1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the parser/evaluator of the linker script.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LinkerScript.h"
14 #include "Config.h"
15 #include "InputSection.h"
16 #include "OutputSections.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "SyntheticSections.h"
20 #include "Target.h"
21 #include "Writer.h"
22 #include "lld/Common/Memory.h"
23 #include "lld/Common/Strings.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/BinaryFormat/ELF.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Parallel.h"
32 #include "llvm/Support/Path.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <cstdint>
37 #include <iterator>
38 #include <limits>
39 #include <string>
40 #include <vector>
41 
42 using namespace llvm;
43 using namespace llvm::ELF;
44 using namespace llvm::object;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::elf;
48 
49 LinkerScript *elf::script;
50 
51 static uint64_t getOutputSectionVA(SectionBase *sec) {
52   OutputSection *os = sec->getOutputSection();
53   assert(os && "input section has no output section assigned");
54   return os ? os->addr : 0;
55 }
56 
57 uint64_t ExprValue::getValue() const {
58   if (sec)
59     return alignTo(sec->getOffset(val) + getOutputSectionVA(sec),
60                    alignment);
61   return alignTo(val, alignment);
62 }
63 
64 uint64_t ExprValue::getSecAddr() const {
65   if (sec)
66     return sec->getOffset(0) + getOutputSectionVA(sec);
67   return 0;
68 }
69 
70 uint64_t ExprValue::getSectionOffset() const {
71   // If the alignment is trivial, we don't have to compute the full
72   // value to know the offset. This allows this function to succeed in
73   // cases where the output section is not yet known.
74   if (alignment == 1 && !sec)
75     return val;
76   return getValue() - getSecAddr();
77 }
78 
79 OutputSection *LinkerScript::createOutputSection(StringRef name,
80                                                  StringRef location) {
81   OutputSection *&secRef = nameToOutputSection[name];
82   OutputSection *sec;
83   if (secRef && secRef->location.empty()) {
84     // There was a forward reference.
85     sec = secRef;
86   } else {
87     sec = make<OutputSection>(name, SHT_PROGBITS, 0);
88     if (!secRef)
89       secRef = sec;
90   }
91   sec->location = std::string(location);
92   return sec;
93 }
94 
95 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) {
96   OutputSection *&cmdRef = nameToOutputSection[name];
97   if (!cmdRef)
98     cmdRef = make<OutputSection>(name, SHT_PROGBITS, 0);
99   return cmdRef;
100 }
101 
102 // Expands the memory region by the specified size.
103 static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
104                                StringRef regionName, StringRef secName) {
105   memRegion->curPos += size;
106   uint64_t newSize = memRegion->curPos - (memRegion->origin)().getValue();
107   uint64_t length = (memRegion->length)().getValue();
108   if (newSize > length)
109     error("section '" + secName + "' will not fit in region '" + regionName +
110           "': overflowed by " + Twine(newSize - length) + " bytes");
111 }
112 
113 void LinkerScript::expandMemoryRegions(uint64_t size) {
114   if (ctx->memRegion)
115     expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name,
116                        ctx->outSec->name);
117   // Only expand the LMARegion if it is different from memRegion.
118   if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion)
119     expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name,
120                        ctx->outSec->name);
121 }
122 
123 void LinkerScript::expandOutputSection(uint64_t size) {
124   ctx->outSec->size += size;
125   expandMemoryRegions(size);
126 }
127 
128 void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
129   uint64_t val = e().getValue();
130   if (val < dot && inSec)
131     error(loc + ": unable to move location counter backward for: " +
132           ctx->outSec->name);
133 
134   // Update to location counter means update to section size.
135   if (inSec)
136     expandOutputSection(val - dot);
137 
138   dot = val;
139 }
140 
141 // Used for handling linker symbol assignments, for both finalizing
142 // their values and doing early declarations. Returns true if symbol
143 // should be defined from linker script.
144 static bool shouldDefineSym(SymbolAssignment *cmd) {
145   if (cmd->name == ".")
146     return false;
147 
148   if (!cmd->provide)
149     return true;
150 
151   // If a symbol was in PROVIDE(), we need to define it only
152   // when it is a referenced undefined symbol.
153   Symbol *b = symtab->find(cmd->name);
154   if (b && !b->isDefined())
155     return true;
156   return false;
157 }
158 
159 // Called by processSymbolAssignments() to assign definitions to
160 // linker-script-defined symbols.
161 void LinkerScript::addSymbol(SymbolAssignment *cmd) {
162   if (!shouldDefineSym(cmd))
163     return;
164 
165   // Define a symbol.
166   ExprValue value = cmd->expression();
167   SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
168   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
169 
170   // When this function is called, section addresses have not been
171   // fixed yet. So, we may or may not know the value of the RHS
172   // expression.
173   //
174   // For example, if an expression is `x = 42`, we know x is always 42.
175   // However, if an expression is `x = .`, there's no way to know its
176   // value at the moment.
177   //
178   // We want to set symbol values early if we can. This allows us to
179   // use symbols as variables in linker scripts. Doing so allows us to
180   // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
181   uint64_t symValue = value.sec ? 0 : value.getValue();
182 
183   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, value.type,
184                  symValue, 0, sec);
185 
186   Symbol *sym = symtab->insert(cmd->name);
187   sym->mergeProperties(newSym);
188   sym->replace(newSym);
189   cmd->sym = cast<Defined>(sym);
190 }
191 
192 // This function is called from LinkerScript::declareSymbols.
193 // It creates a placeholder symbol if needed.
194 static void declareSymbol(SymbolAssignment *cmd) {
195   if (!shouldDefineSym(cmd))
196     return;
197 
198   uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
199   Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0,
200                  nullptr);
201 
202   // We can't calculate final value right now.
