1 //===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Synthetic sections represent chunks of linker-created data. If you
10 // need to create a chunk of data that to be included in some section
11 // in the result, you probably want to create that as a synthetic section.
12 //
13 // Synthetic sections are designed as input sections as opposed to
14 // output sections because we want to allow them to be manipulated
15 // using linker scripts just like other input sections from regular
16 // files.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
21 #define LLD_ELF_SYNTHETIC_SECTIONS_H
22 
23 #include "DWARF.h"
24 #include "EhFrame.h"
25 #include "InputSection.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/MapVector.h"
28 #include "llvm/MC/StringTableBuilder.h"
29 #include "llvm/Support/Endian.h"
30 #include <functional>
31 
32 namespace lld {
33 namespace elf {
34 class Defined;
35 struct PhdrEntry;
36 class SymbolTableBaseSection;
37 class VersionNeedBaseSection;
38 
39 class SyntheticSection : public InputSection {
40 public:
41   SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
42                    StringRef name)
43       : InputSection(nullptr, flags, type, alignment, {}, name,
44                      InputSectionBase::Synthetic) {
45     markLive();
46   }
47 
48   virtual ~SyntheticSection() = default;
49   virtual void writeTo(uint8_t *buf) = 0;
50   virtual size_t getSize() const = 0;
51   virtual void finalizeContents() {}
52   // If the section has the SHF_ALLOC flag and the size may be changed if
53   // thunks are added, update the section size.
54   virtual bool updateAllocSize() { return false; }
55   virtual bool isNeeded() const { return true; }
56 
57   static bool classof(const SectionBase *d) {
58     return d->kind() == InputSectionBase::Synthetic;
59   }
60 };
61 
62 struct CieRecord {
63   EhSectionPiece *cie = nullptr;
64   std::vector<EhSectionPiece *> fdes;
65 };
66 
67 // Section for .eh_frame.
68 class EhFrameSection final : public SyntheticSection {
69 public:
70   EhFrameSection();
71   void writeTo(uint8_t *buf) override;
72   void finalizeContents() override;
73   bool isNeeded() const override { return !sections.empty(); }
74   size_t getSize() const override { return size; }
75 
76   static bool classof(const SectionBase *d) {
77     return SyntheticSection::classof(d) && d->name == ".eh_frame";
78   }
79 
80   void addSection(EhInputSection *sec);
81 
82   std::vector<EhInputSection *> sections;
83   size_t numFdes = 0;
84 
85   struct FdeData {
86     uint32_t pcRel;
87     uint32_t fdeVARel;
88   };
89 
90   std::vector<FdeData> getFdeData() const;
91   ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }
92   template <class ELFT>
93   void iterateFDEWithLSDA(llvm::function_ref<void(InputSection &)> fn);
94 
95 private:
96   // This is used only when parsing EhInputSection. We keep it here to avoid
97   // allocating one for each EhInputSection.
98   llvm::DenseMap<size_t, CieRecord *> offsetToCie;
99 
100   uint64_t size = 0;
101 
102   template <class ELFT, class RelTy>
103   void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
104   template <class ELFT> void addSectionAux(EhInputSection *s);
105   template <class ELFT, class RelTy>
106   void iterateFDEWithLSDAAux(EhInputSection &sec, ArrayRef<RelTy> rels,
107                              llvm::DenseSet<size_t> &ciesWithLSDA,
108                              llvm::function_ref<void(InputSection &)> fn);
109 
110   template <class ELFT, class RelTy>
111   CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);
112 
113   template <class ELFT, class RelTy>
114   Defined *isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);
115 
116   uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;
117 
118   std::vector<CieRecord *> cieRecords;
119 
120   // CIE records are uniquified by their contents and personality functions.
121   llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
122 };
123 
124 class GotSection : public SyntheticSection {
125 public:
126   GotSection();
127   size_t getSize() const override { return size; }
128   void finalizeContents() override;
129   bool isNeeded() const override;
130   void writeTo(uint8_t *buf) override;
131 
132   void addEntry(Symbol &sym);
133   bool addDynTlsEntry(Symbol &sym);
134   bool addTlsIndex();
135   uint64_t getGlobalDynAddr(const Symbol &b) const;
136   uint64_t getGlobalDynOffset(const Symbol &b) const;
137 
138   uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
139   uint32_t getTlsIndexOff() const { return tlsIndexOff; }
140 
141   // Flag to force GOT to be in output if we have relocations
142   // that relies on its address.
143   bool hasGotOffRel = false;
144 
145 protected:
146   size_t numEntries = 0;
147   uint32_t tlsIndexOff = -1;
148   uint64_t size = 0;
149 };
150 
151 // .note.GNU-stack section.
152 class GnuStackSection : public SyntheticSection {
153 public:
154   GnuStackSection()
155       : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
156   void writeTo(uint8_t *buf) override {}
157   size_t getSize() const override { return 0; }
158 };
159 
160 class GnuPropertySection : public SyntheticSection {
161 public:
162   GnuPropertySection();
163   void writeTo(uint8_t *buf) override;
164   size_t getSize() const override;
165 };
166 
167 // .note.gnu.build-id section.
168 class BuildIdSection : public SyntheticSection {
169   // First 16 bytes are a header.
170   static const unsigned headerSize = 16;
171 
172 public:
173   const size_t hashSize;
174   BuildIdSection();
175   void writeTo(uint8_t *buf) override;
176   size_t getSize() const override { return headerSize + hashSize; }
177   void writeBuildId(llvm::ArrayRef<uint8_t> buf);
178 
179 private:
180   uint8_t *hashBuf;
181 };
182 
183 // BssSection is used to reserve space for copy relocations and common symbols.
