481     // yet, so we can't do the full strict comdat selection checking yet.
482     selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
483   }
484 
485   if ((selection == IMAGE_COMDAT_SELECT_ANY &&
486        leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
487       (selection == IMAGE_COMDAT_SELECT_LARGEST &&
488        leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
489     // cl.exe picks "any" for vftables when building with /GR- and
490     // "largest" when building with /GR. To be able to link object files
491     // compiled with each flag, "any" and "largest" are merged as "largest".
492     leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
493   }
494 
495   // GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
496   // Clang on the other hand picks "any". To be able to link two object files
497   // with a __declspec(selectany) declaration, one compiled with gcc and the
498   // other with clang, we merge them as proper "same size as"
499   if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
500                             leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
501                            (selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
502                             leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
503     leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
504   }
505 
506   // Other than that, comdat selections must match.  This is a bit more
507   // strict than link.exe which allows merging "any" and "largest" if "any"
508   // is the first symbol the linker sees, and it allows merging "largest"
509   // with everything (!) if "largest" is the first symbol the linker sees.
510   // Making this symmetric independent of which selection is seen first
511   // seems better though.
512   // (This behavior matches ModuleLinker::getComdatResult().)
513   if (selection != leaderSelection) {
514     log(("conflicting comdat type for " + toString(ctx, *leader) + ": " +
515          Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
516          " and " + Twine((int)selection) + " in " + toString(this))
517             .str());
518     ctx.symtab.reportDuplicate(leader, this);
519     return;
520   }
521 
522   switch (selection) {
523   case IMAGE_COMDAT_SELECT_NODUPLICATES:
524     ctx.symtab.reportDuplicate(leader, this);
525     break;
526 
527   case IMAGE_COMDAT_SELECT_ANY:
528     // Nothing to do.
529     break;
530 
531   case IMAGE_COMDAT_SELECT_SAME_SIZE:
532     if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
533       if (!ctx.config.mingw) {
534         ctx.symtab.reportDuplicate(leader, this);
535       } else {
536         const coff_aux_section_definition *leaderDef = nullptr;
537         if (leaderChunk->file)
538           leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
539                                      leaderChunk->getSectionNumber());
540         if (!leaderDef || leaderDef->Length != def->Length)
541           ctx.symtab.reportDuplicate(leader, this);
542       }
543     }
544     break;
545 
546   case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
547     SectionChunk newChunk(this, getSection(sym));
548     // link.exe only compares section contents here and doesn't complain
549     // if the two comdat sections have e.g. different alignment.
550     // Match that.
551     if (leaderChunk->getContents() != newChunk.getContents())
552       ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
553     break;
554   }
555 
556   case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
557     // createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
558     // (This means lld-link doesn't produce duplicate symbol errors for
559     // associative comdats while link.exe does, but associate comdats
560     // are never extern in practice.)
561     llvm_unreachable("createDefined not called for associative comdats");
562 
563   case IMAGE_COMDAT_SELECT_LARGEST:
564     if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
565       // Replace the existing comdat symbol with the new one.
566       StringRef name = check(coffObj->getSymbolName(sym));
567       // FIXME: This is incorrect: With /opt:noref, the previous sections
568       // make it into the final executable as well. Correct handling would
569       // be to undo reading of the whole old section that's being replaced,
570       // or doing one pass that determines what the final largest comdat
571       // is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
572       // only the largest one.
573       replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
574                                     /*IsExternal*/ true, sym.getGeneric(),
575                                     nullptr);
576       prevailing = true;
577     }
578     break;
579 
580   case IMAGE_COMDAT_SELECT_NEWEST:
581     llvm_unreachable("should have been rejected earlier");
582   }
583 }
584 
585 std::optional<Symbol *> ObjFile::createDefined(
586     COFFSymbolRef sym,
587     std::vector<const coff_aux_section_definition *> &comdatDefs,
588     bool &prevailing) {
589   prevailing = false;
590   auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
591 
592   if (sym.isCommon()) {
593     auto *c = make<CommonChunk>(sym);
594     chunks.push_back(c);
595     return ctx.symtab.addCommon(this, getName(), sym.getValue(),
596                                 sym.getGeneric(), c);
597   }
598 
599   if (sym.isAbsolute()) {
600     StringRef name = getName();
601 
602     if (name == "@feat.00")
603       feat00Flags = sym.getValue();
604     // Skip special symbols.
