1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Arrays.h"
23 #include "lld/Common/Filesystem.h"
24 #include "lld/Common/Memory.h"
25 #include "lld/Common/Strings.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/RandomNumberGenerator.h"
30 #include "llvm/Support/SHA1.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34 
35 #define DEBUG_TYPE "lld"
36 
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50 
51   Writer() : buffer(errorHandler().outputBuffer) {}
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
59   void sortSections();
60   void resolveShfLinkOrder();
61   void finalizeAddressDependentContent();
62   void optimizeBasicBlockJumps();
63   void sortInputSections();
64   void finalizeSections();
65   void checkExecuteOnly();
66   void setReservedSymbolSections();
67 
68   std::vector<PhdrEntry *> createPhdrs(Partition &part);
69   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
70                          unsigned pFlags);
71   void assignFileOffsets();
72   void assignFileOffsetsBinary();
73   void setPhdrs(Partition &part);
74   void checkSections();
75   void fixSectionAlignments();
76   void openFile();
77   void writeTrapInstr();
78   void writeHeader();
79   void writeSections();
80   void writeSectionsBinary();
81   void writeBuildId();
82 
83   std::unique_ptr<FileOutputBuffer> &buffer;
84 
85   void addRelIpltSymbols();
86   void addStartEndSymbols();
87   void addStartStopSymbols(OutputSection *sec);
88 
89   uint64_t fileSize;
90   uint64_t sectionHeaderOff;
91 };
92 } // anonymous namespace
93 
94 static bool isSectionPrefix(StringRef prefix, StringRef name) {
95   return name.startswith(prefix) || name == prefix.drop_back();
96 }
97 
98 StringRef elf::getOutputSectionName(const InputSectionBase *s) {
99   if (config->relocatable)
100     return s->name;
101 
102   // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
103   // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
104   // technically required, but not doing it is odd). This code guarantees that.
105   if (auto *isec = dyn_cast<InputSection>(s)) {
106     if (InputSectionBase *rel = isec->getRelocatedSection()) {
107       OutputSection *out = rel->getOutputSection();
108       if (s->type == SHT_RELA)
109         return saver.save(".rela" + out->name);
110       return saver.save(".rel" + out->name);
111     }
112   }
113 
114   // A BssSection created for a common symbol is identified as "COMMON" in
115   // linker scripts. It should go to .bss section.
116   if (s->name == "COMMON")
117     return ".bss";
118 
119   if (script->hasSectionsCommand)
120     return s->name;
121 
122   // When no SECTIONS is specified, emulate GNU ld's internal linker scripts
123   // by grouping sections with certain prefixes.
124 
125   // GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
126   // ".text.unlikely.", ".text.startup." or ".text.exit." before others.
127   // We provide an option -z keep-text-section-prefix to group such sections
128   // into separate output sections. This is more flexible. See also
129   // sortISDBySectionOrder().
130   // ".text.unknown" means the hotness of the section is unknown. When
131   // SampleFDO is used, if a function doesn't have sample, it could be very
132   // cold or it could be a new function never being sampled. Those functions
133   // will be kept in the ".text.unknown" section.
134   // ".text.split." holds symbols which are split out from functions in other
135   // input sections. For example, with -fsplit-machine-functions, placing the
136   // cold parts in .text.split instead of .text.unlikely mitigates against poor
137   // profile inaccuracy. Techniques such as hugepage remapping can make
138   // conservative decisions at the section granularity.
139   if (config->zKeepTextSectionPrefix)
140     for (StringRef v : {".text.hot.", ".text.unknown.", ".text.unlikely.",
141                         ".text.startup.", ".text.exit.", ".text.split."})
142       if (isSectionPrefix(v, s->name))
143         return v.drop_back();
144 
145   for (StringRef v :
146        {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
147         ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
148         ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
149     if (isSectionPrefix(v, s->name))
150       return v.drop_back();
151 
152   return s->name;
153 }
154 
155 static bool needsInterpSection() {
156   return !config->relocatable && !config->shared &&
157          !config->dynamicLinker.empty() && script->needsInterpSection();
158 }
159 
160 template <class ELFT> void elf::writeResult() {
161   Writer<ELFT>().run();
162 }
163 
164 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
165   auto it = std::stable_partition(
166       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
167         if (p->p_type != PT_LOAD)
168           return true;
169         if (!p->firstSec)
170           return false;
171         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
172         return size != 0;
173       });
174 
175   // Clear OutputSection::ptLoad for sections contained in removed
176   // segments.
