1 //===-- Hexagon.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "InputFiles.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "lld/Common/ErrorHandler.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Object/ELF.h"
16 #include "llvm/Support/Endian.h"
17 
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24 
25 namespace {
26 class Hexagon final : public TargetInfo {
27 public:
28   Hexagon();
29   uint32_t calcEFlags() const override;
30   RelExpr getRelExpr(RelType type, const Symbol &s,
31                      const uint8_t *loc) const override;
32   void relocateOne(uint8_t *loc, RelType type, uint64_t val) const override;
33   void writePltHeader(uint8_t *buf) const override;
34   void writePlt(uint8_t *buf, uint64_t gotPltEntryAddr, uint64_t pltEntryAddr,
35                 int32_t index, unsigned relOff) const override;
36 };
37 } // namespace
38 
39 Hexagon::Hexagon() {
40   pltRel = R_HEX_JMP_SLOT;
41   relativeRel = R_HEX_RELATIVE;
42   gotRel = R_HEX_GLOB_DAT;
43   symbolicRel = R_HEX_32;
44 
45   // The zero'th GOT entry is reserved for the address of _DYNAMIC.  The
46   // next 3 are reserved for the dynamic loader.
47   gotPltHeaderEntriesNum = 4;
48 
49   pltEntrySize = 16;
50   pltHeaderSize = 32;
51 
52   // Hexagon Linux uses 64K pages by default.
53   defaultMaxPageSize = 0x10000;
54   noneRel = R_HEX_NONE;
55 }
56 
57 uint32_t Hexagon::calcEFlags() const {
58   assert(!objectFiles.empty());
59 
60   // The architecture revision must always be equal to or greater than
61   // greatest revision in the list of inputs.
62   uint32_t ret = 0;
63   for (InputFile *f : objectFiles) {
64     uint32_t eflags = cast<ObjFile<ELF32LE>>(f)->getObj().getHeader()->e_flags;
65     if (eflags > ret)
66       ret = eflags;
67   }
68   return ret;
69 }
70 
71 static uint32_t applyMask(uint32_t mask, uint32_t data) {
72   uint32_t result = 0;
73   size_t off = 0;
74 
75   for (size_t bit = 0; bit != 32; ++bit) {
76     uint32_t valBit = (data >> off) & 1;
77     uint32_t maskBit = (mask >> bit) & 1;
78     if (maskBit) {
79       result |= (valBit << bit);
80       ++off;
81     }
82   }
83   return result;
84 }
85 
86 RelExpr Hexagon::getRelExpr(RelType type, const Symbol &s,
87                             const uint8_t *loc) const {
88   switch (type) {
89   case R_HEX_B9_PCREL:
90   case R_HEX_B9_PCREL_X:
91   case R_HEX_B13_PCREL:
92   case R_HEX_B15_PCREL:
93   case R_HEX_B15_PCREL_X:
94   case R_HEX_6_PCREL_X:
95   case R_HEX_32_PCREL:
96     return R_PC;
97   case R_HEX_B22_PCREL:
98   case R_HEX_PLT_B22_PCREL:
99   case R_HEX_B22_PCREL_X:
100   case R_HEX_B32_PCREL_X:
101     return R_PLT_PC;
102   case R_HEX_GOT_11_X:
103   case R_HEX_GOT_16_X:
104   case R_HEX_GOT_32_6_X:
105     return R_HEXAGON_GOT;
106   default:
107     return R_ABS;
108   }
109 }
110 
111 static uint32_t findMaskR6(uint32_t insn) {
112   // There are (arguably too) many relocation masks for the DSP's
113   // R_HEX_6_X type.  The table below is used to select the correct mask
114   // for the given instruction.