184 // We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
185 // that are used for writable symbols, read-only symbols and common symbols,
186 // respectively.
187 class BssSection final : public SyntheticSection {
188 public:
189   BssSection(StringRef name, uint64_t size, uint32_t alignment);
190   void writeTo(uint8_t *) override {
191     llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section");
192   }
193   bool isNeeded() const override { return size != 0; }
194   size_t getSize() const override { return size; }
195 
196   static bool classof(const SectionBase *s) { return s->bss; }
197   uint64_t size;
198 };
199 
200 class MipsGotSection final : public SyntheticSection {
201 public:
202   MipsGotSection();
203   void writeTo(uint8_t *buf) override;
204   size_t getSize() const override { return size; }
205   bool updateAllocSize() override;
206   void finalizeContents() override;
207   bool isNeeded() const override;
208 
209   // Join separate GOTs built for each input file to generate
210   // primary and optional multiple secondary GOTs.
211   void build();
212 
213   void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
214   void addDynTlsEntry(InputFile &file, Symbol &sym);
215   void addTlsIndex(InputFile &file);
216 
217   uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
218                               int64_t addend) const;
219   uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
220                              int64_t addend) const;
221   uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
222   uint64_t getTlsIndexOffset(const InputFile *f) const;
223 
224   // Returns the symbol which corresponds to the first entry of the global part
225   // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
226   // table properties.
227   // Returns nullptr if the global part is empty.
228   const Symbol *getFirstGlobalEntry() const;
229 
230   // Returns the number of entries in the local part of GOT including
231   // the number of reserved entries.
232   unsigned getLocalEntriesNum() const;
233 
234   // Return _gp value for primary GOT (nullptr) or particular input file.
235   uint64_t getGp(const InputFile *f = nullptr) const;
236 
237 private:
238   // MIPS GOT consists of three parts: local, global and tls. Each part
239   // contains different types of entries. Here is a layout of GOT:
240   // - Header entries                |
241   // - Page entries                  |   Local part
242   // - Local entries (16-bit access) |
243   // - Local entries (32-bit access) |
244   // - Normal global entries         ||  Global part
245   // - Reloc-only global entries     ||
246   // - TLS entries                   ||| TLS part
247   //
248   // Header:
249   //   Two entries hold predefined value 0x0 and 0x80000000.
250   // Page entries:
251   //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
252   //   relocation against local symbols. They are initialized by higher 16-bit
253   //   of the corresponding symbol's value. So each 64kb of address space
254   //   requires a single GOT entry.
255   // Local entries (16-bit access):
256   //   These entries created by GOT relocations against global non-preemptible
257   //   symbols so dynamic linker is not necessary to resolve the symbol's
258   //   values. "16-bit access" means that corresponding relocations address
259   //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
260   //   GOT entry.
261   // Local entries (32-bit access):
262   //   These entries are the same as above but created by relocations which
263   //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
264   // Normal global entries:
265   //   These entries created by GOT relocations against preemptible global
266   //   symbols. They need to be initialized by dynamic linker and they ordered
267   //   exactly as the corresponding entries in the dynamic symbols table.
268   // Reloc-only global entries:
269   //   These entries created for symbols that are referenced by dynamic
270   //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
271   //   addressing, but MIPS ABI requires that these entries be present in GOT.
272   // TLS entries:
273   //   Entries created by TLS relocations.
274   //
275   // If the sum of local, global and tls entries is less than 64K only single
276   // got is enough. Otherwise, multi-got is created. Series of primary and
277   // multiple secondary GOTs have the following layout:
278   // - Primary GOT
279   //     Header
280   //     Local entries
281   //     Global entries
282   //     Relocation only entries
283   //     TLS entries
284   //
285   // - Secondary GOT
286   //     Local entries
287   //     Global entries
288   //     TLS entries
289   // ...
290   //
291   // All GOT entries required by relocations from a single input file entirely
292   // belong to either primary or one of secondary GOTs. To reference GOT entries
293   // each GOT has its own _gp value points to the "middle" of the GOT.
294   // In the code this value loaded to the register which is used for GOT access.
295   //
296   // MIPS 32 function's prologue:
297   //   lui     v0,0x0
298   //   0: R_MIPS_HI16  _gp_disp
299   //   addiu   v0,v0,0
300   //   4: R_MIPS_LO16  _gp_disp
301   //
302   // MIPS 64:
303   //   lui     at,0x0
304   //   14: R_MIPS_GPREL16  main
305   //
306   // Dynamic linker does not know anything about secondary GOTs and cannot
307   // use a regular MIPS mechanism for GOT entries initialization. So we have
308   // to use an approach accepted by other architectures and create dynamic
309   // relocations R_MIPS_REL32 to initialize global entries (and local in case
310   // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
311   // requires GOT entries and correspondingly ordered dynamic symbol table
312   // entries to deal with dynamic relocations. To handle this problem
313   // relocation-only section in the primary GOT contains entries for all
314   // symbols referenced in global parts of secondary GOTs. Although the sum
315   // of local and normal global entries of the primary got should be less
316   // than 64K, the size of the primary got (including relocation-only entries
317   // can be greater than 64K, because parts of the primary got that overflow
318   // the 64K limit are used only by the dynamic linker at dynamic link-time
319   // and not by 16-bit gp-relative addressing at run-time.
320   //
321   // For complete multi-GOT description see the following link
322   // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT
323 
324   // Number of "Header" entries.
325   static const unsigned headerEntriesNum = 2;
326 
327   uint64_t size = 0;
328 
329   // Symbol and addend.
