1 //===- ARM.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "Thunks.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23 
24 namespace {
25 class ARM final : public TargetInfo {
26 public:
27   ARM();
28   uint32_t calcEFlags() const override;
29   RelExpr getRelExpr(RelType type, const Symbol &s,
30                      const uint8_t *loc) const override;
31   RelType getDynRel(RelType type) const override;
32   int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
33   void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
34   void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
35   void writePltHeader(uint8_t *buf) const override;
36   void writePlt(uint8_t *buf, const Symbol &sym,
37                 uint64_t pltEntryAddr) const override;
38   void addPltSymbols(InputSection &isec, uint64_t off) const override;
39   void addPltHeaderSymbols(InputSection &isd) const override;
40   bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
41                   uint64_t branchAddr, const Symbol &s,
42                   int64_t a) const override;
43   uint32_t getThunkSectionSpacing() const override;
44   bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
45   void relocate(uint8_t *loc, const Relocation &rel,
46                 uint64_t val) const override;
47 };
48 } // namespace
49 
50 ARM::ARM() {
51   copyRel = R_ARM_COPY;
52   relativeRel = R_ARM_RELATIVE;
53   iRelativeRel = R_ARM_IRELATIVE;
54   gotRel = R_ARM_GLOB_DAT;
55   noneRel = R_ARM_NONE;
56   pltRel = R_ARM_JUMP_SLOT;
57   symbolicRel = R_ARM_ABS32;
58   tlsGotRel = R_ARM_TLS_TPOFF32;
59   tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
60   tlsOffsetRel = R_ARM_TLS_DTPOFF32;
61   gotBaseSymInGotPlt = false;
62   pltHeaderSize = 32;
63   pltEntrySize = 16;
64   ipltEntrySize = 16;
65   trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
66   needsThunks = true;
67   defaultMaxPageSize = 65536;
68 }
69 
70 uint32_t ARM::calcEFlags() const {
71   // The ABIFloatType is used by loaders to detect the floating point calling
72   // convention.
73   uint32_t abiFloatType = 0;
74   if (config->armVFPArgs == ARMVFPArgKind::Base ||
75       config->armVFPArgs == ARMVFPArgKind::Default)
76     abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
77   else if (config->armVFPArgs == ARMVFPArgKind::VFP)
78     abiFloatType = EF_ARM_ABI_FLOAT_HARD;
79 
80   // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
81   // but we don't have any firm guarantees of conformance. Linux AArch64
82   // kernels (as of 2016) require an EABI version to be set.
83   return EF_ARM_EABI_VER5 | abiFloatType;
84 }
85 
86 RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
87                         const uint8_t *loc) const {
88   switch (type) {
89   case R_ARM_THM_JUMP11:
90     return R_PC;
91   case R_ARM_CALL:
92   case R_ARM_JUMP24:
93   case R_ARM_PC24:
94   case R_ARM_PLT32:
95   case R_ARM_PREL31:
96   case R_ARM_THM_JUMP19:
97   case R_ARM_THM_JUMP24:
98   case R_ARM_THM_CALL:
99     return R_PLT_PC;
100   case R_ARM_GOTOFF32:
101     // (S + A) - GOT_ORG
102     return R_GOTREL;
103   case R_ARM_GOT_BREL:
104     // GOT(S) + A - GOT_ORG
105     return R_GOT_OFF;
106   case R_ARM_GOT_PREL:
107   case R_ARM_TLS_IE32:
108     // GOT(S) + A - P
109     return R_GOT_PC;
110   case R_ARM_SBREL32:
111     return R_ARM_SBREL;
112   case R_ARM_TARGET1:
113     return config->target1Rel ? R_PC : R_ABS;
114   case R_ARM_TARGET2:
115     if (config->target2 == Target2Policy::Rel)
116       return R_PC;
117     if (config->target2 == Target2Policy::Abs)
118       return R_ABS;
119     return R_GOT_PC;
120   case R_ARM_TLS_GD32:
121     return R_TLSGD_PC;
122   case R_ARM_TLS_LDM32:
123     return R_TLSLD_PC;
124   case R_ARM_TLS_LDO32:
125     return R_DTPREL;
126   case R_ARM_BASE_PREL:
127     // B(S) + A - P
128     // FIXME: currently B(S) assumed to be .got, this may not hold for all
129     // platforms.