605     if (ignoredSymbolName(name))
606       return nullptr;
607 
608     if (sym.isExternal())
609       return ctx.symtab.addAbsolute(name, sym);
610     return make<DefinedAbsolute>(ctx, name, sym);
611   }
612 
613   int32_t sectionNumber = sym.getSectionNumber();
614   if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
615     return nullptr;
616 
617   if (llvm::COFF::isReservedSectionNumber(sectionNumber))
618     fatal(toString(this) + ": " + getName() +
619           " should not refer to special section " + Twine(sectionNumber));
620 
621   if ((uint32_t)sectionNumber >= sparseChunks.size())
622     fatal(toString(this) + ": " + getName() +
623           " should not refer to non-existent section " + Twine(sectionNumber));
624 
625   // Comdat handling.
626   // A comdat symbol consists of two symbol table entries.
627   // The first symbol entry has the name of the section (e.g. .text), fixed
628   // values for the other fields, and one auxiliary record.
629   // The second symbol entry has the name of the comdat symbol, called the
630   // "comdat leader".
631   // When this function is called for the first symbol entry of a comdat,
632   // it sets comdatDefs and returns std::nullopt, and when it's called for the
633   // second symbol entry it reads comdatDefs and then sets it back to nullptr.
634 
635   // Handle comdat leader.
636   if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
637     comdatDefs[sectionNumber] = nullptr;
638     DefinedRegular *leader;
639 
640     if (sym.isExternal()) {
641       std::tie(leader, prevailing) =
642           ctx.symtab.addComdat(this, getName(), sym.getGeneric());
643     } else {
644       leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
645                                     /*IsExternal*/ false, sym.getGeneric());
646       prevailing = true;
647     }
648 
649     if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
650         // Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
651         // doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
652         def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
653       fatal("unknown comdat type " + std::to_string((int)def->Selection) +
654             " for " + getName() + " in " + toString(this));
655     }
656     COMDATType selection = (COMDATType)def->Selection;
657 
658     if (leader->isCOMDAT)
659       handleComdatSelection(sym, selection, prevailing, leader, def);
660 
661     if (prevailing) {
662       SectionChunk *c = readSection(sectionNumber, def, getName());
663       sparseChunks[sectionNumber] = c;
664       if (!c)
665         return nullptr;
666       c->sym = cast<DefinedRegular>(leader);
667       c->selection = selection;
668       cast<DefinedRegular>(leader)->data = &c->repl;
669     } else {
670       sparseChunks[sectionNumber] = nullptr;
671     }
672     return leader;
673   }
674 
675   // Prepare to handle the comdat leader symbol by setting the section's
676   // ComdatDefs pointer if we encounter a non-associative comdat.
677   if (sparseChunks[sectionNumber] == pendingComdat) {
678     if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
679       if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
680         comdatDefs[sectionNumber] = def;
681     }
682     return std::nullopt;
683   }
684 
685   return createRegular(sym);
686 }
687 
688 MachineTypes ObjFile::getMachineType() {
689   if (coffObj)
690     return static_cast<MachineTypes>(coffObj->getMachine());
691   return IMAGE_FILE_MACHINE_UNKNOWN;
692 }
693 
694 ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
695   if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
696     return sec->consumeDebugMagic();
697   return {};
698 }
699 
700 // OBJ files systematically store critical information in a .debug$S stream,
701 // even if the TU was compiled with no debug info. At least two records are
702 // always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
703 // PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
704 // currently used to initialize the hotPatchable member.
705 void ObjFile::initializeFlags() {
706   ArrayRef<uint8_t> data = getDebugSection(".debug$S");
707   if (data.empty())
708     return;
709 
710   DebugSubsectionArray subsections;
711 
712   BinaryStreamReader reader(data, support::little);
713   ExitOnError exitOnErr;
714   exitOnErr(reader.readArray(subsections, data.size()));
715 
716   for (const DebugSubsectionRecord &ss : subsections) {
717     if (ss.kind() != DebugSubsectionKind::Symbols)
718       continue;
719 
720     unsigned offset = 0;
721 
722     // Only parse the first two records. We are only looking for S_OBJNAME
723     // and S_COMPILE3, and they usually appear at the beginning of the
724     // stream.