330   using GotEntry = std::pair<Symbol *, int64_t>;
331 
332   struct FileGot {
333     InputFile *file = nullptr;
334     size_t startIndex = 0;
335 
336     struct PageBlock {
337       size_t firstIndex;
338       size_t count;
339       PageBlock() : firstIndex(0), count(0) {}
340     };
341 
342     // Map output sections referenced by MIPS GOT relocations
343     // to the description (index/count) "page" entries allocated
344     // for this section.
345     llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
346     // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
347     llvm::MapVector<GotEntry, size_t> local16;
348     llvm::MapVector<GotEntry, size_t> local32;
349     llvm::MapVector<Symbol *, size_t> global;
350     llvm::MapVector<Symbol *, size_t> relocs;
351     llvm::MapVector<Symbol *, size_t> tls;
352     // Set of symbols referenced by dynamic TLS relocations.
353     llvm::MapVector<Symbol *, size_t> dynTlsSymbols;
354 
355     // Total number of all entries.
356     size_t getEntriesNum() const;
357     // Number of "page" entries.
358     size_t getPageEntriesNum() const;
359     // Number of entries require 16-bit index to access.
360     size_t getIndexedEntriesNum() const;
361   };
362 
363   // Container of GOT created for each input file.
364   // After building a final series of GOTs this container
365   // holds primary and secondary GOT's.
366   std::vector<FileGot> gots;
367 
368   // Return (and create if necessary) `FileGot`.
369   FileGot &getGot(InputFile &f);
370 
371   // Try to merge two GOTs. In case of success the `Dst` contains
372   // result of merging and the function returns true. In case of
373   // overflow the `Dst` is unchanged and the function returns false.
374   bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
375 };
376 
377 class GotPltSection final : public SyntheticSection {
378 public:
379   GotPltSection();
380   void addEntry(Symbol &sym);
381   size_t getSize() const override;
382   void writeTo(uint8_t *buf) override;
383   bool isNeeded() const override;
384 
385   // Flag to force GotPlt to be in output if we have relocations
386   // that relies on its address.
387   bool hasGotPltOffRel = false;
388 
389 private:
390   std::vector<const Symbol *> entries;
391 };
392 
393 // The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
394 // Symbols that will be relocated by Target->IRelativeRel.
395 // On most Targets the IgotPltSection will immediately follow the GotPltSection
396 // on ARM the IgotPltSection will immediately follow the GotSection.
397 class IgotPltSection final : public SyntheticSection {
398 public:
399   IgotPltSection();
400   void addEntry(Symbol &sym);
401   size_t getSize() const override;
402   void writeTo(uint8_t *buf) override;
403   bool isNeeded() const override { return !entries.empty(); }
404 
405 private:
406   std::vector<const Symbol *> entries;
407 };
408 
409 class StringTableSection final : public SyntheticSection {
410 public:
411   StringTableSection(StringRef name, bool dynamic);
412   unsigned addString(StringRef s, bool hashIt = true);
413   void writeTo(uint8_t *buf) override;
414   size_t getSize() const override { return size; }
415   bool isDynamic() const { return dynamic; }
416 
417 private:
418   const bool dynamic;
419 
420   uint64_t size = 0;
421 
422   llvm::DenseMap<StringRef, unsigned> stringMap;
423   std::vector<StringRef> strings;
424 };
425 
426 class DynamicReloc {
427 public:
428   enum Kind {
429     /// The resulting dynamic relocation does not reference a symbol (#sym must
430     /// be nullptr) and uses #addend as the result of computeAddend().
431     AddendOnly,
432     /// The resulting dynamic relocation will not reference a symbol: #sym is
433     /// only used to compute the addend with InputSection::getRelocTargetVA().
434     /// Useful for various relative and TLS relocations (e.g. R_X86_64_TPOFF64).
435     AddendOnlyWithTargetVA,
436     /// The resulting dynamic relocation references symbol #sym from the dynamic
437     /// symbol table and uses #addend as the value of computeAddend().
438     AgainstSymbol,
439     /// The resulting dynamic relocation references symbol #sym from the dynamic
440     /// symbol table and uses InputSection::getRelocTargetVA() + #addend for the
441     /// final addend. It can be used for relocations that write the symbol VA as
442     // the addend (e.g. R_MIPS_TLS_TPREL64) but still reference the symbol.
443     AgainstSymbolWithTargetVA,
444     /// This is used by the MIPS multi-GOT implementation. It relocates
445     /// addresses of 64kb pages that lie inside the output section.
446     MipsMultiGotPage,
447   };
448   /// This constructor records a relocation against a symbol.
449   DynamicReloc(RelType type, const InputSectionBase *inputSec,
450                uint64_t offsetInSec, Kind kind, Symbol &sym, int64_t addend,
451                RelExpr expr)
452       : type(type), sym(&sym), inputSec(inputSec), offsetInSec(offsetInSec),
453         kind(kind), expr(expr), addend(addend) {}
454   /// This constructor records a relative relocation with no symbol.
455   DynamicReloc(RelType type, const InputSectionBase *inputSec,
456                uint64_t offsetInSec, int64_t addend = 0)
457       : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
458         kind(AddendOnly), expr(R_ADDEND), addend(addend) {}
459   /// This constructor records dynamic relocation settings used by the MIPS
460   /// multi-GOT implementation.
461   DynamicReloc(RelType type, const InputSectionBase *inputSec,
462                uint64_t offsetInSec, const OutputSection *outputSec,
463                int64_t addend)
464       : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
465         kind(MipsMultiGotPage), expr(R_ADDEND), addend(addend),
466         outputSec(outputSec) {}
467 
468   uint64_t getOffset() const;
469   uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;
470   bool needsDynSymIndex() const {
471     return kind == AgainstSymbol || kind == AgainstSymbolWithTargetVA;
472   }
473 
474   /// Computes the addend of the dynamic relocation. Note that this is not the
475   /// same as the #addend member variable as it may also include the symbol
476   /// address/the address of the corresponding GOT entry/etc.