130     return R_GOTONLY_PC;
131   case R_ARM_MOVW_PREL_NC:
132   case R_ARM_MOVT_PREL:
133   case R_ARM_REL32:
134   case R_ARM_THM_MOVW_PREL_NC:
135   case R_ARM_THM_MOVT_PREL:
136     return R_PC;
137   case R_ARM_ALU_PC_G0:
138   case R_ARM_LDR_PC_G0:
139   case R_ARM_THM_ALU_PREL_11_0:
140   case R_ARM_THM_PC8:
141   case R_ARM_THM_PC12:
142     return R_ARM_PCA;
143   case R_ARM_MOVW_BREL_NC:
144   case R_ARM_MOVW_BREL:
145   case R_ARM_MOVT_BREL:
146   case R_ARM_THM_MOVW_BREL_NC:
147   case R_ARM_THM_MOVW_BREL:
148   case R_ARM_THM_MOVT_BREL:
149     return R_ARM_SBREL;
150   case R_ARM_NONE:
151     return R_NONE;
152   case R_ARM_TLS_LE32:
153     return R_TPREL;
154   case R_ARM_V4BX:
155     // V4BX is just a marker to indicate there's a "bx rN" instruction at the
156     // given address. It can be used to implement a special linker mode which
157     // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
158     // not ARMv4 output, we can just ignore it.
159     return R_NONE;
160   default:
161     return R_ABS;
162   }
163 }
164 
165 RelType ARM::getDynRel(RelType type) const {
166   if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
167     return R_ARM_ABS32;
168   return R_ARM_NONE;
169 }
170 
171 void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
172   write32le(buf, in.plt->getVA());
173 }
174 
175 void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
176   // An ARM entry is the address of the ifunc resolver function.
177   write32le(buf, s.getVA());
178 }
179 
180 // Long form PLT Header that does not have any restrictions on the displacement
181 // of the .plt from the .plt.got.
182 static void writePltHeaderLong(uint8_t *buf) {
183   const uint8_t pltData[] = {
184       0x04, 0xe0, 0x2d, 0xe5, //     str lr, [sp,#-4]!
185       0x04, 0xe0, 0x9f, 0xe5, //     ldr lr, L2
186       0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
187       0x08, 0xf0, 0xbe, 0xe5, //     ldr pc, [lr, #8]
188       0x00, 0x00, 0x00, 0x00, // L2: .word   &(.got.plt) - L1 - 8
189       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
190       0xd4, 0xd4, 0xd4, 0xd4, //     Pad to 32-byte boundary
191       0xd4, 0xd4, 0xd4, 0xd4};
192   memcpy(buf, pltData, sizeof(pltData));
193   uint64_t gotPlt = in.gotPlt->getVA();
194   uint64_t l1 = in.plt->getVA() + 8;
195   write32le(buf + 16, gotPlt - l1 - 8);
196 }
197 
198 // The default PLT header requires the .plt.got to be within 128 Mb of the
199 // .plt in the positive direction.
200 void ARM::writePltHeader(uint8_t *buf) const {
201   // Use a similar sequence to that in writePlt(), the difference is the calling
202   // conventions mean we use lr instead of ip. The PLT entry is responsible for
203   // saving lr on the stack, the dynamic loader is responsible for reloading
204   // it.
205   const uint32_t pltData[] = {
206       0xe52de004, // L1: str lr, [sp,#-4]!
207       0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
208       0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
209       0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
210   };
211 
212   uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
213   if (!llvm::isUInt<27>(offset)) {
214     // We cannot encode the Offset, use the long form.
215     writePltHeaderLong(buf);
216     return;
217   }
218   write32le(buf + 0, pltData[0]);
219   write32le(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
220   write32le(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
221   write32le(buf + 12, pltData[3] | (offset & 0xfff));
222   memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
223   memcpy(buf + 20, trapInstr.data(), 4);
224   memcpy(buf + 24, trapInstr.data(), 4);
225   memcpy(buf + 28, trapInstr.data(), 4);
226 }
227 
228 void ARM::addPltHeaderSymbols(InputSection &isec) const {
229   addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
230   addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
231 }
232 
233 // Long form PLT entries that do not have any restrictions on the displacement
234 // of the .plt from the .plt.got.