725     for (unsigned i = 0; i < 2; ++i) {
726       Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
727       if (!sym) {
728         consumeError(sym.takeError());
729         return;
730       }
731       if (sym->kind() == SymbolKind::S_COMPILE3) {
732         auto cs =
733             cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
734         hotPatchable =
735             (cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
736       }
737       if (sym->kind() == SymbolKind::S_OBJNAME) {
738         auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
739             sym.get()));
740         if (objName.Signature)
741           pchSignature = objName.Signature;
742       }
743       offset += sym->length();
744     }
745   }
746 }
747 
748 // Depending on the compilation flags, OBJs can refer to external files,
749 // necessary to merge this OBJ into the final PDB. We currently support two
750 // types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
751 // And PDB type servers, when compiling with /Zi. This function extracts these
752 // dependencies and makes them available as a TpiSource interface (see
753 // DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
754 // output even with /Yc and /Yu and with /Zi.
755 void ObjFile::initializeDependencies() {
756   if (!ctx.config.debug)
757     return;
758 
759   bool isPCH = false;
760 
761   ArrayRef<uint8_t> data = getDebugSection(".debug$P");
762   if (!data.empty())
763     isPCH = true;
764   else
765     data = getDebugSection(".debug$T");
766 
767   // symbols but no types, make a plain, empty TpiSource anyway, because it
768   // simplifies adding the symbols later.
769   if (data.empty()) {
770     if (!debugChunks.empty())
771       debugTypesObj = makeTpiSource(ctx, this);
772     return;
773   }
774 
775   // Get the first type record. It will indicate if this object uses a type
776   // server (/Zi) or a PCH file (/Yu).
777   CVTypeArray types;
778   BinaryStreamReader reader(data, support::little);
779   cantFail(reader.readArray(types, reader.getLength()));
780   CVTypeArray::Iterator firstType = types.begin();
781   if (firstType == types.end())
782     return;
783 
784   // Remember the .debug$T or .debug$P section.
785   debugTypes = data;
786 
787   // This object file is a PCH file that others will depend on.
788   if (isPCH) {
789     debugTypesObj = makePrecompSource(ctx, this);
790     return;
791   }
792 
793   // This object file was compiled with /Zi. Enqueue the PDB dependency.
794   if (firstType->kind() == LF_TYPESERVER2) {
795     TypeServer2Record ts = cantFail(
796         TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
797     debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
798     enqueuePdbFile(ts.getName(), this);
799     return;
800   }
801 
802   // This object was compiled with /Yu. It uses types from another object file
803   // with a matching signature.
804   if (firstType->kind() == LF_PRECOMP) {
805     PrecompRecord precomp = cantFail(
806         TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
807     // We're better off trusting the LF_PRECOMP signature. In some cases the
808     // S_OBJNAME record doesn't contain a valid PCH signature.
809     if (precomp.Signature)
810       pchSignature = precomp.Signature;
811     debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
812     // Drop the LF_PRECOMP record from the input stream.
813     debugTypes = debugTypes.drop_front(firstType->RecordData.size());
814     return;
815   }
816 
817   // This is a plain old object file.
818   debugTypesObj = makeTpiSource(ctx, this);
819 }
820 
821 // Make a PDB path assuming the PDB is in the same folder as the OBJ
822 static std::string getPdbBaseName(ObjFile *file, StringRef tSPath) {
823   StringRef localPath =
824       !file->parentName.empty() ? file->parentName : file->getName();
825   SmallString<128> path = sys::path::parent_path(localPath);
826 
827   // Currently, type server PDBs are only created by MSVC cl, which only runs
828   // on Windows, so we can assume type server paths are Windows style.
829   sys::path::append(path,
830                     sys::path::filename(tSPath, sys::path::Style::windows));
831   return std::string(path.str());
832 }
833 
834 // The casing of the PDB path stamped in the OBJ can differ from the actual path
835 // on disk. With this, we ensure to always use lowercase as a key for the
836 // pdbInputFileInstances map, at least on Windows.