477   int64_t computeAddend() const;
478 
479   RelType type;
480   Symbol *sym;
481   const InputSectionBase *inputSec;
482   uint64_t offsetInSec;
483 
484 private:
485   Kind kind;
486   // The kind of expression used to calculate the added (required e.g. for
487   // relative GOT relocations).
488   RelExpr expr;
489   int64_t addend;
490   const OutputSection *outputSec = nullptr;
491 };
492 
493 template <class ELFT> class DynamicSection final : public SyntheticSection {
494   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
495 
496   // finalizeContents() fills this vector with the section contents.
497   std::vector<std::pair<int32_t, std::function<uint64_t()>>> entries;
498 
499 public:
500   DynamicSection();
501   void finalizeContents() override;
502   void writeTo(uint8_t *buf) override;
503   size_t getSize() const override { return size; }
504 
505 private:
506   void add(int32_t tag, std::function<uint64_t()> fn);
507   void addInt(int32_t tag, uint64_t val);
508   void addInSec(int32_t tag, InputSection *sec);
509   void addInSecRelative(int32_t tag, InputSection *sec);
510   void addOutSec(int32_t tag, OutputSection *sec);
511   void addSize(int32_t tag, OutputSection *sec);
512   void addSym(int32_t tag, Symbol *sym);
513 
514   uint64_t size = 0;
515 };
516 
517 class RelocationBaseSection : public SyntheticSection {
518 public:
519   RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
520                         int32_t sizeDynamicTag);
521   /// Add a dynamic relocation without writing an addend to the output section.
522   /// This overload can be used if the addends are written directly instead of
523   /// using relocations on the input section (e.g. MipsGotSection::writeTo()).
524   void addReloc(const DynamicReloc &reloc);
525   /// Add a dynamic relocation against \p sym with an optional addend.
526   void addSymbolReloc(RelType dynType, InputSectionBase *isec,
527                       uint64_t offsetInSec, Symbol &sym, int64_t addend = 0,
528                       llvm::Optional<RelType> addendRelType = llvm::None);
529   /// Add a relative dynamic relocation that uses the target address of \p sym
530   /// (i.e. InputSection::getRelocTargetVA()) + \p addend as the addend.
531   void addRelativeReloc(RelType dynType, InputSectionBase *isec,
532                         uint64_t offsetInSec, Symbol &sym, int64_t addend,
533                         RelType addendRelType, RelExpr expr);
534   /// Add a dynamic relocation using the target address of \p sym as the addend
535   /// if \p sym is non-preemptible. Otherwise add a relocation against \p sym.
536   void addAddendOnlyRelocIfNonPreemptible(RelType dynType,
537                                           InputSectionBase *isec,
538                                           uint64_t offsetInSec, Symbol &sym,
539                                           RelType addendRelType);
540   void addReloc(DynamicReloc::Kind kind, RelType dynType,
541                 InputSectionBase *inputSec, uint64_t offsetInSec, Symbol &sym,
542                 int64_t addend, RelExpr expr, RelType addendRelType);
543   bool isNeeded() const override { return !relocs.empty(); }
544   size_t getSize() const override { return relocs.size() * this->entsize; }
545   size_t getRelativeRelocCount() const { return numRelativeRelocs; }
546   void finalizeContents() override;
547   static bool classof(const SectionBase *d) {
548     return SyntheticSection::classof(d) &&
549            (d->type == llvm::ELF::SHT_RELA || d->type == llvm::ELF::SHT_REL ||
550             d->type == llvm::ELF::SHT_RELR);
551   }
552   int32_t dynamicTag, sizeDynamicTag;
553   std::vector<DynamicReloc> relocs;
554 
555 protected:
556   size_t numRelativeRelocs = 0;
557 };
558 
559 template <class ELFT>
560 class RelocationSection final : public RelocationBaseSection {
561   using Elf_Rel = typename ELFT::Rel;
562   using Elf_Rela = typename ELFT::Rela;
563 
564 public:
565   RelocationSection(StringRef name, bool sort);
566   void writeTo(uint8_t *buf) override;
567 
568 private:
569   bool sort;
570 };
571 
572 template <class ELFT>
573 class AndroidPackedRelocationSection final : public RelocationBaseSection {
574   using Elf_Rel = typename ELFT::Rel;
575   using Elf_Rela = typename ELFT::Rela;
576 
577 public:
578   AndroidPackedRelocationSection(StringRef name);
579 
580   bool updateAllocSize() override;
581   size_t getSize() const override { return relocData.size(); }
582   void writeTo(uint8_t *buf) override {
583     memcpy(buf, relocData.data(), relocData.size());
584   }
585 
586 private:
587   SmallVector<char, 0> relocData;
588 };
589 
590 struct RelativeReloc {
591   uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }
592 
593   const InputSectionBase *inputSec;
594   uint64_t offsetInSec;
595 };
596 
597 class RelrBaseSection : public SyntheticSection {
598 public:
599   RelrBaseSection();
600   bool isNeeded() const override { return !relocs.empty(); }
601   std::vector<RelativeReloc> relocs;
602 };
603 
604 // RelrSection is used to encode offsets for relative relocations.
605 // Proposal for adding SHT_RELR sections to generic-abi is here:
606 //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
607 // For more details, see the comment in RelrSection::updateAllocSize().