235 static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
236                          uint64_t pltEntryAddr) {
237   const uint8_t pltData[] = {
238       0x04, 0xc0, 0x9f, 0xe5, //     ldr ip, L2
239       0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
240       0x00, 0xf0, 0x9c, 0xe5, //     ldr pc, [ip]
241       0x00, 0x00, 0x00, 0x00, // L2: .word   Offset(&(.plt.got) - L1 - 8
242   };
243   memcpy(buf, pltData, sizeof(pltData));
244   uint64_t l1 = pltEntryAddr + 4;
245   write32le(buf + 12, gotPltEntryAddr - l1 - 8);
246 }
247 
248 // The default PLT entries require the .plt.got to be within 128 Mb of the
249 // .plt in the positive direction.
250 void ARM::writePlt(uint8_t *buf, const Symbol &sym,
251                    uint64_t pltEntryAddr) const {
252   // The PLT entry is similar to the example given in Appendix A of ELF for
253   // the Arm Architecture. Instead of using the Group Relocations to find the
254   // optimal rotation for the 8-bit immediate used in the add instructions we
255   // hard code the most compact rotations for simplicity. This saves a load
256   // instruction over the long plt sequences.
257   const uint32_t pltData[] = {
258       0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.plt.got) - L1 - 8
259       0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.plt.got) - L1 - 8
260       0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
261   };
262 
263   uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
264   if (!llvm::isUInt<27>(offset)) {
265     // We cannot encode the Offset, use the long form.
266     writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
267     return;
268   }
269   write32le(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
270   write32le(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
271   write32le(buf + 8, pltData[2] | (offset & 0xfff));
272   memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
273 }
274 
275 void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
276   addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
277   addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
278 }
279 
280 bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
281                      uint64_t branchAddr, const Symbol &s,
282                      int64_t /*a*/) const {
283   // If S is an undefined weak symbol and does not have a PLT entry then it
284   // will be resolved as a branch to the next instruction.
285   if (s.isUndefWeak() && !s.isInPlt())
286     return false;
287   // A state change from ARM to Thumb and vice versa must go through an
288   // interworking thunk if the relocation type is not R_ARM_CALL or
289   // R_ARM_THM_CALL.
290   switch (type) {
291   case R_ARM_PC24:
292   case R_ARM_PLT32:
293   case R_ARM_JUMP24:
294     // Source is ARM, all PLT entries are ARM so no interworking required.
295     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
296     if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
297       return true;
298     LLVM_FALLTHROUGH;
299   case R_ARM_CALL: {
300     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
301     return !inBranchRange(type, branchAddr, dst);
302   }
303   case R_ARM_THM_JUMP19:
304   case R_ARM_THM_JUMP24:
305     // Source is Thumb, all PLT entries are ARM so interworking is required.
306     // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
307     if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
308       return true;
309     LLVM_FALLTHROUGH;
310   case R_ARM_THM_CALL: {
311     uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
312     return !inBranchRange(type, branchAddr, dst);
313   }
314   }
315   return false;
316 }
317 
318 uint32_t ARM::getThunkSectionSpacing() const {
319   // The placing of pre-created ThunkSections is controlled by the value
320   // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
321   // place the ThunkSection such that all branches from the InputSections
322   // prior to the ThunkSection can reach a Thunk placed at the end of the
323   // ThunkSection. Graphically:
324   // | up to thunkSectionSpacing .text input sections |
325   // | ThunkSection                                   |
326   // | up to thunkSectionSpacing .text input sections |
327   // | ThunkSection                                   |
328 
329   // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
330   // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
331   // B.W:
332   // ARM B, BL, BLX range +/- 32MiB
333   // Thumb B.W, BL, BLX range +/- 16MiB
334   // Thumb B<cc>.W range +/- 1MiB
335   // If a branch cannot reach a pre-created ThunkSection a new one will be
336   // created so we can handle the rare cases of a Thumb 2 conditional branch.
337   // We intentionally use a lower size for thunkSectionSpacing than the maximum
338   // branch range so the end of the ThunkSection is more likely to be within
339   // range of the branch instruction that is furthest away. The value we shorten
340   // thunkSectionSpacing by is set conservatively to allow us to create 16,384
341   // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
342   // one of the Thunks going out of range.