203   Symbol *sym = symtab->insert(cmd->name);
204   sym->mergeProperties(newSym);
205   sym->replace(newSym);
206 
207   cmd->sym = cast<Defined>(sym);
208   cmd->provide = false;
209   sym->scriptDefined = true;
210 }
211 
212 using SymbolAssignmentMap =
213     DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
214 
215 // Collect section/value pairs of linker-script-defined symbols. This is used to
216 // check whether symbol values converge.
217 static SymbolAssignmentMap
218 getSymbolAssignmentValues(const std::vector<BaseCommand *> &sectionCommands) {
219   SymbolAssignmentMap ret;
220   for (BaseCommand *base : sectionCommands) {
221     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
222       if (cmd->sym) // sym is nullptr for dot.
223         ret.try_emplace(cmd->sym,
224                         std::make_pair(cmd->sym->section, cmd->sym->value));
225       continue;
226     }
227     for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
228       if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
229         if (cmd->sym)
230           ret.try_emplace(cmd->sym,
231                           std::make_pair(cmd->sym->section, cmd->sym->value));
232   }
233   return ret;
234 }
235 
236 // Returns the lexicographical smallest (for determinism) Defined whose
237 // section/value has changed.
238 static const Defined *
239 getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
240   const Defined *changed = nullptr;
241   for (auto &it : oldValues) {
242     const Defined *sym = it.first;
243     if (std::make_pair(sym->section, sym->value) != it.second &&
244         (!changed || sym->getName() < changed->getName()))
245       changed = sym;
246   }
247   return changed;
248 }
249 
250 // Process INSERT [AFTER|BEFORE] commands. For each command, we move the
251 // specified output section to the designated place.
252 void LinkerScript::processInsertCommands() {
253   for (const InsertCommand &cmd : insertCommands) {
254     // If cmd.os is empty, it may have been discarded by
255     // adjustSectionsBeforeSorting(). We do not handle such output sections.
256     auto from = llvm::find(sectionCommands, cmd.os);
257     if (from == sectionCommands.end())
258       continue;
259     sectionCommands.erase(from);
260 
261     auto insertPos = llvm::find_if(sectionCommands, [&cmd](BaseCommand *base) {
262       auto *to = dyn_cast<OutputSection>(base);
263       return to != nullptr && to->name == cmd.where;
264     });
265     if (insertPos == sectionCommands.end()) {
266       error("unable to insert " + cmd.os->name +
267             (cmd.isAfter ? " after " : " before ") + cmd.where);
268     } else {
269       if (cmd.isAfter)
270         ++insertPos;
271       sectionCommands.insert(insertPos, cmd.os);
272     }
273   }
274 }
275 
276 // Symbols defined in script should not be inlined by LTO. At the same time
277 // we don't know their final values until late stages of link. Here we scan
278 // over symbol assignment commands and create placeholder symbols if needed.
279 void LinkerScript::declareSymbols() {
280   assert(!ctx);
281   for (BaseCommand *base : sectionCommands) {
282     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
283       declareSymbol(cmd);
284       continue;
285     }
286 
287     // If the output section directive has constraints,
288     // we can't say for sure if it is going to be included or not.
289     // Skip such sections for now. Improve the checks if we ever
290     // need symbols from that sections to be declared early.
291     auto *sec = cast<OutputSection>(base);
292     if (sec->constraint != ConstraintKind::NoConstraint)
293       continue;
294     for (BaseCommand *base2 : sec->sectionCommands)
295       if (auto *cmd = dyn_cast<SymbolAssignment>(base2))
296         declareSymbol(cmd);
297   }
298 }
299 
300 // This function is called from assignAddresses, while we are
301 // fixing the output section addresses. This function is supposed
302 // to set the final value for a given symbol assignment.
303 void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
304   if (cmd->name == ".") {
305     setDot(cmd->expression, cmd->location, inSec);
306     return;
307   }
308 
309   if (!cmd->sym)
310     return;
311 
312   ExprValue v = cmd->expression();
313   if (v.isAbsolute()) {
314     cmd->sym->section = nullptr;
315     cmd->sym->value = v.getValue();
316   } else {
317     cmd->sym->section = v.sec;
318     cmd->sym->value = v.getSectionOffset();
319   }
320   cmd->sym->type = v.type;
321 }
322 
323 static std::string getFilename(InputFile *file) {
324   if (!file)
325     return "";
326   if (file->archiveName.empty())
327     return std::string(file->getName());
328   return (file->archiveName + ':' + file->getName()).str();
329 }
330 
331 bool LinkerScript::shouldKeep(InputSectionBase *s) {
332   if (keptSections.empty())
333     return false;
334   std::string filename = getFilename(s->file);
335   for (InputSectionDescription *id : keptSections)
336     if (id->filePat.match(filename))
337       for (SectionPattern &p : id->sectionPatterns)
338         if (p.sectionPat.match(s->name) &&
339             (s->flags & id->withFlags) == id->withFlags &&
340             (s->flags & id->withoutFlags) == 0)
341           return true;
342   return false;
343 }
344 
345 // A helper function for the SORT() command.
346 static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
347                              ConstraintKind kind) {
348   if (kind == ConstraintKind::NoConstraint)
349     return true;
350 
351   bool isRW = llvm::any_of(
352       sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
353 
354   return (isRW && kind == ConstraintKind::ReadWrite) ||
355          (!isRW && kind == ConstraintKind::ReadOnly);
356 }
357 
358 static void sortSections(MutableArrayRef<InputSectionBase *> vec,
359                          SortSectionPolicy k) {
360   auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
361     // ">" is not a mistake. Sections with larger alignments are placed
362     // before sections with smaller alignments in order to reduce the
363     // amount of padding necessary. This is compatible with GNU.