837 static std::string normalizePdbPath(StringRef path) {
838 #if defined(_WIN32)
839   return path.lower();
840 #else // LINUX
841   return std::string(path);
842 #endif
843 }
844 
845 // If existing, return the actual PDB path on disk.
846 static std::optional<std::string> findPdbPath(StringRef pdbPath,
847                                               ObjFile *dependentFile) {
848   // Ensure the file exists before anything else. In some cases, if the path
849   // points to a removable device, Driver::enqueuePath() would fail with an
850   // error (EAGAIN, "resource unavailable try again") which we want to skip
851   // silently.
852   if (llvm::sys::fs::exists(pdbPath))
853     return normalizePdbPath(pdbPath);
854   std::string ret = getPdbBaseName(dependentFile, pdbPath);
855   if (llvm::sys::fs::exists(ret))
856     return normalizePdbPath(ret);
857   return std::nullopt;
858 }
859 
860 PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
861     : InputFile(ctx, PDBKind, m) {}
862 
863 PDBInputFile::~PDBInputFile() = default;
864 
865 PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
866                                                StringRef path,
867                                                ObjFile *fromFile) {
868   auto p = findPdbPath(path.str(), fromFile);
869   if (!p)
870     return nullptr;
871   auto it = ctx.pdbInputFileInstances.find(*p);
872   if (it != ctx.pdbInputFileInstances.end())
873     return it->second;
874   return nullptr;
875 }
876 
877 void PDBInputFile::parse() {
878   ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
879 
880   std::unique_ptr<pdb::IPDBSession> thisSession;
881   Error E = pdb::NativeSession::createFromPdb(
882       MemoryBuffer::getMemBuffer(mb, false), thisSession);
883   if (E) {
884     loadErrorStr.emplace(toString(std::move(E)));
885     return; // fail silently at this point - the error will be handled later,
886             // when merging the debug type stream
887   }
888 
889   session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
890 
891   pdb::PDBFile &pdbFile = session->getPDBFile();
892   auto expectedInfo = pdbFile.getPDBInfoStream();
893   // All PDB Files should have an Info stream.
894   if (!expectedInfo) {
895     loadErrorStr.emplace(toString(expectedInfo.takeError()));
896     return;
897   }
898   debugTypesObj = makeTypeServerSource(ctx, this);
899 }
900 
901 // Used only for DWARF debug info, which is not common (except in MinGW
902 // environments). This returns an optional pair of file name and line
903 // number for where the variable was defined.
904 std::optional<std::pair<StringRef, uint32_t>>
905 ObjFile::getVariableLocation(StringRef var) {
906   if (!dwarf) {
907     dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
908     if (!dwarf)
909       return std::nullopt;
910   }
911   if (ctx.config.machine == I386)
912     var.consume_front("_");
913   std::optional<std::pair<std::string, unsigned>> ret =
914       dwarf->getVariableLoc(var);
915   if (!ret)
916     return std::nullopt;
917   return std::make_pair(saver().save(ret->first), ret->second);
918 }
919 
920 // Used only for DWARF debug info, which is not common (except in MinGW
921 // environments).
922 std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
923                                                  uint32_t sectionIndex) {
924   if (!dwarf) {
925     dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
926     if (!dwarf)
927       return std::nullopt;
928   }
929 
930   return dwarf->getDILineInfo(offset, sectionIndex);
931 }
932 
933 void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
934   auto p = findPdbPath(path.str(), fromFile);
935   if (!p)
936     return;
937   auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
938   if (!it.second)
939     return; // already scheduled for load
940   ctx.driver.enqueuePDB(*p);
941 }
942 
943 ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m)
944     : InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {}
945 
946 void ImportFile::parse() {
947   const char *buf = mb.getBufferStart();
948   const auto *hdr = reinterpret_cast<const coff_import_header *>(buf);
949 
950   // Check if the total size is valid.
951   if (mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
952     fatal("broken import library");
953 
954   // Read names and create an __imp_ symbol.