343 
344   // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
345   // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
346   // ARMv6T2) the range is +/- 4MiB.
347 
348   return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
349                                          : 0x400000 - 0x7500;
350 }
351 
352 bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
353   uint64_t range;
354   uint64_t instrSize;
355 
356   switch (type) {
357   case R_ARM_PC24:
358   case R_ARM_PLT32:
359   case R_ARM_JUMP24:
360   case R_ARM_CALL:
361     range = 0x2000000;
362     instrSize = 4;
363     break;
364   case R_ARM_THM_JUMP19:
365     range = 0x100000;
366     instrSize = 2;
367     break;
368   case R_ARM_THM_JUMP24:
369   case R_ARM_THM_CALL:
370     range = config->armJ1J2BranchEncoding ? 0x1000000 : 0x400000;
371     instrSize = 2;
372     break;
373   default:
374     return true;
375   }
376   // PC at Src is 2 instructions ahead, immediate of branch is signed
377   if (src > dst)
378     range -= 2 * instrSize;
379   else
380     range += instrSize;
381 
382   if ((dst & 0x1) == 0)
383     // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
384     // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
385     // destination will be 4 byte aligned.
386     src &= ~0x3;
387   else
388     // Bit 0 == 1 denotes Thumb state, it is not part of the range
389     dst &= ~0x1;
390 
391   uint64_t distance = (src > dst) ? src - dst : dst - src;
392   return distance <= range;
393 }
394 
395 // Helper to produce message text when LLD detects that a CALL relocation to
396 // a non STT_FUNC symbol that may result in incorrect interworking between ARM
397 // or Thumb.
398 static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
399   assert(!s.isFunc());
400   if (s.isSection()) {
401     // Section symbols must be defined and in a section. Users cannot change
402     // the type. Use the section name as getName() returns an empty string.
403     warn(getErrorLocation(loc) + "branch and link relocation: " +
404          toString(relt) + " to STT_SECTION symbol " +
405          cast<Defined>(s).section->name + " ; interworking not performed");
406   } else {
407     // Warn with hint on how to alter the symbol type.
408     warn(getErrorLocation(loc) + "branch and link relocation: " +
409          toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
410          " interworking not performed; consider using directive '.type " +
411          s.getName() +
412          ", %function' to give symbol type STT_FUNC if"
413          " interworking between ARM and Thumb is required");
414   }
415 }
416 
417 // Utility functions taken from ARMAddressingModes.h, only changes are LLD
418 // coding style.
419 
420 // Rotate a 32-bit unsigned value right by a specified amt of bits.
421 static uint32_t rotr32(uint32_t val, uint32_t amt) {
422   assert(amt < 32 && "Invalid rotate amount");
423   return (val >> amt) | (val << ((32 - amt) & 31));
424 }
425 
426 // Rotate a 32-bit unsigned value left by a specified amt of bits.
427 static uint32_t rotl32(uint32_t val, uint32_t amt) {
428   assert(amt < 32 && "Invalid rotate amount");
429   return (val << amt) | (val >> ((32 - amt) & 31));
430 }
431 
432 // Try to encode a 32-bit unsigned immediate imm with an immediate shifter
433 // operand, this form is an 8-bit immediate rotated right by an even number of
434 // bits. We compute the rotate amount to use.  If this immediate value cannot be
435 // handled with a single shifter-op, determine a good rotate amount that will
436 // take a maximal chunk of bits out of the immediate.
437 static uint32_t getSOImmValRotate(uint32_t imm) {
438   // 8-bit (or less) immediates are trivially shifter_operands with a rotate
439   // of zero.
440   if ((imm & ~255U) == 0)
441     return 0;
442 
443   // Use CTZ to compute the rotate amount.
444   unsigned tz = llvm::countTrailingZeros(imm);
445 
446   // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
447   // not 9.
448   unsigned rotAmt = tz & ~1;
449 
450   // If we can handle this spread, return it.
451   if ((rotr32(imm, rotAmt) & ~255U) == 0)
452     return (32 - rotAmt) & 31; // HW rotates right, not left.
453 
454   // For values like 0xF000000F, we should ignore the low 6 bits, then
455   // retry the hunt.