177   DenseSet<PhdrEntry *> removed(it, phdrs.end());
178   for (OutputSection *sec : outputSections)
179     if (removed.count(sec->ptLoad))
180       sec->ptLoad = nullptr;
181   phdrs.erase(it, phdrs.end());
182 }
183 
184 void elf::copySectionsIntoPartitions() {
185   std::vector<InputSectionBase *> newSections;
186   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
187     for (InputSectionBase *s : inputSections) {
188       if (!(s->flags & SHF_ALLOC) || !s->isLive())
189         continue;
190       InputSectionBase *copy;
191       if (s->type == SHT_NOTE)
192         copy = make<InputSection>(cast<InputSection>(*s));
193       else if (auto *es = dyn_cast<EhInputSection>(s))
194         copy = make<EhInputSection>(*es);
195       else
196         continue;
197       copy->partition = part;
198       newSections.push_back(copy);
199     }
200   }
201 
202   inputSections.insert(inputSections.end(), newSections.begin(),
203                        newSections.end());
204 }
205 
206 void elf::combineEhSections() {
207   llvm::TimeTraceScope timeScope("Combine EH sections");
208   for (InputSectionBase *&s : inputSections) {
209     // Ignore dead sections and the partition end marker (.part.end),
210     // whose partition number is out of bounds.
211     if (!s->isLive() || s->partition == 255)
212       continue;
213 
214     Partition &part = s->getPartition();
215     if (auto *es = dyn_cast<EhInputSection>(s)) {
216       part.ehFrame->addSection(es);
217       s = nullptr;
218     } else if (s->kind() == SectionBase::Regular && part.armExidx &&
219                part.armExidx->addSection(cast<InputSection>(s))) {
220       s = nullptr;
221     }
222   }
223 
224   std::vector<InputSectionBase *> &v = inputSections;
225   v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
226 }
227 
228 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
229                                    uint64_t val, uint8_t stOther = STV_HIDDEN,
230                                    uint8_t binding = STB_GLOBAL) {
231   Symbol *s = symtab->find(name);
232   if (!s || s->isDefined())
233     return nullptr;
234 
235   s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
236                      /*size=*/0, sec});
237   return cast<Defined>(s);
238 }
239 
240 static Defined *addAbsolute(StringRef name) {
241   Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
242                                           STT_NOTYPE, 0, 0, nullptr});
243   return cast<Defined>(sym);
244 }
245 
246 // The linker is expected to define some symbols depending on
247 // the linking result. This function defines such symbols.
248 void elf::addReservedSymbols() {
249   if (config->emachine == EM_MIPS) {
250     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
251     // so that it points to an absolute address which by default is relative
252     // to GOT. Default offset is 0x7ff0.
253     // See "Global Data Symbols" in Chapter 6 in the following document:
254     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
255     ElfSym::mipsGp = addAbsolute("_gp");
256 
257     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
258     // start of function and 'gp' pointer into GOT.
259     if (symtab->find("_gp_disp"))
260       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
261 
262     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
263     // pointer. This symbol is used in the code generated by .cpload pseudo-op
264     // in case of using -mno-shared option.
265     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
266     if (symtab->find("__gnu_local_gp"))
267       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
268   } else if (config->emachine == EM_PPC) {
269     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
270     // support Small Data Area, define it arbitrarily as 0.
271     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
272   } else if (config->emachine == EM_PPC64) {
273     addPPC64SaveRestore();
274   }
275 
276   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
277   // combines the typical ELF GOT with the small data sections. It commonly
278   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
279   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
280   // represent the TOC base which is offset by 0x8000 bytes from the start of
281   // the .got section.
282   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
283   // correctness of some relocations depends on its value.
284   StringRef gotSymName =
285       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
286 
287   if (Symbol *s = symtab->find(gotSymName)) {
288     if (s->isDefined()) {
289       error(toString(s->file) + " cannot redefine linker defined symbol '" +
290             gotSymName + "'");
291       return;
292     }
293 
294     uint64_t gotOff = 0;
295     if (config->emachine == EM_PPC64)
296       gotOff = 0x8000;
297 
298     s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
299                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
300     ElfSym::globalOffsetTable = cast<Defined>(s);
301   }
302 
303   // __ehdr_start is the location of ELF file headers. Note that we define
304   // this symbol unconditionally even when using a linker script, which
305   // differs from the behavior implemented by GNU linker which only define
306   // this symbol if ELF headers are in the memory mapped segment.