955   StringRef name = saver().save(StringRef(buf + sizeof(*hdr)));
956   StringRef impName = saver().save("__imp_" + name);
957   const char *nameStart = buf + sizeof(coff_import_header) + name.size() + 1;
958   dllName = std::string(StringRef(nameStart));
959   StringRef extName;
960   switch (hdr->getNameType()) {
961   case IMPORT_ORDINAL:
962     extName = "";
963     break;
964   case IMPORT_NAME:
965     extName = name;
966     break;
967   case IMPORT_NAME_NOPREFIX:
968     extName = ltrim1(name, "?@_");
969     break;
970   case IMPORT_NAME_UNDECORATE:
971     extName = ltrim1(name, "?@_");
972     extName = extName.substr(0, extName.find('@'));
973     break;
974   }
975 
976   this->hdr = hdr;
977   externalName = extName;
978 
979   impSym = ctx.symtab.addImportData(impName, this);
980   // If this was a duplicate, we logged an error but may continue;
981   // in this case, impSym is nullptr.
982   if (!impSym)
983     return;
984 
985   if (hdr->getType() == llvm::COFF::IMPORT_CONST)
986     static_cast<void>(ctx.symtab.addImportData(name, this));
987 
988   // If type is function, we need to create a thunk which jump to an
989   // address pointed by the __imp_ symbol. (This allows you to call
990   // DLL functions just like regular non-DLL functions.)
991   if (hdr->getType() == llvm::COFF::IMPORT_CODE)
992     thunkSym = ctx.symtab.addImportThunk(
993         name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
994 }
995 
996 BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
997                          StringRef archiveName, uint64_t offsetInArchive,
998                          bool lazy)
999     : InputFile(ctx, BitcodeKind, mb, lazy) {
1000   std::string path = mb.getBufferIdentifier().str();
1001   if (ctx.config.thinLTOIndexOnly)
1002     path = replaceThinLTOSuffix(mb.getBufferIdentifier(),
1003                                 ctx.config.thinLTOObjectSuffixReplace.first,
1004                                 ctx.config.thinLTOObjectSuffixReplace.second);
1005 
1006   // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1007   // name. If two archives define two members with the same name, this
1008   // causes a collision which result in only one of the objects being taken
1009   // into consideration at LTO time (which very likely causes undefined
1010   // symbols later in the link stage). So we append file offset to make
1011   // filename unique.
1012   MemoryBufferRef mbref(mb.getBuffer(),
1013                         saver().save(archiveName.empty()
1014                                          ? path
1015                                          : archiveName +
1016                                                sys::path::filename(path) +
1017                                                utostr(offsetInArchive)));
1018 
1019   obj = check(lto::InputFile::create(mbref));
1020 }
1021 
1022 BitcodeFile::~BitcodeFile() = default;
1023 
1024 void BitcodeFile::parse() {
1025   llvm::StringSaver &saver = lld::saver();
1026 
1027   std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1028   for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1029     // FIXME: Check nodeduplicate
1030     comdat[i] =
1031         ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
1032   for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1033     StringRef symName = saver.save(objSym.getName());
1034     int comdatIndex = objSym.getComdatIndex();
1035     Symbol *sym;
1036     SectionChunk *fakeSC = nullptr;
1037     if (objSym.isExecutable())
1038       fakeSC = &ctx.ltoTextSectionChunk.chunk;
1039     else
1040       fakeSC = &ctx.ltoDataSectionChunk.chunk;
1041     if (objSym.isUndefined()) {
1042       sym = ctx.symtab.addUndefined(symName, this, false);
1043     } else if (objSym.isCommon()) {
1044       sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
1045     } else if (objSym.isWeak() && objSym.isIndirect()) {
1046       // Weak external.