456   if (imm & 63U) {
457     unsigned tz2 = countTrailingZeros(imm & ~63U);
458     unsigned rotAmt2 = tz2 & ~1;
459     if ((rotr32(imm, rotAmt2) & ~255U) == 0)
460       return (32 - rotAmt2) & 31; // HW rotates right, not left.
461   }
462 
463   // Otherwise, we have no way to cover this span of bits with a single
464   // shifter_op immediate.  Return a chunk of bits that will be useful to
465   // handle.
466   return (32 - rotAmt) & 31; // HW rotates right, not left.
467 }
468 
469 void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
470   switch (rel.type) {
471   case R_ARM_ABS32:
472   case R_ARM_BASE_PREL:
473   case R_ARM_GOTOFF32:
474   case R_ARM_GOT_BREL:
475   case R_ARM_GOT_PREL:
476   case R_ARM_REL32:
477   case R_ARM_RELATIVE:
478   case R_ARM_SBREL32:
479   case R_ARM_TARGET1:
480   case R_ARM_TARGET2:
481   case R_ARM_TLS_GD32:
482   case R_ARM_TLS_IE32:
483   case R_ARM_TLS_LDM32:
484   case R_ARM_TLS_LDO32:
485   case R_ARM_TLS_LE32:
486   case R_ARM_TLS_TPOFF32:
487   case R_ARM_TLS_DTPOFF32:
488     write32le(loc, val);
489     break;
490   case R_ARM_PREL31:
491     checkInt(loc, val, 31, rel);
492     write32le(loc, (read32le(loc) & 0x80000000) | (val & ~0x80000000));
493     break;
494   case R_ARM_CALL: {
495     // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
496     // STT_FUNC we choose whether to write a BL or BLX depending on the
497     // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
498     // not of type STT_FUNC then we must preserve the original instruction.
499     // PLT entries are always ARM state so we know we don't need to interwork.
500     assert(rel.sym); // R_ARM_CALL is always reached via relocate().
501     bool bit0Thumb = val & 1;
502     bool isBlx = (read32le(loc) & 0xfe000000) == 0xfa000000;
503     // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
504     // even when type not STT_FUNC.
505     if (!rel.sym->isFunc() && isBlx != bit0Thumb)
506       stateChangeWarning(loc, rel.type, *rel.sym);
507     if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
508       // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
509       checkInt(loc, val, 26, rel);
510       write32le(loc, 0xfa000000 |                    // opcode
511                          ((val & 2) << 23) |         // H
512                          ((val >> 2) & 0x00ffffff)); // imm24
513       break;
514     }
515     // BLX (always unconditional) instruction to an ARM Target, select an
516     // unconditional BL.
517     write32le(loc, 0xeb000000 | (read32le(loc) & 0x00ffffff));
518     // fall through as BL encoding is shared with B
519   }
520     LLVM_FALLTHROUGH;
521   case R_ARM_JUMP24:
522   case R_ARM_PC24:
523   case R_ARM_PLT32:
524     checkInt(loc, val, 26, rel);
525     write32le(loc, (read32le(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
526     break;
527   case R_ARM_THM_JUMP11:
528     checkInt(loc, val, 12, rel);
529     write16le(loc, (read32le(loc) & 0xf800) | ((val >> 1) & 0x07ff));
530     break;
531   case R_ARM_THM_JUMP19:
532     // Encoding T3: Val = S:J2:J1:imm6:imm11:0
533     checkInt(loc, val, 21, rel);
534     write16le(loc,
535               (read16le(loc) & 0xfbc0) |   // opcode cond
536                   ((val >> 10) & 0x0400) | // S
537                   ((val >> 12) & 0x003f)); // imm6
538     write16le(loc + 2,
539               0x8000 |                    // opcode
540                   ((val >> 8) & 0x0800) | // J2
541                   ((val >> 5) & 0x2000) | // J1
542                   ((val >> 1) & 0x07ff)); // imm11
543     break;
544   case R_ARM_THM_CALL: {
545     // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
546     // STT_FUNC we choose whether to write a BL or BLX depending on the
547     // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
548     // not of type STT_FUNC then we must preserve the original instruction.
549     // PLT entries are always ARM state so we know we need to interwork.