115   struct InstructionMask {
116     uint32_t cmpMask;
117     uint32_t relocMask;
118   };
119 
120   static const InstructionMask r6[] = {
121       {0x38000000, 0x0000201f}, {0x39000000, 0x0000201f},
122       {0x3e000000, 0x00001f80}, {0x3f000000, 0x00001f80},
123       {0x40000000, 0x000020f8}, {0x41000000, 0x000007e0},
124       {0x42000000, 0x000020f8}, {0x43000000, 0x000007e0},
125       {0x44000000, 0x000020f8}, {0x45000000, 0x000007e0},
126       {0x46000000, 0x000020f8}, {0x47000000, 0x000007e0},
127       {0x6a000000, 0x00001f80}, {0x7c000000, 0x001f2000},
128       {0x9a000000, 0x00000f60}, {0x9b000000, 0x00000f60},
129       {0x9c000000, 0x00000f60}, {0x9d000000, 0x00000f60},
130       {0x9f000000, 0x001f0100}, {0xab000000, 0x0000003f},
131       {0xad000000, 0x0000003f}, {0xaf000000, 0x00030078},
132       {0xd7000000, 0x006020e0}, {0xd8000000, 0x006020e0},
133       {0xdb000000, 0x006020e0}, {0xdf000000, 0x006020e0}};
134 
135   // Duplex forms have a fixed mask and parse bits 15:14 are always
136   // zero.  Non-duplex insns will always have at least one bit set in the
137   // parse field.
138   if ((0xC000 & insn) == 0x0)
139     return 0x03f00000;
140 
141   for (InstructionMask i : r6)
142     if ((0xff000000 & insn) == i.cmpMask)
143       return i.relocMask;
144 
145   error("unrecognized instruction for R_HEX_6 relocation: 0x" +
146         utohexstr(insn));
147   return 0;
148 }
149 
150 static uint32_t findMaskR8(uint32_t insn) {
151   if ((0xff000000 & insn) == 0xde000000)
152     return 0x00e020e8;
153   if ((0xff000000 & insn) == 0x3c000000)
154     return 0x0000207f;
155   return 0x00001fe0;
156 }
157 
158 static uint32_t findMaskR11(uint32_t insn) {
159   if ((0xff000000 & insn) == 0xa1000000)
160     return 0x060020ff;
161   return 0x06003fe0;
162 }
163 
164 static uint32_t findMaskR16(uint32_t insn) {
165   if ((0xff000000 & insn) == 0x48000000)
166     return 0x061f20ff;
167   if ((0xff000000 & insn) == 0x49000000)
168     return 0x061f3fe0;
169   if ((0xff000000 & insn) == 0x78000000)
170     return 0x00df3fe0;
171   if ((0xff000000 & insn) == 0xb0000000)
172     return 0x0fe03fe0;
173 
174   error("unrecognized instruction for R_HEX_16_X relocation: 0x" +
175         utohexstr(insn));
176   return 0;
177 }
178 
179 static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
180 
181 void Hexagon::relocateOne(uint8_t *loc, RelType type, uint64_t val) const {
182   switch (type) {
183   case R_HEX_NONE:
184     break;
185   case R_HEX_6_PCREL_X:
186   case R_HEX_6_X:
187     or32le(loc, applyMask(findMaskR6(read32le(loc)), val));
188     break;
189   case R_HEX_8_X:
190     or32le(loc, applyMask(findMaskR8(read32le(loc)), val));
191     break;
192   case R_HEX_9_X:
193     or32le(loc, applyMask(0x00003fe0, val & 0x3f));
194     break;
195   case R_HEX_10_X:
196     or32le(loc, applyMask(0x00203fe0, val & 0x3f));
197     break;
198   case R_HEX_11_X:
199   case R_HEX_GOT_11_X:
200     or32le(loc, applyMask(findMaskR11(read32le(loc)), val & 0x3f));
201     break;
202   case R_HEX_12_X:
203     or32le(loc, applyMask(0x000007e0, val));
204     break;
205   case R_HEX_16_X: // These relocs only have 6 effective bits.