608 template <class ELFT> class RelrSection final : public RelrBaseSection {
609   using Elf_Relr = typename ELFT::Relr;
610 
611 public:
612   RelrSection();
613 
614   bool updateAllocSize() override;
615   size_t getSize() const override { return relrRelocs.size() * this->entsize; }
616   void writeTo(uint8_t *buf) override {
617     memcpy(buf, relrRelocs.data(), getSize());
618   }
619 
620 private:
621   std::vector<Elf_Relr> relrRelocs;
622 };
623 
624 struct SymbolTableEntry {
625   Symbol *sym;
626   size_t strTabOffset;
627 };
628 
629 class SymbolTableBaseSection : public SyntheticSection {
630 public:
631   SymbolTableBaseSection(StringTableSection &strTabSec);
632   void finalizeContents() override;
633   size_t getSize() const override { return getNumSymbols() * entsize; }
634   void addSymbol(Symbol *sym);
635   unsigned getNumSymbols() const { return symbols.size() + 1; }
636   size_t getSymbolIndex(Symbol *sym);
637   ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }
638 
639 protected:
640   void sortSymTabSymbols();
641 
642   // A vector of symbols and their string table offsets.
643   std::vector<SymbolTableEntry> symbols;
644 
645   StringTableSection &strTabSec;
646 
647   llvm::once_flag onceFlag;
648   llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
649   llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
650 };
651 
652 template <class ELFT>
653 class SymbolTableSection final : public SymbolTableBaseSection {
654   using Elf_Sym = typename ELFT::Sym;
655 
656 public:
657   SymbolTableSection(StringTableSection &strTabSec);
658   void writeTo(uint8_t *buf) override;
659 };
660 
661 class SymtabShndxSection final : public SyntheticSection {
662 public:
663   SymtabShndxSection();
664 
665   void writeTo(uint8_t *buf) override;
666   size_t getSize() const override;
667   bool isNeeded() const override;
668   void finalizeContents() override;
669 };
670 
671 // Outputs GNU Hash section. For detailed explanation see:
672 // https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
673 class GnuHashTableSection final : public SyntheticSection {
674 public:
675   GnuHashTableSection();
676   void finalizeContents() override;
677   void writeTo(uint8_t *buf) override;
678   size_t getSize() const override { return size; }
679 
680   // Adds symbols to the hash table.
681   // Sorts the input to satisfy GNU hash section requirements.
682   void addSymbols(std::vector<SymbolTableEntry> &symbols);
683 
684 private:
685   // See the comment in writeBloomFilter.
686   enum { Shift2 = 26 };
687 
688   void writeBloomFilter(uint8_t *buf);
689   void writeHashTable(uint8_t *buf);
690 
691   struct Entry {
692     Symbol *sym;
693     size_t strTabOffset;
694     uint32_t hash;
695     uint32_t bucketIdx;
696   };
697 
698   std::vector<Entry> symbols;
699   size_t maskWords;
700   size_t nBuckets = 0;
701   size_t size = 0;
702 };
703 
704 class HashTableSection final : public SyntheticSection {
705 public:
706   HashTableSection();
707   void finalizeContents() override;
708   void writeTo(uint8_t *buf) override;
709   size_t getSize() const override { return size; }
710 
711 private:
712   size_t size = 0;
713 };
714 
715 // Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
716 // entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
717 // at runtime.
718 //
719 // On PowerPC, this section contains lazy symbol resolvers. A branch instruction
720 // jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
721 // lazy symbol resolver.
722 //
723 // On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
724 // A call instruction jumps to a .plt.sec entry, which will then jump to the
725 // target (BIND_NOW) or a .plt entry.
726 class PltSection : public SyntheticSection {
727 public:
728   PltSection();
729   void writeTo(uint8_t *buf) override;
730   size_t getSize() const override;
731   bool isNeeded() const override;
732   void addSymbols();
733   void addEntry(Symbol &sym);
734   size_t getNumEntries() const { return entries.size(); }
735 
736   size_t headerSize;
737 
738   std::vector<const Symbol *> entries;
739 };
740 
741 // Used for non-preemptible ifuncs. It does not have a header. Each entry is
742 // associated with an IRELATIVE relocation, which will be resolved eagerly at
743 // runtime. PltSection can only contain entries associated with JUMP_SLOT
744 // relocations, so IPLT entries are in a separate section.
745 class IpltSection final : public SyntheticSection {
746   std::vector<const Symbol *> entries;
747 
748 public:
749   IpltSection();
750   void writeTo(uint8_t *buf) override;
751   size_t getSize() const override;
752   bool isNeeded() const override { return !entries.empty(); }
753   void addSymbols();
754   void addEntry(Symbol &sym);
755 };
756 
757 class PPC32GlinkSection : public PltSection {
758 public:
759   PPC32GlinkSection();
760   void writeTo(uint8_t *buf) override;
761   size_t getSize() const override;
762 
763   std::vector<const Symbol *> canonical_plts;
764   static constexpr size_t footerSize = 64;
765 };
766 
767 // This is x86-only.
