1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
11 
12 #include "Config.h"
13 #include "Relocations.h"
14 #include "Thunks.h"
15 #include "lld/Common/LLVM.h"
16 #include "llvm/ADT/CachedHashString.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Object/ELF.h"
20 
21 namespace lld {
22 namespace elf {
23 
24 class Symbol;
25 struct SectionPiece;
26 
27 class Defined;
28 struct Partition;
29 class SyntheticSection;
30 class MergeSyntheticSection;
31 template <class ELFT> class ObjFile;
32 class OutputSection;
33 
34 extern std::vector<Partition> partitions;
35 
36 // Returned by InputSectionBase::relsOrRelas. At least one member is empty.
37 template <class ELFT> struct RelsOrRelas {
38   ArrayRef<typename ELFT::Rel> rels;
39   ArrayRef<typename ELFT::Rela> relas;
40   bool areRelocsRel() const { return rels.size(); }
41 };
42 
43 // This is the base class of all sections that lld handles. Some are sections in
44 // input files, some are sections in the produced output file and some exist
45 // just as a convenience for implementing special ways of combining some
46 // sections.
47 class SectionBase {
48 public:
49   enum Kind { Regular, EHFrame, Merge, Synthetic, Output };
50 
51   Kind kind() const { return (Kind)sectionKind; }
52 
53   StringRef name;
54 
55   uint8_t sectionKind : 3;
56 
57   // The next two bit fields are only used by InputSectionBase, but we
58   // put them here so the struct packs better.
59 
60   uint8_t bss : 1;
61 
62   // Set for sections that should not be folded by ICF.
63   uint8_t keepUnique : 1;
64 
65   // The 1-indexed partition that this section is assigned to by the garbage
66   // collector, or 0 if this section is dead. Normally there is only one
67   // partition, so this will either be 0 or 1.
68   uint8_t partition = 1;
69   elf::Partition &getPartition() const;
70 
71   // These corresponds to the fields in Elf_Shdr.
72   uint32_t alignment;
73   uint64_t flags;
74   uint32_t entsize;
75   uint32_t type;
76   uint32_t link;
77   uint32_t info;
78 
79   OutputSection *getOutputSection();
80   const OutputSection *getOutputSection() const {
81     return const_cast<SectionBase *>(this)->getOutputSection();
82   }
83 
84   // Translate an offset in the input section to an offset in the output
85   // section.
86   uint64_t getOffset(uint64_t offset) const;
87 
88   uint64_t getVA(uint64_t offset = 0) const;
89 
90   bool isLive() const { return partition != 0; }
91   void markLive() { partition = 1; }
92   void markDead() { partition = 0; }
93 
94 protected:
95   constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
96                         uint32_t entsize, uint32_t alignment, uint32_t type,
97                         uint32_t info, uint32_t link)
98       : name(name), sectionKind(sectionKind), bss(false), keepUnique(false),
99         alignment(alignment), flags(flags), entsize(entsize), type(type),
100         link(link), info(info) {}
101 };
102 
103 // This corresponds to a section of an input file.
104 class InputSectionBase : public SectionBase {
105 public:
106   template <class ELFT>
107   InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
108                    StringRef name, Kind sectionKind);
109 
110   InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
111                    uint64_t entsize, uint32_t link, uint32_t info,
112                    uint32_t alignment, ArrayRef<uint8_t> data, StringRef name,
113                    Kind sectionKind);
114 
115   static bool classof(const SectionBase *s) { return s->kind() != Output; }
116 
117   // The file which contains this section. Its dynamic type is always
118   // ObjFile<ELFT>, but in order to avoid ELFT, we use InputFile as
119   // its static type.
120   InputFile *file;
121 
122   // Input sections are part of an output section. Special sections
123   // like .eh_frame and merge sections are first combined into a
124   // synthetic section that is then added to an output section. In all
125   // cases this points one level up.
126   SectionBase *parent = nullptr;
127 
128   // Section index of the relocation section if exists.
129   uint32_t relSecIdx = 0;
130 
131   template <class ELFT> ObjFile<ELFT> *getFile() const {
132     return cast_or_null<ObjFile<ELFT>>(file);
133   }
134 
135   // If basic block sections are enabled, many code sections could end up with
136   // one or two jump instructions at the end that could be relaxed to a smaller
137   // instruction. The members below help trimming the trailing jump instruction
138   // and shrinking a section.