206   case R_HEX_GOT_16_X:
207     or32le(loc, applyMask(findMaskR16(read32le(loc)), val & 0x3f));
208     break;
209   case R_HEX_32:
210   case R_HEX_32_PCREL:
211     or32le(loc, val);
212     break;
213   case R_HEX_32_6_X:
214   case R_HEX_GOT_32_6_X:
215     or32le(loc, applyMask(0x0fff3fff, val >> 6));
216     break;
217   case R_HEX_B9_PCREL:
218     or32le(loc, applyMask(0x003000fe, val >> 2));
219     break;
220   case R_HEX_B9_PCREL_X:
221     or32le(loc, applyMask(0x003000fe, val & 0x3f));
222     break;
223   case R_HEX_B13_PCREL:
224     or32le(loc, applyMask(0x00202ffe, val >> 2));
225     break;
226   case R_HEX_B15_PCREL:
227     or32le(loc, applyMask(0x00df20fe, val >> 2));
228     break;
229   case R_HEX_B15_PCREL_X:
230     or32le(loc, applyMask(0x00df20fe, val & 0x3f));
231     break;
232   case R_HEX_B22_PCREL:
233   case R_HEX_PLT_B22_PCREL:
234     or32le(loc, applyMask(0x1ff3ffe, val >> 2));
235     break;
236   case R_HEX_B22_PCREL_X:
237     or32le(loc, applyMask(0x1ff3ffe, val & 0x3f));
238     break;
239   case R_HEX_B32_PCREL_X:
240     or32le(loc, applyMask(0x0fff3fff, val >> 6));
241     break;
242   case R_HEX_HI16:
243     or32le(loc, applyMask(0x00c03fff, val >> 16));
244     break;
245   case R_HEX_LO16:
246     or32le(loc, applyMask(0x00c03fff, val));
247     break;
248   default:
249     error(getErrorLocation(loc) + "unrecognized relocation " + toString(type));
250     break;
251   }
252 }
253 
254 void Hexagon::writePltHeader(uint8_t *buf) const {
255   const uint8_t pltData[] = {
256       0x00, 0x40, 0x00, 0x00, // { immext (#0)
257       0x1c, 0xc0, 0x49, 0x6a, //   r28 = add (pc, ##GOT0@PCREL) } # @GOT0
258       0x0e, 0x42, 0x9c, 0xe2, // { r14 -= add (r28, #16)  # offset of GOTn
259       0x4f, 0x40, 0x9c, 0x91, //   r15 = memw (r28 + #8)  # object ID at GOT2
260       0x3c, 0xc0, 0x9c, 0x91, //   r28 = memw (r28 + #4) }# dynamic link at GOT1
261       0x0e, 0x42, 0x0e, 0x8c, // { r14 = asr (r14, #2)    # index of PLTn
262       0x00, 0xc0, 0x9c, 0x52, //   jumpr r28 }            # call dynamic linker
263       0x0c, 0xdb, 0x00, 0x54, // trap0(#0xdb) # bring plt0 into 16byte alignment
264   };
265   memcpy(buf, pltData, sizeof(pltData));
266 
267   // Offset from PLT0 to the GOT.
268   uint64_t off = in.gotPlt->getVA() - in.plt->getVA();
269   relocateOne(buf, R_HEX_B32_PCREL_X, off);
270   relocateOne(buf + 4, R_HEX_6_PCREL_X, off);
271 }
272 
273 void Hexagon::writePlt(uint8_t *buf, uint64_t gotPltEntryAddr,
274                        uint64_t pltEntryAddr, int32_t index,
275                        unsigned relOff) const {
276   const uint8_t inst[] = {
277       0x00, 0x40, 0x00, 0x00, // { immext (#0)
278       0x0e, 0xc0, 0x49, 0x6a, //   r14 = add (pc, ##GOTn@PCREL) }
279       0x1c, 0xc0, 0x8e, 0x91, // r28 = memw (r14)
280       0x00, 0xc0, 0x9c, 0x52, // jumpr r28
281   };
282   memcpy(buf, inst, sizeof(inst));
283 
284   relocateOne(buf, R_HEX_B32_PCREL_X, gotPltEntryAddr - pltEntryAddr);
285   relocateOne(buf + 4, R_HEX_6_PCREL_X, gotPltEntryAddr - pltEntryAddr);
286 }
287 
288 TargetInfo *elf::getHexagonTargetInfo() {
289   static Hexagon target;
290   return &target;
291 }
292