364     return a->alignment > b->alignment;
365   };
366   auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
367     return a->name < b->name;
368   };
369   auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
370     return getPriority(a->name) < getPriority(b->name);
371   };
372 
373   switch (k) {
374   case SortSectionPolicy::Default:
375   case SortSectionPolicy::None:
376     return;
377   case SortSectionPolicy::Alignment:
378     return llvm::stable_sort(vec, alignmentComparator);
379   case SortSectionPolicy::Name:
380     return llvm::stable_sort(vec, nameComparator);
381   case SortSectionPolicy::Priority:
382     return llvm::stable_sort(vec, priorityComparator);
383   }
384 }
385 
386 // Sort sections as instructed by SORT-family commands and --sort-section
387 // option. Because SORT-family commands can be nested at most two depth
388 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
389 // line option is respected even if a SORT command is given, the exact
390 // behavior we have here is a bit complicated. Here are the rules.
391 //
392 // 1. If two SORT commands are given, --sort-section is ignored.
393 // 2. If one SORT command is given, and if it is not SORT_NONE,
394 //    --sort-section is handled as an inner SORT command.
395 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
396 // 4. If no SORT command is given, sort according to --sort-section.
397 static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
398                               const SectionPattern &pat) {
399   if (pat.sortOuter == SortSectionPolicy::None)
400     return;
401 
402   if (pat.sortInner == SortSectionPolicy::Default)
403     sortSections(vec, config->sortSection);
404   else
405     sortSections(vec, pat.sortInner);
406   sortSections(vec, pat.sortOuter);
407 }
408 
409 // Compute and remember which sections the InputSectionDescription matches.
410 std::vector<InputSectionBase *>
411 LinkerScript::computeInputSections(const InputSectionDescription *cmd,
412                                    ArrayRef<InputSectionBase *> sections) {
413   std::vector<InputSectionBase *> ret;
414 
415   // Collects all sections that satisfy constraints of Cmd.
416   for (const SectionPattern &pat : cmd->sectionPatterns) {
417     size_t sizeBefore = ret.size();
418 
419     for (InputSectionBase *sec : sections) {
420       if (!sec->isLive() || sec->parent)
421         continue;
422 
423       // For -emit-relocs we have to ignore entries like
424       //   .rela.dyn : { *(.rela.data) }
425       // which are common because they are in the default bfd script.
426       // We do not ignore SHT_REL[A] linker-synthesized sections here because
427       // want to support scripts that do custom layout for them.
428       if (isa<InputSection>(sec) &&
429           cast<InputSection>(sec)->getRelocatedSection())
430         continue;
431 
432       // Check the name early to improve performance in the common case.
433       if (!pat.sectionPat.match(sec->name))
434         continue;
435 
436       std::string filename = getFilename(sec->file);
437       if (!cmd->filePat.match(filename) ||
438           pat.excludedFilePat.match(filename) ||
439           (sec->flags & cmd->withFlags) != cmd->withFlags ||
440           (sec->flags & cmd->withoutFlags) != 0)
441         continue;
442 
443       ret.push_back(sec);
444     }
445 
446     sortInputSections(
447         MutableArrayRef<InputSectionBase *>(ret).slice(sizeBefore), pat);
448   }
449   return ret;
450 }
451 
452 void LinkerScript::discard(InputSectionBase *s) {
453   if (s == in.shStrTab || s == mainPart->relrDyn)
454     error("discarding " + s->name + " section is not allowed");
455 
456   // You can discard .hash and .gnu.hash sections by linker scripts. Since
457   // they are synthesized sections, we need to handle them differently than
458   // other regular sections.
459   if (s == mainPart->gnuHashTab)
460     mainPart->gnuHashTab = nullptr;
461   if (s == mainPart->hashTab)
462     mainPart->hashTab = nullptr;
463 
464   s->markDead();
465   s->parent = nullptr;
466   for (InputSection *ds : s->dependentSections)
467     discard(ds);
468 }
469 
470 void LinkerScript::discardSynthetic(OutputSection &outCmd) {
471   for (Partition &part : partitions) {
472     if (!part.armExidx || !part.armExidx->isLive())
473       continue;
474     std::vector<InputSectionBase *> secs(part.armExidx->exidxSections.begin(),
475                                          part.armExidx->exidxSections.end());
476     for (BaseCommand *base : outCmd.sectionCommands)
477       if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
478         std::vector<InputSectionBase *> matches =
479             computeInputSections(cmd, secs);
480         for (InputSectionBase *s : matches)
481           discard(s);
482       }
483   }
484 }
485 
486 std::vector<InputSectionBase *>
487 LinkerScript::createInputSectionList(OutputSection &outCmd) {
488   std::vector<InputSectionBase *> ret;
489 
490   for (BaseCommand *base : outCmd.sectionCommands) {
491     if (auto *cmd = dyn_cast<InputSectionDescription>(base)) {
492       cmd->sectionBases = computeInputSections(cmd, inputSections);
493       for (InputSectionBase *s : cmd->sectionBases)
494         s->parent = &outCmd;
495       ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end());
496     }
497   }
498   return ret;
499 }
500 
501 // Create output sections described by SECTIONS commands.
502 void LinkerScript::processSectionCommands() {
503   size_t i = 0;
504   for (BaseCommand *base : sectionCommands) {
505     if (auto *sec = dyn_cast<OutputSection>(base)) {
506       std::vector<InputSectionBase *> v = createInputSectionList(*sec);
507 
508       // The output section name `/DISCARD/' is special.