550     assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
551     bool bit0Thumb = val & 1;
552     bool isBlx = (read16le(loc + 2) & 0x1000) == 0;
553     // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
554     // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
555     if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
556       stateChangeWarning(loc, rel.type, *rel.sym);
557     if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
558       // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
559       // the BLX instruction may only be two byte aligned. This must be done
560       // before overflow check.
561       val = alignTo(val, 4);
562       write16le(loc + 2, read16le(loc + 2) & ~0x1000);
563     } else {
564       write16le(loc + 2, (read16le(loc + 2) & ~0x1000) | 1 << 12);
565     }
566     if (!config->armJ1J2BranchEncoding) {
567       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
568       // different encoding rules and range due to J1 and J2 always being 1.
569       checkInt(loc, val, 23, rel);
570       write16le(loc,
571                 0xf000 |                     // opcode
572                     ((val >> 12) & 0x07ff)); // imm11
573       write16le(loc + 2,
574                 (read16le(loc + 2) & 0xd000) | // opcode
575                     0x2800 |                   // J1 == J2 == 1
576                     ((val >> 1) & 0x07ff));    // imm11
577       break;
578     }
579   }
580     // Fall through as rest of encoding is the same as B.W
581     LLVM_FALLTHROUGH;
582   case R_ARM_THM_JUMP24:
583     // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
584     checkInt(loc, val, 25, rel);
585     write16le(loc,
586               0xf000 |                     // opcode
587                   ((val >> 14) & 0x0400) | // S
588                   ((val >> 12) & 0x03ff)); // imm10
589     write16le(loc + 2,
590               (read16le(loc + 2) & 0xd000) |                  // opcode
591                   (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
592                   (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
593                   ((val >> 1) & 0x07ff));                     // imm11
594     break;
595   case R_ARM_MOVW_ABS_NC:
596   case R_ARM_MOVW_PREL_NC:
597   case R_ARM_MOVW_BREL_NC:
598     write32le(loc, (read32le(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
599                        (val & 0x0fff));
600     break;
601   case R_ARM_MOVT_ABS:
602   case R_ARM_MOVT_PREL:
603   case R_ARM_MOVT_BREL:
604     write32le(loc, (read32le(loc) & ~0x000f0fff) |
605                        (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
606     break;
607   case R_ARM_THM_MOVT_ABS:
608   case R_ARM_THM_MOVT_PREL:
609   case R_ARM_THM_MOVT_BREL:
610     // Encoding T1: A = imm4:i:imm3:imm8
611     write16le(loc,
612               0xf2c0 |                     // opcode
613                   ((val >> 17) & 0x0400) | // i
614                   ((val >> 28) & 0x000f)); // imm4
615     write16le(loc + 2,
616               (read16le(loc + 2) & 0x8f00) | // opcode
617                   ((val >> 12) & 0x7000) |   // imm3
618                   ((val >> 16) & 0x00ff));   // imm8
619     break;
620   case R_ARM_THM_MOVW_ABS_NC:
621   case R_ARM_THM_MOVW_PREL_NC:
622   case R_ARM_THM_MOVW_BREL_NC:
623     // Encoding T3: A = imm4:i:imm3:imm8
624     write16le(loc,
625               0xf240 |                     // opcode
626                   ((val >> 1) & 0x0400) |  // i
627                   ((val >> 12) & 0x000f)); // imm4
628     write16le(loc + 2,
629               (read16le(loc + 2) & 0x8f00) | // opcode
630                   ((val << 4) & 0x7000) |    // imm3
631                   (val & 0x00ff));           // imm8
632     break;
633   case R_ARM_ALU_PC_G0: {
634     // ADR (literal) add = bit23, sub = bit22
635     // literal is a 12-bit modified immediate, made up of a 4-bit even rotate
636     // right and an 8-bit immediate. The code-sequence here is derived from
637     // ARMAddressingModes.h in llvm/Target/ARM/MCTargetDesc. In our case we
638     // want to give an error if we cannot encode the constant.