768 class IBTPltSection : public SyntheticSection {
769 public:
770   IBTPltSection();
771   void writeTo(uint8_t *Buf) override;
772   size_t getSize() const override;
773 };
774 
775 class GdbIndexSection final : public SyntheticSection {
776 public:
777   struct AddressEntry {
778     InputSection *section;
779     uint64_t lowAddress;
780     uint64_t highAddress;
781     uint32_t cuIndex;
782   };
783 
784   struct CuEntry {
785     uint64_t cuOffset;
786     uint64_t cuLength;
787   };
788 
789   struct NameAttrEntry {
790     llvm::CachedHashStringRef name;
791     uint32_t cuIndexAndAttrs;
792   };
793 
794   struct GdbChunk {
795     InputSection *sec;
796     std::vector<AddressEntry> addressAreas;
797     std::vector<CuEntry> compilationUnits;
798   };
799 
800   struct GdbSymbol {
801     llvm::CachedHashStringRef name;
802     std::vector<uint32_t> cuVector;
803     uint32_t nameOff;
804     uint32_t cuVectorOff;
805   };
806 
807   GdbIndexSection();
808   template <typename ELFT> static GdbIndexSection *create();
809   void writeTo(uint8_t *buf) override;
810   size_t getSize() const override { return size; }
811   bool isNeeded() const override;
812 
813 private:
814   struct GdbIndexHeader {
815     llvm::support::ulittle32_t version;
816     llvm::support::ulittle32_t cuListOff;
817     llvm::support::ulittle32_t cuTypesOff;
818     llvm::support::ulittle32_t addressAreaOff;
819     llvm::support::ulittle32_t symtabOff;
820     llvm::support::ulittle32_t constantPoolOff;
821   };
822 
823   void initOutputSize();
824   size_t computeSymtabSize() const;
825 
826   // Each chunk contains information gathered from debug sections of a
827   // single object file.
828   std::vector<GdbChunk> chunks;
829 
830   // A symbol table for this .gdb_index section.
831   std::vector<GdbSymbol> symbols;
832 
833   size_t size;
834 };
835 
836 // --eh-frame-hdr option tells linker to construct a header for all the
837 // .eh_frame sections. This header is placed to a section named .eh_frame_hdr
838 // and also to a PT_GNU_EH_FRAME segment.
839 // At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
840 // calling dl_iterate_phdr.
841 // This section contains a lookup table for quick binary search of FDEs.
842 // Detailed info about internals can be found in Ian Lance Taylor's blog:
843 // http://www.airs.com/blog/archives/460 (".eh_frame")
844 // http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
845 class EhFrameHeader final : public SyntheticSection {
846 public:
847   EhFrameHeader();
848   void write();
849   void writeTo(uint8_t *buf) override;
850   size_t getSize() const override;
851   bool isNeeded() const override;
852 };
853 
854 // For more information about .gnu.version and .gnu.version_r see:
855 // https://www.akkadia.org/drepper/symbol-versioning
856 
857 // The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
858 // contain symbol version definitions. The number of entries in this section
859 // shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
860 // The section shall contain an array of Elf_Verdef structures, optionally
861 // followed by an array of Elf_Verdaux structures.
862 class VersionDefinitionSection final : public SyntheticSection {
863 public:
864   VersionDefinitionSection();
865   void finalizeContents() override;
866   size_t getSize() const override;
867   void writeTo(uint8_t *buf) override;
868 
869 private:
870   enum { EntrySize = 28 };
871   void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
872   StringRef getFileDefName();
873 
874   unsigned fileDefNameOff;
875   std::vector<unsigned> verDefNameOffs;
876 };
877 
878 // The .gnu.version section specifies the required version of each symbol in the
879 // dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
880 // table entry. An Elf_Versym is just a 16-bit integer that refers to a version
881 // identifier defined in the either .gnu.version_r or .gnu.version_d section.
882 // The values 0 and 1 are reserved. All other values are used for versions in
883 // the own object or in any of the dependencies.
884 class VersionTableSection final : public SyntheticSection {
885 public:
886   VersionTableSection();
887   void finalizeContents() override;
888   size_t getSize() const override;
889   void writeTo(uint8_t *buf) override;
890   bool isNeeded() const override;
891 };
892 
893 // The .gnu.version_r section defines the version identifiers used by
894 // .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
895 // Elf_Verneed specifies the version requirements for a single DSO, and contains
896 // a reference to a linked list of Elf_Vernaux data structures which define the
897 // mapping from version identifiers to version names.
898 template <class ELFT>
899 class VersionNeedSection final : public SyntheticSection {
900   using Elf_Verneed = typename ELFT::Verneed;
901   using Elf_Vernaux = typename ELFT::Vernaux;
902 
903   struct Vernaux {
904     uint64_t hash;
905     uint32_t verneedIndex;
906     uint64_t nameStrTab;
907   };
908 
909   struct Verneed {
910     uint64_t nameStrTab;
911     std::vector<Vernaux> vernauxs;
912   };
913 
914   std::vector<Verneed> verneeds;
915 
916 public:
917   VersionNeedSection();
918   void finalizeContents() override;
919   void writeTo(uint8_t *buf) override;
920   size_t getSize() const override;
921   bool isNeeded() const override;
922 };
923 
924 // MergeSyntheticSection is a class that allows us to put mergeable sections
925 // with different attributes in a single output sections. To do that
926 // we put them into MergeSyntheticSection synthetic input sections which are
927 // attached to regular output sections.
928 class MergeSyntheticSection : public SyntheticSection {
929 public:
930   void addSection(MergeInputSection *ms);
931   std::vector<MergeInputSection *> sections;
932 
933 protected:
934   MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
935                         uint32_t alignment)
936       : SyntheticSection(flags, type, alignment, name) {}
937 };
938 
939 class MergeTailSection final : public MergeSyntheticSection {
940 public:
941   MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
942                    uint32_t alignment);
943 
944   size_t getSize() const override;
945   void writeTo(uint8_t *buf) override;
946   void finalizeContents() override;
947 
948 private:
949   llvm::StringTableBuilder builder;
950 };
951 
952 class MergeNoTailSection final : public MergeSyntheticSection {
953 public:
954   MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
955                      uint32_t alignment)
956       : MergeSyntheticSection(name, type, flags, alignment) {}
957 
958   size_t getSize() const override { return size; }
959   void writeTo(uint8_t *buf) override;
960   void finalizeContents() override;
961 
962 private:
963   // We use the most significant bits of a hash as a shard ID.