509       // Any input section assigned to it is discarded.
510       if (sec->name == "/DISCARD/") {
511         for (InputSectionBase *s : v)
512           discard(s);
513         discardSynthetic(*sec);
514         sec->sectionCommands.clear();
515         continue;
516       }
517 
518       // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
519       // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
520       // sections satisfy a given constraint. If not, a directive is handled
521       // as if it wasn't present from the beginning.
522       //
523       // Because we'll iterate over SectionCommands many more times, the easy
524       // way to "make it as if it wasn't present" is to make it empty.
525       if (!matchConstraints(v, sec->constraint)) {
526         for (InputSectionBase *s : v)
527           s->parent = nullptr;
528         sec->sectionCommands.clear();
529         continue;
530       }
531 
532       // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
533       // is given, input sections are aligned to that value, whether the
534       // given value is larger or smaller than the original section alignment.
535       if (sec->subalignExpr) {
536         uint32_t subalign = sec->subalignExpr().getValue();
537         for (InputSectionBase *s : v)
538           s->alignment = subalign;
539       }
540 
541       // Set the partition field the same way OutputSection::recordSection()
542       // does. Partitions cannot be used with the SECTIONS command, so this is
543       // always 1.
544       sec->partition = 1;
545 
546       sec->sectionIndex = i++;
547     }
548   }
549 }
550 
551 void LinkerScript::processSymbolAssignments() {
552   // Dot outside an output section still represents a relative address, whose
553   // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
554   // that fills the void outside a section. It has an index of one, which is
555   // indistinguishable from any other regular section index.
556   aether = make<OutputSection>("", 0, SHF_ALLOC);
557   aether->sectionIndex = 1;
558 
559   // ctx captures the local AddressState and makes it accessible deliberately.
560   // This is needed as there are some cases where we cannot just thread the
561   // current state through to a lambda function created by the script parser.
562   AddressState state;
563   ctx = &state;
564   ctx->outSec = aether;
565 
566   for (BaseCommand *base : sectionCommands) {
567     if (auto *cmd = dyn_cast<SymbolAssignment>(base))
568       addSymbol(cmd);
569     else
570       for (BaseCommand *sub_base : cast<OutputSection>(base)->sectionCommands)
571         if (auto *cmd = dyn_cast<SymbolAssignment>(sub_base))
572           addSymbol(cmd);
573   }
574 
575   ctx = nullptr;
576 }
577 
578 static OutputSection *findByName(ArrayRef<BaseCommand *> vec,
579                                  StringRef name) {
580   for (BaseCommand *base : vec)
581     if (auto *sec = dyn_cast<OutputSection>(base))
582       if (sec->name == name)
583         return sec;
584   return nullptr;
585 }
586 
587 static OutputSection *createSection(InputSectionBase *isec,
588                                     StringRef outsecName) {
589   OutputSection *sec = script->createOutputSection(outsecName, "<internal>");
590   sec->recordSection(isec);
591   return sec;
592 }
593 
594 static OutputSection *
595 addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
596             InputSectionBase *isec, StringRef outsecName) {
597   // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
598   // option is given. A section with SHT_GROUP defines a "section group", and
599   // its members have SHF_GROUP attribute. Usually these flags have already been
600   // stripped by InputFiles.cpp as section groups are processed and uniquified.
601   // However, for the -r option, we want to pass through all section groups
602   // as-is because adding/removing members or merging them with other groups
603   // change their semantics.
604   if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
605     return createSection(isec, outsecName);
606 
607   // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
608   // relocation sections .rela.foo and .rela.bar for example. Most tools do
609   // not allow multiple REL[A] sections for output section. Hence we
610   // should combine these relocation sections into single output.
611   // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
612   // other REL[A] sections created by linker itself.
613   if (!isa<SyntheticSection>(isec) &&
614       (isec->type == SHT_REL || isec->type == SHT_RELA)) {
615     auto *sec = cast<InputSection>(isec);
616     OutputSection *out = sec->getRelocatedSection()->getOutputSection();
617 
618     if (out->relocationSection) {
619       out->relocationSection->recordSection(sec);
620       return nullptr;
621     }
622 
623     out->relocationSection = createSection(isec, outsecName);
624     return out->relocationSection;
625   }
626 
627   //  The ELF spec just says
628   // ----------------------------------------------------------------
629   // In the first phase, input sections that match in name, type and
630   // attribute flags should be concatenated into single sections.
631   // ----------------------------------------------------------------
632   //
633   // However, it is clear that at least some flags have to be ignored for
634   // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
635   // ignored. We should not have two output .text sections just because one was
636   // in a group and another was not for example.
637   //
638   // It also seems that wording was a late addition and didn't get the
639   // necessary scrutiny.
640   //
641   // Merging sections with different flags is expected by some users. One
642   // reason is that if one file has
643   //
644   // int *const bar __attribute__((section(".foo"))) = (int *)0;
645   //
646   // gcc with -fPIC will produce a read only .foo section. But if another
647   // file has
648   //
649   // int zed;
650   // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
651   //
652   // gcc with -fPIC will produce a read write section.
653   //
654   // Last but not least, when using linker script the merge rules are forced by
655   // the script. Unfortunately, linker scripts are name based. This means that
656   // expressions like *(.foo*) can refer to multiple input sections with
657   // different flags. We cannot put them in different output sections or we
658   // would produce wrong results for
659   //
660   // start = .; *(.foo.*) end = .; *(.bar)
661   //
662   // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
663   // another. The problem is that there is no way to layout those output
664   // sections such that the .foo sections are the only thing between the start
665   // and end symbols.