639     uint32_t opcode = 0x00800000;
640     if (val >> 63) {
641       opcode = 0x00400000;
642       val = ~val + 1;
643     }
644     if ((val & ~255U) != 0) {
645       uint32_t rotAmt = getSOImmValRotate(val);
646       // Error if we cannot encode this with a single shift
647       if (rotr32(~255U, rotAmt) & val)
648         error(getErrorLocation(loc) + "unencodeable immediate " +
649               Twine(val).str() + " for relocation " + toString(rel.type));
650       val = rotl32(val, rotAmt) | ((rotAmt >> 1) << 8);
651     }
652     write32le(loc, (read32le(loc) & 0xff0ff000) | opcode | val);
653     break;
654   }
655   case R_ARM_LDR_PC_G0: {
656     // R_ARM_LDR_PC_G0 is S + A - P, we have ((S + A) | T) - P, if S is a
657     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
658     // bottom bit to recover S + A - P.
659     if (rel.sym->isFunc())
660       val &= ~0x1;
661     // LDR (literal) u = bit23
662     int64_t imm = val;
663     uint32_t u = 0x00800000;
664     if (imm < 0) {
665       imm = -imm;
666       u = 0;
667     }
668     checkUInt(loc, imm, 12, rel);
669     write32le(loc, (read32le(loc) & 0xff7ff000) | u | imm);
670     break;
671   }
672   case R_ARM_THM_ALU_PREL_11_0: {
673     // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
674     int64_t imm = val;
675     uint16_t sub = 0;
676     if (imm < 0) {
677       imm = -imm;
678       sub = 0x00a0;
679     }
680     checkUInt(loc, imm, 12, rel);
681     write16le(loc, (read16le(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
682     write16le(loc + 2,
683               (read16le(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
684     break;
685   }
686   case R_ARM_THM_PC8:
687     // ADR and LDR literal encoding T1 positive offset only imm8:00
688     // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
689     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
690     // bottom bit to recover S + A - Pa.
691     if (rel.sym->isFunc())
692       val &= ~0x1;
693     checkUInt(loc, val, 10, rel);
694     checkAlignment(loc, val, 4, rel);
695     write16le(loc, (read16le(loc) & 0xff00) | (val & 0x3fc) >> 2);
696     break;
697   case R_ARM_THM_PC12: {
698     // LDR (literal) encoding T2, add = (U == '1') imm12
699     // imm12 is unsigned
700     // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
701     // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
702     // bottom bit to recover S + A - Pa.
703     if (rel.sym->isFunc())
704       val &= ~0x1;
705     int64_t imm12 = val;
706     uint16_t u = 0x0080;
707     if (imm12 < 0) {
708       imm12 = -imm12;
709       u = 0;
710     }
711     checkUInt(loc, imm12, 12, rel);
712     write16le(loc, read16le(loc) | u);
713     write16le(loc + 2, (read16le(loc + 2) & 0xf000) | imm12);
714     break;
715   }
716   default:
717     error(getErrorLocation(loc) + "unrecognized relocation " +
718           toString(rel.type));
719   }
720 }
721 
722 int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
723   switch (type) {
724   default:
725     return 0;
726   case R_ARM_ABS32:
727   case R_ARM_BASE_PREL:
728   case R_ARM_GOTOFF32:
729   case R_ARM_GOT_BREL:
730   case R_ARM_GOT_PREL:
731   case R_ARM_REL32:
732   case R_ARM_TARGET1:
733   case R_ARM_TARGET2:
734   case R_ARM_TLS_GD32:
735   case R_ARM_TLS_LDM32:
736   case R_ARM_TLS_LDO32:
737   case R_ARM_TLS_IE32:
738   case R_ARM_TLS_LE32:
739     return SignExtend64<32>(read32le(buf));
740   case R_ARM_PREL31:
741     return SignExtend64<31>(read32le(buf));
742   case R_ARM_CALL:
743   case R_ARM_JUMP24:
744   case R_ARM_PC24:
745   case R_ARM_PLT32:
746     return SignExtend64<26>(read32le(buf) << 2);
747   case R_ARM_THM_JUMP11:
748     return SignExtend64<12>(read16le(buf) << 1);
749   case R_ARM_THM_JUMP19: {
750     // Encoding T3: A = S:J2:J1:imm10:imm6:0
751     uint16_t hi = read16le(buf);
752     uint16_t lo = read16le(buf + 2);
753     return SignExtend64<20>(((hi & 0x0400) << 10) | // S
754                             ((lo & 0x0800) << 8) |  // J2
755                             ((lo & 0x2000) << 5) |  // J1
756                             ((hi & 0x003f) << 12) | // imm6
757                             ((lo & 0x07ff) << 1));  // imm11:0
758   }
759   case R_ARM_THM_CALL:
760     if (!config->armJ1J2BranchEncoding) {
761       // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
762       // different encoding rules and range due to J1 and J2 always being 1.