964   // The reason why we don't want to use the least significant bits is
965   // because DenseMap also uses lower bits to determine a bucket ID.
966   // If we use lower bits, it significantly increases the probability of
967   // hash collisons.
968   size_t getShardId(uint32_t hash) {
969     assert((hash >> 31) == 0);
970     return hash >> (31 - llvm::countTrailingZeros(numShards));
971   }
972 
973   // Section size
974   size_t size;
975 
976   // String table contents
977   constexpr static size_t numShards = 32;
978   std::vector<llvm::StringTableBuilder> shards;
979   size_t shardOffsets[numShards];
980 };
981 
982 // .MIPS.abiflags section.
983 template <class ELFT>
984 class MipsAbiFlagsSection final : public SyntheticSection {
985   using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;
986 
987 public:
988   static MipsAbiFlagsSection *create();
989 
990   MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
991   size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
992   void writeTo(uint8_t *buf) override;
993 
994 private:
995   Elf_Mips_ABIFlags flags;
996 };
997 
998 // .MIPS.options section.
999 template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
1000   using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
1001   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1002 
1003 public:
1004   static MipsOptionsSection *create();
1005 
1006   MipsOptionsSection(Elf_Mips_RegInfo reginfo);
1007   void writeTo(uint8_t *buf) override;
1008 
1009   size_t getSize() const override {
1010     return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
1011   }
1012 
1013 private:
1014   Elf_Mips_RegInfo reginfo;
1015 };
1016 
1017 // MIPS .reginfo section.
1018 template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
1019   using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;
1020 
1021 public:
1022   static MipsReginfoSection *create();
1023 
1024   MipsReginfoSection(Elf_Mips_RegInfo reginfo);
1025   size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
1026   void writeTo(uint8_t *buf) override;
1027 
1028 private:
1029   Elf_Mips_RegInfo reginfo;
1030 };
1031 
1032 // This is a MIPS specific section to hold a space within the data segment
1033 // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
1034 // See "Dynamic section" in Chapter 5 in the following document:
1035 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1036 class MipsRldMapSection : public SyntheticSection {
1037 public:
1038   MipsRldMapSection();
1039   size_t getSize() const override { return config->wordsize; }
1040   void writeTo(uint8_t *buf) override {}
1041 };
1042 
1043 // Representation of the combined .ARM.Exidx input sections. We process these
1044 // as a SyntheticSection like .eh_frame as we need to merge duplicate entries
1045 // and add terminating sentinel entries.
1046 //
1047 // The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
1048 // a table that the unwinder can derive (Addresses are encoded as offsets from
1049 // table):
1050 // | Address of function | Unwind instructions for function |
1051 // where the unwind instructions are either a small number of unwind or the
1052 // special EXIDX_CANTUNWIND entry representing no unwinding information.
1053 // When an exception is thrown from an address A, the unwinder searches the
1054 // table for the closest table entry with Address of function <= A. This means
1055 // that for two consecutive table entries:
1056 // | A1 | U1 |
1057 // | A2 | U2 |
1058 // The range of addresses described by U1 is [A1, A2)
1059 //
1060 // There are two cases where we need a linker generated table entry to fixup
1061 // the address ranges in the table
1062 // Case 1:
1063 // - A sentinel entry added with an address higher than all
1064 // executable sections. This was needed to work around libunwind bug pr31091.
1065 // - After address assignment we need to find the highest addressed executable
1066 // section and use the limit of that section so that the unwinder never
1067 // matches it.
1068 // Case 2:
1069 // - InputSections without a .ARM.exidx section (usually from Assembly)
1070 // need a table entry so that they terminate the range of the previously
1071 // function. This is pr40277.
1072 //
1073 // Instead of storing pointers to the .ARM.exidx InputSections from
1074 // InputObjects, we store pointers to the executable sections that need
1075 // .ARM.exidx sections. We can then use the dependentSections of these to
1076 // either find the .ARM.exidx section or know that we need to generate one.
1077 class ARMExidxSyntheticSection : public SyntheticSection {
1078 public:
1079   ARMExidxSyntheticSection();
1080 
1081   // Add an input section to the ARMExidxSyntheticSection. Returns whether the
1082   // section needs to be removed from the main input section list.
1083   bool addSection(InputSection *isec);
1084 
1085   size_t getSize() const override { return size; }
1086   void writeTo(uint8_t *buf) override;
1087   bool isNeeded() const override;
1088   // Sort and remove duplicate entries.
1089   void finalizeContents() override;
1090   InputSection *getLinkOrderDep() const;
1091 
1092   static bool classof(const SectionBase *d);
1093 
1094   // Links to the ARMExidxSections so we can transfer the relocations once the
1095   // layout is known.
1096   std::vector<InputSection *> exidxSections;
1097 
1098 private:
1099   size_t size = 0;
1100 
1101   // Instead of storing pointers to the .ARM.exidx InputSections from
1102   // InputObjects, we store pointers to the executable sections that need
1103   // .ARM.exidx sections. We can then use the dependentSections of these to
1104   // either find the .ARM.exidx section or know that we need to generate one.
1105   std::vector<InputSection *> executableSections;
1106 
1107   // The executable InputSection with the highest address to use for the
1108   // sentinel. We store separately from ExecutableSections as merging of
1109   // duplicate entries may mean this InputSection is removed from
1110   // ExecutableSections.