666   //
667   // Given the above issues, we instead merge sections by name and error on
668   // incompatible types and flags.
669   TinyPtrVector<OutputSection *> &v = map[outsecName];
670   for (OutputSection *sec : v) {
671     if (sec->partition != isec->partition)
672       continue;
673 
674     if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
675       // Merging two SHF_LINK_ORDER sections with different sh_link fields will
676       // change their semantics, so we only merge them in -r links if they will
677       // end up being linked to the same output section. The casts are fine
678       // because everything in the map was created by the orphan placement code.
679       auto *firstIsec = cast<InputSectionBase>(
680           cast<InputSectionDescription>(sec->sectionCommands[0])
681               ->sectionBases[0]);
682       if (firstIsec->getLinkOrderDep()->getOutputSection() !=
683           isec->getLinkOrderDep()->getOutputSection())
684         continue;
685     }
686 
687     sec->recordSection(isec);
688     return nullptr;
689   }
690 
691   OutputSection *sec = createSection(isec, outsecName);
692   v.push_back(sec);
693   return sec;
694 }
695 
696 // Add sections that didn't match any sections command.
697 void LinkerScript::addOrphanSections() {
698   StringMap<TinyPtrVector<OutputSection *>> map;
699   std::vector<OutputSection *> v;
700 
701   std::function<void(InputSectionBase *)> add;
702   add = [&](InputSectionBase *s) {
703     if (s->isLive() && !s->parent) {
704       orphanSections.push_back(s);
705 
706       StringRef name = getOutputSectionName(s);
707       if (config->unique) {
708         v.push_back(createSection(s, name));
709       } else if (OutputSection *sec = findByName(sectionCommands, name)) {
710         sec->recordSection(s);
711       } else {
712         if (OutputSection *os = addInputSec(map, s, name))
713           v.push_back(os);
714         assert(isa<MergeInputSection>(s) ||
715                s->getOutputSection()->sectionIndex == UINT32_MAX);
716       }
717     }
718 
719     if (config->relocatable)
720       for (InputSectionBase *depSec : s->dependentSections)
721         if (depSec->flags & SHF_LINK_ORDER)
722           add(depSec);
723   };
724 
725   // For futher --emit-reloc handling code we need target output section
726   // to be created before we create relocation output section, so we want
727   // to create target sections first. We do not want priority handling
728   // for synthetic sections because them are special.
729   for (InputSectionBase *isec : inputSections) {
730     // In -r links, SHF_LINK_ORDER sections are added while adding their parent
731     // sections because we need to know the parent's output section before we
732     // can select an output section for the SHF_LINK_ORDER section.
733     if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
734       continue;
735 
736     if (auto *sec = dyn_cast<InputSection>(isec))
737       if (InputSectionBase *rel = sec->getRelocatedSection())
738         if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
739           add(relIS);
740     add(isec);
741   }
742 
743   // If no SECTIONS command was given, we should insert sections commands
744   // before others, so that we can handle scripts which refers them,
745   // for example: "foo = ABSOLUTE(ADDR(.text)));".
746   // When SECTIONS command is present we just add all orphans to the end.
747   if (hasSectionsCommand)
748     sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
749   else
750     sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
751 }
752 
753 void LinkerScript::diagnoseOrphanHandling() const {
754   for (const InputSectionBase *sec : orphanSections) {
755     // Input SHT_REL[A] retained by --emit-relocs are ignored by
756     // computeInputSections(). Don't warn/error.
757     if (isa<InputSection>(sec) &&
758         cast<InputSection>(sec)->getRelocatedSection())
759       continue;
760 
761     StringRef name = getOutputSectionName(sec);
762     if (config->orphanHandling == OrphanHandlingPolicy::Error)
763       error(toString(sec) + " is being placed in '" + name + "'");
764     else if (config->orphanHandling == OrphanHandlingPolicy::Warn)
765       warn(toString(sec) + " is being placed in '" + name + "'");
766   }
767 }
768 
769 uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) {
770   bool isTbss =
771       (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS;
772   uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot;
773   start = alignTo(start, alignment);
774   uint64_t end = start + size;
775 
776   if (isTbss)
777     ctx->threadBssOffset = end - dot;
778   else
779     dot = end;
780   return end;
781 }
782 
783 void LinkerScript::output(InputSection *s) {
784   assert(ctx->outSec == s->getParent());
785   uint64_t before = advance(0, 1);
786   uint64_t pos = advance(s->getSize(), s->alignment);
787   s->outSecOff = pos - s->getSize() - ctx->outSec->addr;
788 
789   // Update output section size after adding each section. This is so that
790   // SIZEOF works correctly in the case below:
791   // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
792   expandOutputSection(pos - before);
793 }
794 
795 void LinkerScript::switchTo(OutputSection *sec) {
796   ctx->outSec = sec;
797 
798   uint64_t pos = advance(0, 1);
799   if (sec->addrExpr && script->hasSectionsCommand) {
800     // The alignment is ignored.
801     ctx->outSec->addr = pos;
802   } else {
803     // ctx->outSec->alignment is the max of ALIGN and the maximum of input
804     // section alignments.
805     ctx->outSec->addr = advance(0, ctx->outSec->alignment);
806     expandMemoryRegions(ctx->outSec->addr - pos);
807   }
808 }
809 
810 // This function searches for a memory region to place the given output
811 // section in. If found, a pointer to the appropriate memory region is
812 // returned. Otherwise, a nullptr is returned.
813 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) {
814   // If a memory region name was specified in the output section command,
815   // then try to find that region first.