139   uint8_t bytesDropped = 0;
140 
141   // Whether the section needs to be padded with a NOP filler due to
142   // deleteFallThruJmpInsn.
143   bool nopFiller = false;
144 
145   void drop_back(unsigned num) {
146     assert(bytesDropped + num < 256);
147     bytesDropped += num;
148   }
149 
150   void push_back(uint64_t num) {
151     assert(bytesDropped >= num);
152     bytesDropped -= num;
153   }
154 
155   void trim() {
156     if (bytesDropped) {
157       rawData = rawData.drop_back(bytesDropped);
158       bytesDropped = 0;
159     }
160   }
161 
162   ArrayRef<uint8_t> data() const {
163     if (uncompressedSize >= 0)
164       uncompress();
165     return rawData;
166   }
167 
168   // The next member in the section group if this section is in a group. This is
169   // used by --gc-sections.
170   InputSectionBase *nextInSectionGroup = nullptr;
171 
172   template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
173 
174   // InputSections that are dependent on us (reverse dependency for GC)
175   llvm::TinyPtrVector<InputSection *> dependentSections;
176 
177   // Returns the size of this section (even if this is a common or BSS.)
178   size_t getSize() const;
179 
180   InputSection *getLinkOrderDep() const;
181 
182   // Get the function symbol that encloses this offset from within the
183   // section.
184   Defined *getEnclosingFunction(uint64_t offset);
185 
186   // Returns a source location string. Used to construct an error message.
187   std::string getLocation(uint64_t offset);
188   std::string getSrcMsg(const Symbol &sym, uint64_t offset);
189   std::string getObjMsg(uint64_t offset);
190 
191   // Each section knows how to relocate itself. These functions apply
192   // relocations, assuming that Buf points to this section's copy in
193   // the mmap'ed output buffer.
194   template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
195   void relocateAlloc(uint8_t *buf, uint8_t *bufEnd);
196   static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
197                                    int64_t A, uint64_t P, const Symbol &Sym,
198                                    RelExpr Expr);
199 
200   // The native ELF reloc data type is not very convenient to handle.
201   // So we convert ELF reloc records to our own records in Relocations.cpp.
202   // This vector contains such "cooked" relocations.
203   SmallVector<Relocation, 0> relocations;
204 
205   // These are modifiers to jump instructions that are necessary when basic
206   // block sections are enabled.  Basic block sections creates opportunities to
207   // relax jump instructions at basic block boundaries after reordering the
208   // basic blocks.
209   JumpInstrMod *jumpInstrMod = nullptr;
210 
211   // A function compiled with -fsplit-stack calling a function
212   // compiled without -fsplit-stack needs its prologue adjusted. Find
213   // such functions and adjust their prologues.  This is very similar
214   // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
215   // information.
216   template <typename ELFT>
217   void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
218 
219 
220   template <typename T> llvm::ArrayRef<T> getDataAs() const {
221     size_t s = data().size();
222     assert(s % sizeof(T) == 0);
223     return llvm::makeArrayRef<T>((const T *)data().data(), s / sizeof(T));
224   }
225 
226 protected:
227   template <typename ELFT>
228   void parseCompressedHeader();
229   void uncompress() const;
230 
231   mutable ArrayRef<uint8_t> rawData;
232 
233   // This field stores the uncompressed size of the compressed data in rawData,
234   // or -1 if rawData is not compressed (either because the section wasn't
235   // compressed in the first place, or because we ended up uncompressing it).
236   // Since the feature is not used often, this is usually -1.
237   mutable int64_t uncompressedSize = -1;
238 };
239 
240 // SectionPiece represents a piece of splittable section contents.
241 // We allocate a lot of these and binary search on them. This means that they
242 // have to be as compact as possible, which is why we don't store the size (can
243 // be found by looking at the next one).
244 struct SectionPiece {
245   SectionPiece() = default;
246   SectionPiece(size_t off, uint32_t hash, bool live)
247       : inputOff(off), live(live), hash(hash >> 1) {}
248 
249   uint32_t inputOff;
250   uint32_t live : 1;
251   uint32_t hash : 31;
252   uint64_t outputOff = 0;
253 };
254 
255 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
256 
257 // This corresponds to a SHF_MERGE section of an input file.