1111   InputSection *sentinel = nullptr;
1112 };
1113 
1114 // A container for one or more linker generated thunks. Instances of these
1115 // thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
1116 class ThunkSection : public SyntheticSection {
1117 public:
1118   // ThunkSection in OS, with desired outSecOff of Off
1119   ThunkSection(OutputSection *os, uint64_t off);
1120 
1121   // Add a newly created Thunk to this container:
1122   // Thunk is given offset from start of this InputSection
1123   // Thunk defines a symbol in this InputSection that can be used as target
1124   // of a relocation
1125   void addThunk(Thunk *t);
1126   size_t getSize() const override;
1127   void writeTo(uint8_t *buf) override;
1128   InputSection *getTargetInputSection() const;
1129   bool assignOffsets();
1130 
1131   // When true, round up reported size of section to 4 KiB. See comment
1132   // in addThunkSection() for more details.
1133   bool roundUpSizeForErrata = false;
1134 
1135 private:
1136   std::vector<Thunk *> thunks;
1137   size_t size = 0;
1138 };
1139 
1140 // Used to compute outSecOff of .got2 in each object file. This is needed to
1141 // synthesize PLT entries for PPC32 Secure PLT ABI.
1142 class PPC32Got2Section final : public SyntheticSection {
1143 public:
1144   PPC32Got2Section();
1145   size_t getSize() const override { return 0; }
1146   bool isNeeded() const override;
1147   void finalizeContents() override;
1148   void writeTo(uint8_t *buf) override {}
1149 };
1150 
1151 // This section is used to store the addresses of functions that are called
1152 // in range-extending thunks on PowerPC64. When producing position dependent
1153 // code the addresses are link-time constants and the table is written out to
1154 // the binary. When producing position-dependent code the table is allocated and
1155 // filled in by the dynamic linker.
1156 class PPC64LongBranchTargetSection final : public SyntheticSection {
1157 public:
1158   PPC64LongBranchTargetSection();
1159   uint64_t getEntryVA(const Symbol *sym, int64_t addend);
1160   llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
1161   size_t getSize() const override;
1162   void writeTo(uint8_t *buf) override;
1163   bool isNeeded() const override;
1164   void finalizeContents() override { finalized = true; }
1165 
1166 private:
1167   std::vector<std::pair<const Symbol *, int64_t>> entries;
1168   llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
1169   bool finalized = false;
1170 };
1171 
1172 template <typename ELFT>
1173 class PartitionElfHeaderSection : public SyntheticSection {
1174 public:
1175   PartitionElfHeaderSection();
1176   size_t getSize() const override;
1177   void writeTo(uint8_t *buf) override;
1178 };
1179 
1180 template <typename ELFT>
1181 class PartitionProgramHeadersSection : public SyntheticSection {
1182 public:
1183   PartitionProgramHeadersSection();
1184   size_t getSize() const override;
1185   void writeTo(uint8_t *buf) override;
1186 };
1187 
1188 class PartitionIndexSection : public SyntheticSection {
1189 public:
1190   PartitionIndexSection();
1191   size_t getSize() const override;
1192   void finalizeContents() override;
1193   void writeTo(uint8_t *buf) override;
1194 };
1195 
1196 InputSection *createInterpSection();
1197 MergeInputSection *createCommentSection();
1198 MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
1199                                             uint64_t flags, uint32_t alignment);
1200 template <class ELFT> void splitSections();
1201 
1202 template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
1203 template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);
1204 
1205 Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
1206                            uint64_t size, InputSectionBase &section);
1207 
1208 void addVerneed(Symbol *ss);
1209 
1210 // Linker generated per-partition sections.
1211 struct Partition {
1212   StringRef name;
1213   uint64_t nameStrTab;
1214 
1215   SyntheticSection *elfHeader;
1216   SyntheticSection *programHeaders;
1217   std::vector<PhdrEntry *> phdrs;
1218 
1219   ARMExidxSyntheticSection *armExidx;
1220   BuildIdSection *buildId;
1221   SyntheticSection *dynamic;
1222   StringTableSection *dynStrTab;
1223   SymbolTableBaseSection *dynSymTab;
1224   EhFrameHeader *ehFrameHdr;
1225   EhFrameSection *ehFrame;
1226   GnuHashTableSection *gnuHashTab;
1227   HashTableSection *hashTab;
1228   RelocationBaseSection *relaDyn;
1229   RelrBaseSection *relrDyn;
1230   VersionDefinitionSection *verDef;
1231   SyntheticSection *verNeed;
1232   VersionTableSection *verSym;
1233 
1234   unsigned getNumber() const { return this - &partitions[0] + 1; }
1235 };
1236 
1237 extern Partition *mainPart;
1238 
1239 inline Partition &SectionBase::getPartition() const {
1240   assert(isLive());
1241   return partitions[partition - 1];
1242 }
1243 
1244 // Linker generated sections which can be used as inputs and are not specific to
1245 // a partition.
1246 struct InStruct {
1247   InputSection *attributes;
1248   BssSection *bss;
1249   BssSection *bssRelRo;
1250   GotSection *got;
1251   GotPltSection *gotPlt;
1252   IgotPltSection *igotPlt;
1253   PPC64LongBranchTargetSection *ppc64LongBranchTarget;
1254   MipsGotSection *mipsGot;
1255   MipsRldMapSection *mipsRldMap;
1256   SyntheticSection *partEnd;
1257   SyntheticSection *partIndex;
1258   PltSection *plt;
1259   IpltSection *iplt;
1260   PPC32Got2Section *ppc32Got2;
1261   IBTPltSection *ibtPlt;
1262   RelocationBaseSection *relaPlt;
1263   RelocationBaseSection *relaIplt;
1264   StringTableSection *shStrTab;
1265   StringTableSection *strTab;
1266   SymbolTableBaseSection *symTab;
1267   SymtabShndxSection *symTabShndx;
1268 };
1269 
1270 extern InStruct in;
1271 
1272 } // namespace elf
1273 } // namespace lld
1274 
1275 #endif
1276