816   if (!sec->memoryRegionName.empty()) {
817     if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
818       return m;
819     error("memory region '" + sec->memoryRegionName + "' not declared");
820     return nullptr;
821   }
822 
823   // If at least one memory region is defined, all sections must
824   // belong to some memory region. Otherwise, we don't need to do
825   // anything for memory regions.
826   if (memoryRegions.empty())
827     return nullptr;
828 
829   // See if a region can be found by matching section flags.
830   for (auto &pair : memoryRegions) {
831     MemoryRegion *m = pair.second;
832     if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0)
833       return m;
834   }
835 
836   // Otherwise, no suitable region was found.
837   if (sec->flags & SHF_ALLOC)
838     error("no memory region specified for section '" + sec->name + "'");
839   return nullptr;
840 }
841 
842 static OutputSection *findFirstSection(PhdrEntry *load) {
843   for (OutputSection *sec : outputSections)
844     if (sec->ptLoad == load)
845       return sec;
846   return nullptr;
847 }
848 
849 // This function assigns offsets to input sections and an output section
850 // for a single sections command (e.g. ".text { *(.text); }").
851 void LinkerScript::assignOffsets(OutputSection *sec) {
852   if (!(sec->flags & SHF_ALLOC))
853     dot = 0;
854 
855   const bool sameMemRegion = ctx->memRegion == sec->memRegion;
856   const bool prevLMARegionIsDefault = ctx->lmaRegion == nullptr;
857   ctx->memRegion = sec->memRegion;
858   ctx->lmaRegion = sec->lmaRegion;
859   if (ctx->memRegion)
860     dot = ctx->memRegion->curPos;
861 
862   if ((sec->flags & SHF_ALLOC) && sec->addrExpr)
863     setDot(sec->addrExpr, sec->location, false);
864 
865   // If the address of the section has been moved forward by an explicit
866   // expression so that it now starts past the current curPos of the enclosing
867   // region, we need to expand the current region to account for the space
868   // between the previous section, if any, and the start of this section.
869   if (ctx->memRegion && ctx->memRegion->curPos < dot)
870     expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos,
871                        ctx->memRegion->name, sec->name);
872 
873   switchTo(sec);
874 
875   // ctx->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT() or
876   // AT>, recompute ctx->lmaOffset; otherwise, if both previous/current LMA
877   // region is the default, and the two sections are in the same memory region,
878   // reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
879   // heuristics described in
880   // https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
881   if (sec->lmaExpr)
882     ctx->lmaOffset = sec->lmaExpr().getValue() - dot;
883   else if (MemoryRegion *mr = sec->lmaRegion)
884     ctx->lmaOffset = alignTo(mr->curPos, sec->alignment) - dot;
885   else if (!sameMemRegion || !prevLMARegionIsDefault)
886     ctx->lmaOffset = 0;
887 
888   // Propagate ctx->lmaOffset to the first "non-header" section.
889   if (PhdrEntry *l = ctx->outSec->ptLoad)
890     if (sec == findFirstSection(l))
891       l->lmaOffset = ctx->lmaOffset;
892 
893   // We can call this method multiple times during the creation of
894   // thunks and want to start over calculation each time.
895   sec->size = 0;
896 
897   // We visited SectionsCommands from processSectionCommands to
898   // layout sections. Now, we visit SectionsCommands again to fix
899   // section offsets.
900   for (BaseCommand *base : sec->sectionCommands) {
901     // This handles the assignments to symbol or to the dot.
902     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
903       cmd->addr = dot;
904       assignSymbol(cmd, true);
905       cmd->size = dot - cmd->addr;
906       continue;
907     }
908 
909     // Handle BYTE(), SHORT(), LONG(), or QUAD().
910     if (auto *cmd = dyn_cast<ByteCommand>(base)) {
911       cmd->offset = dot - ctx->outSec->addr;
912       dot += cmd->size;
913       expandOutputSection(cmd->size);
914       continue;
915     }
916 
917     // Handle a single input section description command.
918     // It calculates and assigns the offsets for each section and also
919     // updates the output section size.
920     for (InputSection *sec : cast<InputSectionDescription>(base)->sections)
921       output(sec);
922   }
923 }
924 
925 static bool isDiscardable(OutputSection &sec) {
926   if (sec.name == "/DISCARD/")
927     return true;
928 
929   // We do not remove empty sections that are explicitly
930   // assigned to any segment.
931   if (!sec.phdrs.empty())
932     return false;
933 
934   // We do not want to remove OutputSections with expressions that reference
935   // symbols even if the OutputSection is empty. We want to ensure that the
936   // expressions can be evaluated and report an error if they cannot.
937   if (sec.expressionsUseSymbols)
938     return false;
939 
940   // OutputSections may be referenced by name in ADDR and LOADADDR expressions,
941   // as an empty Section can has a valid VMA and LMA we keep the OutputSection
942   // to maintain the integrity of the other Expression.
943   if (sec.usedInExpression)
944     return false;
945 
946   for (BaseCommand *base : sec.sectionCommands) {
947     if (auto cmd = dyn_cast<SymbolAssignment>(base))
948       // Don't create empty output sections just for unreferenced PROVIDE
949       // symbols.
950       if (cmd->name != "." && !cmd->sym)
951         continue;
952 
953     if (!isa<InputSectionDescription>(*base))
954       return false;
955   }
956   return true;
957 }
958 
959 void LinkerScript::adjustSectionsBeforeSorting() {
960   // If the output section contains only symbol assignments, create a
961   // corresponding output section. The issue is what to do with linker script
962   // like ".foo : { symbol = 42; }". One option would be to convert it to
963   // "symbol = 42;". That is, move the symbol out of the empty section
964   // description. That seems to be what bfd does for this simple case. The
965   // problem is that this is not completely general. bfd will give up and
966   // create a dummy section too if there is a ". = . + 1" inside the section
967   // for example.