258 class MergeInputSection : public InputSectionBase {
259 public:
260   template <class ELFT>
261   MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
262                     StringRef name);
263   MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
264                     ArrayRef<uint8_t> data, StringRef name);
265 
266   static bool classof(const SectionBase *s) { return s->kind() == Merge; }
267   void splitIntoPieces();
268 
269   // Translate an offset in the input section to an offset in the parent
270   // MergeSyntheticSection.
271   uint64_t getParentOffset(uint64_t offset) const;
272 
273   // Splittable sections are handled as a sequence of data
274   // rather than a single large blob of data.
275   SmallVector<SectionPiece, 0> pieces;
276 
277   // Returns I'th piece's data. This function is very hot when
278   // string merging is enabled, so we want to inline.
279   LLVM_ATTRIBUTE_ALWAYS_INLINE
280   llvm::CachedHashStringRef getData(size_t i) const {
281     size_t begin = pieces[i].inputOff;
282     size_t end =
283         (pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff;
284     return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash};
285   }
286 
287   // Returns the SectionPiece at a given input section offset.
288   SectionPiece *getSectionPiece(uint64_t offset);
289   const SectionPiece *getSectionPiece(uint64_t offset) const {
290     return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
291   }
292 
293   SyntheticSection *getParent() const;
294 
295 private:
296   void splitStrings(StringRef s, size_t size);
297   void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
298 };
299 
300 struct EhSectionPiece {
301   EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
302                  unsigned firstRelocation)
303       : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
304 
305   ArrayRef<uint8_t> data() const {
306     return {sec->data().data() + this->inputOff, size};
307   }
308 
309   size_t inputOff;
310   ssize_t outputOff = -1;
311   InputSectionBase *sec;
312   uint32_t size;
313   unsigned firstRelocation;
314 };
315 
316 // This corresponds to a .eh_frame section of an input file.
317 class EhInputSection : public InputSectionBase {
318 public:
319   template <class ELFT>
320   EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
321                  StringRef name);
322   static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
323   template <class ELFT> void split();
324   template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
325 
326   // Splittable sections are handled as a sequence of data
327   // rather than a single large blob of data.
328   SmallVector<EhSectionPiece, 0> pieces;
329 
330   SyntheticSection *getParent() const;
331 };
332 
333 // This is a section that is added directly to an output section
334 // instead of needing special combination via a synthetic section. This
335 // includes all input sections with the exceptions of SHF_MERGE and
336 // .eh_frame. It also includes the synthetic sections themselves.
337 class InputSection : public InputSectionBase {
338 public:
339   InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t alignment,
340                ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
341   template <class ELFT>
342   InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
343                StringRef name);
344 
345   // Write this section to a mmap'ed file, assuming Buf is pointing to
346   // beginning of the output section.
347   template <class ELFT> void writeTo(uint8_t *buf);
348 
349   OutputSection *getParent() const;
350 
351   // This variable has two usages. Initially, it represents an index in the
352   // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
353   // sections. After assignAddresses is called, it represents the offset from
354   // the beginning of the output section this section was assigned to.
355   uint64_t outSecOff = 0;
356 
357   static bool classof(const SectionBase *s);
358 
359   InputSectionBase *getRelocatedSection() const;
360 
361   template <class ELFT, class RelTy>
362   void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
363 
364   // Points to the canonical section. If ICF folds two sections, repl pointer of
365   // one section points to the other.
366   InputSection *repl = this;
367 
368   // Used by ICF.
369   uint32_t eqClass[2] = {0, 0};
370 
371   // Called by ICF to merge two input sections.
372   void replace(InputSection *other);
373 
374   static InputSection discarded;
375 
376 private:
377   template <class ELFT, class RelTy>
378   void copyRelocations(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
379 
380   template <class ELFT> void copyShtGroup(uint8_t *buf);
381 };
382 
383 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
384 
385 inline bool isDebugSection(const InputSectionBase &sec) {
386   return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
387          (sec.name.startswith(".debug") || sec.name.startswith(".zdebug"));
388 }
389 
390 // The list of all input sections.
391 extern SmallVector<InputSectionBase *, 0> inputSections;
392 
393 // The set of TOC entries (.toc + addend) for which we should not apply
394 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
395 // STT_SECTION symbol associated to the .toc input section.
396 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
397 
398 } // namespace elf
399 
400 std::string toString(const elf::InputSectionBase *);
401 } // namespace lld
402 
403 #endif
404