1047       sym = ctx.symtab.addUndefined(symName, this, true);
1048       std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1049       Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
1050       checkAndSetWeakAlias(ctx, this, sym, alias);
1051     } else if (comdatIndex != -1) {
1052       if (symName == obj->getComdatTable()[comdatIndex].first) {
1053         sym = comdat[comdatIndex].first;
1054         if (cast<DefinedRegular>(sym)->data == nullptr)
1055           cast<DefinedRegular>(sym)->data = &fakeSC->repl;
1056       } else if (comdat[comdatIndex].second) {
1057         sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1058       } else {
1059         sym = ctx.symtab.addUndefined(symName, this, false);
1060       }
1061     } else {
1062       sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0,
1063                                   objSym.isWeak());
1064     }
1065     symbols.push_back(sym);
1066     if (objSym.isUsed())
1067       ctx.config.gcroot.push_back(sym);
1068   }
1069   directives = obj->getCOFFLinkerOpts();
1070 }
1071 
1072 void BitcodeFile::parseLazy() {
1073   for (const lto::InputFile::Symbol &sym : obj->symbols())
1074     if (!sym.isUndefined())
1075       ctx.symtab.addLazyObject(this, sym.getName());
1076 }
1077 
1078 MachineTypes BitcodeFile::getMachineType() {
1079   switch (Triple(obj->getTargetTriple()).getArch()) {
1080   case Triple::x86_64:
1081     return AMD64;
1082   case Triple::x86:
1083     return I386;
1084   case Triple::arm:
1085     return ARMNT;
1086   case Triple::aarch64:
1087     return ARM64;
1088   default:
1089     return IMAGE_FILE_MACHINE_UNKNOWN;
1090   }
1091 }
1092 
1093 std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix,
1094                                             StringRef repl) {
1095   if (path.consume_back(suffix))
1096     return (path + repl).str();
1097   return std::string(path);
1098 }
1099 
1100 static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
1101   for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
1102     const coff_section *sec = CHECK(coffObj->getSection(i), file);
1103     if (rva >= sec->VirtualAddress &&
1104         rva <= sec->VirtualAddress + sec->VirtualSize) {
1105       return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
1106     }
1107   }
1108   return false;
1109 }
1110 
1111 void DLLFile::parse() {
1112   // Parse a memory buffer as a PE-COFF executable.
1113   std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
1114 
1115   if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
1116     bin.release();
1117     coffObj.reset(obj);
1118   } else {
1119     error(toString(this) + " is not a COFF file");
1120     return;
1121   }
1122 
1123   if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
1124     error(toString(this) + " is not a PE-COFF executable");
1125     return;
1126   }
1127 
1128   for (const auto &exp : coffObj->export_directories()) {
1129     StringRef dllName, symbolName;
1130     uint32_t exportRVA;
1131     checkError(exp.getDllName(dllName));
1132     checkError(exp.getSymbolName(symbolName));
1133     checkError(exp.getExportRVA(exportRVA));
1134 
1135     if (symbolName.empty())
1136       continue;
1137 
1138     bool code = isRVACode(coffObj.get(), exportRVA, this);
1139 
1140     Symbol *s = make<Symbol>();
1141     s->dllName = dllName;
1142     s->symbolName = symbolName;
1143     s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
1144     s->nameType = ImportNameType::IMPORT_NAME;
1145 
1146     if (coffObj->getMachine() == I386) {
1147       s->symbolName = symbolName = saver().save("_" + symbolName);
1148       s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
1149     }
1150 
1151     StringRef impName = saver().save("__imp_" + symbolName);
1152     ctx.symtab.addLazyDLLSymbol(this, s, impName);
1153     if (code)
1154       ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
1155   }
1156 }
1157 
1158 MachineTypes DLLFile::getMachineType() {
1159   if (coffObj)
1160     return static_cast<MachineTypes>(coffObj->getMachine());
1161   return IMAGE_FILE_MACHINE_UNKNOWN;
1162 }
1163 
1164 void DLLFile::makeImport(DLLFile::Symbol *s) {
1165   if (!seen.insert(s->symbolName).second)
1166     return;
1167 
1168   size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
1169   size_t size = sizeof(coff_import_header) + impSize;
1170   char *buf = bAlloc().Allocate<char>(size);
1171   memset(buf, 0, size);
1172   char *p = buf;
1173   auto *imp = reinterpret_cast<coff_import_header *>(p);
1174   p += sizeof(*imp);
1175   imp->Sig2 = 0xFFFF;
1176   imp->Machine = coffObj->getMachine();
1177   imp->SizeOfData = impSize;
1178   imp->OrdinalHint = 0; // Only linking by name
1179   imp->TypeInfo = (s->nameType << 2) | s->importType;
1180 
1181   // Write symbol name and DLL name.
1182   memcpy(p, s->symbolName.data(), s->symbolName.size());
1183   p += s->symbolName.size() + 1;
1184   memcpy(p, s->dllName.data(), s->dllName.size());
1185   MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
1186   ImportFile *impFile = make<ImportFile>(ctx, mbref);
1187   ctx.symtab.addFile(impFile);
1188 }
1189