968   // Given that we want to create the section, we have to worry what impact
969   // it will have on the link. For example, if we just create a section with
970   // 0 for flags, it would change which PT_LOADs are created.
971   // We could remember that particular section is dummy and ignore it in
972   // other parts of the linker, but unfortunately there are quite a few places
973   // that would need to change:
974   //   * The program header creation.
975   //   * The orphan section placement.
976   //   * The address assignment.
977   // The other option is to pick flags that minimize the impact the section
978   // will have on the rest of the linker. That is why we copy the flags from
979   // the previous sections. Only a few flags are needed to keep the impact low.
980   uint64_t flags = SHF_ALLOC;
981 
982   for (BaseCommand *&cmd : sectionCommands) {
983     auto *sec = dyn_cast<OutputSection>(cmd);
984     if (!sec)
985       continue;
986 
987     // Handle align (e.g. ".foo : ALIGN(16) { ... }").
988     if (sec->alignExpr)
989       sec->alignment =
990           std::max<uint32_t>(sec->alignment, sec->alignExpr().getValue());
991 
992     // The input section might have been removed (if it was an empty synthetic
993     // section), but we at least know the flags.
994     if (sec->hasInputSections)
995       flags = sec->flags;
996 
997     // We do not want to keep any special flags for output section
998     // in case it is empty.
999     bool isEmpty = (getFirstInputSection(sec) == nullptr);
1000     if (isEmpty)
1001       sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) |
1002                             SHF_WRITE | SHF_EXECINSTR);
1003 
1004     if (isEmpty && isDiscardable(*sec)) {
1005       sec->markDead();
1006       cmd = nullptr;
1007     }
1008   }
1009 
1010   // It is common practice to use very generic linker scripts. So for any
1011   // given run some of the output sections in the script will be empty.
1012   // We could create corresponding empty output sections, but that would
1013   // clutter the output.
1014   // We instead remove trivially empty sections. The bfd linker seems even
1015   // more aggressive at removing them.
1016   llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; });
1017 }
1018 
1019 void LinkerScript::adjustSectionsAfterSorting() {
1020   // Try and find an appropriate memory region to assign offsets in.
1021   for (BaseCommand *base : sectionCommands) {
1022     if (auto *sec = dyn_cast<OutputSection>(base)) {
1023       if (!sec->lmaRegionName.empty()) {
1024         if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1025           sec->lmaRegion = m;
1026         else
1027           error("memory region '" + sec->lmaRegionName + "' not declared");
1028       }
1029       sec->memRegion = findMemoryRegion(sec);
1030     }
1031   }
1032 
1033   // If output section command doesn't specify any segments,
1034   // and we haven't previously assigned any section to segment,
1035   // then we simply assign section to the very first load segment.
1036   // Below is an example of such linker script:
1037   // PHDRS { seg PT_LOAD; }
1038   // SECTIONS { .aaa : { *(.aaa) } }
1039   std::vector<StringRef> defPhdrs;
1040   auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1041     return cmd.type == PT_LOAD;
1042   });
1043   if (firstPtLoad != phdrsCommands.end())
1044     defPhdrs.push_back(firstPtLoad->name);
1045 
1046   // Walk the commands and propagate the program headers to commands that don't
1047   // explicitly specify them.
1048   for (BaseCommand *base : sectionCommands) {
1049     auto *sec = dyn_cast<OutputSection>(base);
1050     if (!sec)
1051       continue;
1052 
1053     if (sec->phdrs.empty()) {
1054       // To match the bfd linker script behaviour, only propagate program
1055       // headers to sections that are allocated.
1056       if (sec->flags & SHF_ALLOC)
1057         sec->phdrs = defPhdrs;
1058     } else {
1059       defPhdrs = sec->phdrs;
1060     }
1061   }
1062 }
1063 
1064 static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1065   // If there is no SECTIONS or if the linkerscript is explicit about program
1066   // headers, do our best to allocate them.
1067   if (!script->hasSectionsCommand || allocateHeaders)
1068     return 0;
1069   // Otherwise only allocate program headers if that would not add a page.
1070   return alignDown(min, config->maxPageSize);
1071 }
1072 
1073 // When the SECTIONS command is used, try to find an address for the file and
1074 // program headers output sections, which can be added to the first PT_LOAD
1075 // segment when program headers are created.
1076 //
1077 // We check if the headers fit below the first allocated section. If there isn't
1078 // enough space for these sections, we'll remove them from the PT_LOAD segment,
1079 // and we'll also remove the PT_PHDR segment.
1080 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &phdrs) {
1081   uint64_t min = std::numeric_limits<uint64_t>::max();
1082   for (OutputSection *sec : outputSections)
1083     if (sec->flags & SHF_ALLOC)
1084       min = std::min<uint64_t>(min, sec->addr);
1085 
1086   auto it = llvm::find_if(
1087       phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1088   if (it == phdrs.end())
1089     return;
1090   PhdrEntry *firstPTLoad = *it;
1091 
1092   bool hasExplicitHeaders =
1093       llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1094         return cmd.hasPhdrs || cmd.hasFilehdr;
1095       });
1096   bool paged = !config->omagic && !config->nmagic;
1097   uint64_t headerSize = getHeaderSize();
1098   if ((paged || hasExplicitHeaders) &&
1099       headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1100     min = alignDown(min - headerSize, config->maxPageSize);
1101     Out::elfHeader->addr = min;
1102     Out::programHeaders->addr = min + Out::elfHeader->size;
1103     return;
1104   }
1105 
1106   // Error if we were explicitly asked to allocate headers.