763       uint16_t hi = read16le(buf);
764       uint16_t lo = read16le(buf + 2);
765       return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
766                               ((lo & 0x7ff) << 1));  // imm11:0
767       break;
768     }
769     LLVM_FALLTHROUGH;
770   case R_ARM_THM_JUMP24: {
771     // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
772     // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
773     uint16_t hi = read16le(buf);
774     uint16_t lo = read16le(buf + 2);
775     return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
776                             (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
777                             (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
778                             ((hi & 0x003ff) << 12) |                   // imm0
779                             ((lo & 0x007ff) << 1)); // imm11:0
780   }
781   // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
782   // MOVT is in the range -32768 <= A < 32768
783   case R_ARM_MOVW_ABS_NC:
784   case R_ARM_MOVT_ABS:
785   case R_ARM_MOVW_PREL_NC:
786   case R_ARM_MOVT_PREL:
787   case R_ARM_MOVW_BREL_NC:
788   case R_ARM_MOVT_BREL: {
789     uint64_t val = read32le(buf) & 0x000f0fff;
790     return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
791   }
792   case R_ARM_THM_MOVW_ABS_NC:
793   case R_ARM_THM_MOVT_ABS:
794   case R_ARM_THM_MOVW_PREL_NC:
795   case R_ARM_THM_MOVT_PREL:
796   case R_ARM_THM_MOVW_BREL_NC:
797   case R_ARM_THM_MOVT_BREL: {
798     // Encoding T3: A = imm4:i:imm3:imm8
799     uint16_t hi = read16le(buf);
800     uint16_t lo = read16le(buf + 2);
801     return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
802                             ((hi & 0x0400) << 1) |  // i
803                             ((lo & 0x7000) >> 4) |  // imm3
804                             (lo & 0x00ff));         // imm8
805   }
806   case R_ARM_ALU_PC_G0: {
807     // 12-bit immediate is a modified immediate made up of a 4-bit even
808     // right rotation and 8-bit constant. After the rotation the value
809     // is zero-extended. When bit 23 is set the instruction is an add, when
810     // bit 22 is set it is a sub.
811     uint32_t instr = read32le(buf);
812     uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
813     return (instr & 0x00400000) ? -val : val;
814   }
815   case R_ARM_LDR_PC_G0: {
816     // ADR (literal) add = bit23, sub = bit22
817     // LDR (literal) u = bit23 unsigned imm12
818     bool u = read32le(buf) & 0x00800000;
819     uint32_t imm12 = read32le(buf) & 0xfff;
820     return u ? imm12 : -imm12;
821   }
822   case R_ARM_THM_ALU_PREL_11_0: {
823     // Thumb2 ADR, which is an alias for a sub or add instruction with an
824     // unsigned immediate.
825     // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
826     uint16_t hi = read16le(buf);
827     uint16_t lo = read16le(buf + 2);
828     uint64_t imm = (hi & 0x0400) << 1 | // i
829                    (lo & 0x7000) >> 4 | // imm3
830                    (lo & 0x00ff);       // imm8
831     // For sub, addend is negative, add is positive.
832     return (hi & 0x00f0) ? -imm : imm;
833   }
834   case R_ARM_THM_PC8:
835     // ADR and LDR (literal) encoding T1
836     // From ELF for the ARM Architecture the initial signed addend is formed
837     // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) – 4)
838     // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
839     return ((((read16le(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
840   case R_ARM_THM_PC12: {
841     // LDR (literal) encoding T2, add = (U == '1') imm12
842     bool u = read16le(buf) & 0x0080;
843     uint64_t imm12 = read16le(buf + 2) & 0x0fff;
844     return u ? imm12 : -imm12;
845   }
846   }
847 }
848 
849 TargetInfo *elf::getARMTargetInfo() {
850   static ARM target;
851   return &target;
852 }
853