1107   if (hasExplicitHeaders)
1108     error("could not allocate headers");
1109 
1110   Out::elfHeader->ptLoad = nullptr;
1111   Out::programHeaders->ptLoad = nullptr;
1112   firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1113 
1114   llvm::erase_if(phdrs,
1115                  [](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1116 }
1117 
1118 LinkerScript::AddressState::AddressState() {
1119   for (auto &mri : script->memoryRegions) {
1120     MemoryRegion *mr = mri.second;
1121     mr->curPos = (mr->origin)().getValue();
1122   }
1123 }
1124 
1125 // Here we assign addresses as instructed by linker script SECTIONS
1126 // sub-commands. Doing that allows us to use final VA values, so here
1127 // we also handle rest commands like symbol assignments and ASSERTs.
1128 // Returns a symbol that has changed its section or value, or nullptr if no
1129 // symbol has changed.
1130 const Defined *LinkerScript::assignAddresses() {
1131   if (script->hasSectionsCommand) {
1132     // With a linker script, assignment of addresses to headers is covered by
1133     // allocateHeaders().
1134     dot = config->imageBase.getValueOr(0);
1135   } else {
1136     // Assign addresses to headers right now.
1137     dot = target->getImageBase();
1138     Out::elfHeader->addr = dot;
1139     Out::programHeaders->addr = dot + Out::elfHeader->size;
1140     dot += getHeaderSize();
1141   }
1142 
1143   auto deleter = std::make_unique<AddressState>();
1144   ctx = deleter.get();
1145   errorOnMissingSection = true;
1146   switchTo(aether);
1147 
1148   SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1149   for (BaseCommand *base : sectionCommands) {
1150     if (auto *cmd = dyn_cast<SymbolAssignment>(base)) {
1151       cmd->addr = dot;
1152       assignSymbol(cmd, false);
1153       cmd->size = dot - cmd->addr;
1154       continue;
1155     }
1156     assignOffsets(cast<OutputSection>(base));
1157   }
1158 
1159   ctx = nullptr;
1160   return getChangedSymbolAssignment(oldValues);
1161 }
1162 
1163 // Creates program headers as instructed by PHDRS linker script command.
1164 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1165   std::vector<PhdrEntry *> ret;
1166 
1167   // Process PHDRS and FILEHDR keywords because they are not
1168   // real output sections and cannot be added in the following loop.
1169   for (const PhdrsCommand &cmd : phdrsCommands) {
1170     PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags ? *cmd.flags : PF_R);
1171 
1172     if (cmd.hasFilehdr)
1173       phdr->add(Out::elfHeader);
1174     if (cmd.hasPhdrs)
1175       phdr->add(Out::programHeaders);
1176 
1177     if (cmd.lmaExpr) {
1178       phdr->p_paddr = cmd.lmaExpr().getValue();
1179       phdr->hasLMA = true;
1180     }
1181     ret.push_back(phdr);
1182   }
1183 
1184   // Add output sections to program headers.
1185   for (OutputSection *sec : outputSections) {
1186     // Assign headers specified by linker script
1187     for (size_t id : getPhdrIndices(sec)) {
1188       ret[id]->add(sec);
1189       if (!phdrsCommands[id].flags.hasValue())
1190         ret[id]->p_flags |= sec->getPhdrFlags();
1191     }
1192   }
1193   return ret;
1194 }
1195 
1196 // Returns true if we should emit an .interp section.
1197 //
1198 // We usually do. But if PHDRS commands are given, and
1199 // no PT_INTERP is there, there's no place to emit an
1200 // .interp, so we don't do that in that case.
1201 bool LinkerScript::needsInterpSection() {
1202   if (phdrsCommands.empty())
1203     return true;
1204   for (PhdrsCommand &cmd : phdrsCommands)
1205     if (cmd.type == PT_INTERP)
1206       return true;
1207   return false;
1208 }
1209 
1210 ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1211   if (name == ".") {
1212     if (ctx)
1213       return {ctx->outSec, false, dot - ctx->outSec->addr, loc};
1214     error(loc + ": unable to get location counter value");
1215     return 0;
1216   }
1217 
1218   if (Symbol *sym = symtab->find(name)) {
1219     if (auto *ds = dyn_cast<Defined>(sym)) {
1220       ExprValue v{ds->section, false, ds->value, loc};
1221       // Retain the original st_type, so that the alias will get the same
1222       // behavior in relocation processing. Any operation will reset st_type to
1223       // STT_NOTYPE.
1224       v.type = ds->type;
1225       return v;
1226     }
1227     if (isa<SharedSymbol>(sym))
1228       if (!errorOnMissingSection)
1229         return {nullptr, false, 0, loc};
1230   }
1231 
1232   error(loc + ": symbol not found: " + name);
1233   return 0;
1234 }
1235 
1236 // Returns the index of the segment named Name.
1237 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1238                                      StringRef name) {
1239   for (size_t i = 0; i < vec.size(); ++i)
1240     if (vec[i].name == name)
1241       return i;
1242   return None;
1243 }
1244 
1245 // Returns indices of ELF headers containing specific section. Each index is a
1246 // zero based number of ELF header listed within PHDRS {} script block.
1247 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1248   std::vector<size_t> ret;
1249 
1250   for (StringRef s : cmd->phdrs) {
1251     if (Optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1252       ret.push_back(*idx);
1253     else if (s != "NONE")
1254       error(cmd->location + ": program header '" + s +
1255             "' is not listed in PHDRS");
1256   }
1257   return ret;
1258 }
1259