307   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
308 
309   // __executable_start is not documented, but the expectation of at
310   // least the Android libc is that it points to the ELF header.
311   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
312 
313   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
314   // each DSO. The address of the symbol doesn't matter as long as they are
315   // different in different DSOs, so we chose the start address of the DSO.
316   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
317 
318   // If linker script do layout we do not need to create any standard symbols.
319   if (script->hasSectionsCommand)
320     return;
321 
322   auto add = [](StringRef s, int64_t pos) {
323     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
324   };
325 
326   ElfSym::bss = add("__bss_start", 0);
327   ElfSym::end1 = add("end", -1);
328   ElfSym::end2 = add("_end", -1);
329   ElfSym::etext1 = add("etext", -1);
330   ElfSym::etext2 = add("_etext", -1);
331   ElfSym::edata1 = add("edata", -1);
332   ElfSym::edata2 = add("_edata", -1);
333 }
334 
335 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
336   for (BaseCommand *base : script->sectionCommands)
337     if (auto *sec = dyn_cast<OutputSection>(base))
338       if (sec->name == name && sec->partition == partition)
339         return sec;
340   return nullptr;
341 }
342 
343 template <class ELFT> void elf::createSyntheticSections() {
344   // Initialize all pointers with NULL. This is needed because
345   // you can call lld::elf::main more than once as a library.
346   memset(&Out::first, 0, sizeof(Out));
347 
348   // Add the .interp section first because it is not a SyntheticSection.
349   // The removeUnusedSyntheticSections() function relies on the
350   // SyntheticSections coming last.
351   if (needsInterpSection()) {
352     for (size_t i = 1; i <= partitions.size(); ++i) {
353       InputSection *sec = createInterpSection();
354       sec->partition = i;
355       inputSections.push_back(sec);
356     }
357   }
358 
359   auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
360 
361   in.shStrTab = make<StringTableSection>(".shstrtab", false);
362 
363   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
364   Out::programHeaders->alignment = config->wordsize;
365 
366   if (config->strip != StripPolicy::All) {
367     in.strTab = make<StringTableSection>(".strtab", false);
368     in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
369     in.symTabShndx = make<SymtabShndxSection>();
370   }
371 
372   in.bss = make<BssSection>(".bss", 0, 1);
373   add(in.bss);
374 
375   // If there is a SECTIONS command and a .data.rel.ro section name use name
376   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
377   // This makes sure our relro is contiguous.
378   bool hasDataRelRo =
379       script->hasSectionsCommand && findSection(".data.rel.ro", 0);
380   in.bssRelRo =
381       make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
382   add(in.bssRelRo);
383 
384   // Add MIPS-specific sections.
385   if (config->emachine == EM_MIPS) {
386     if (!config->shared && config->hasDynSymTab) {
387       in.mipsRldMap = make<MipsRldMapSection>();
388       add(in.mipsRldMap);
389     }
390     if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
391       add(sec);
392     if (auto *sec = MipsOptionsSection<ELFT>::create())
393       add(sec);
394     if (auto *sec = MipsReginfoSection<ELFT>::create())
395       add(sec);
396   }
397 
398   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
399 
400   for (Partition &part : partitions) {
401     auto add = [&](SyntheticSection *sec) {
402       sec->partition = part.getNumber();
403       inputSections.push_back(sec);
404     };
405 
406     if (!part.name.empty()) {
407       part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
408       part.elfHeader->name = part.name;
409       add(part.elfHeader);
410 
411       part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
412       add(part.programHeaders);
413     }
414 
415     if (config->buildId != BuildIdKind::None) {
416       part.buildId = make<BuildIdSection>();
417       add(part.buildId);
418     }
419 
420     part.dynStrTab = make<StringTableSection>(".dynstr", true);
421     part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
422     part.dynamic = make<DynamicSection<ELFT>>();
423     if (config->androidPackDynRelocs)
424       part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
425     else
426       part.relaDyn =
427           make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
428 
429     if (config->hasDynSymTab) {
430       part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
431       add(part.dynSymTab);
432 
433       part.verSym = make<VersionTableSection>();
434       add(part.verSym);
435 
436       if (!namedVersionDefs().empty()) {
437         part.verDef = make<VersionDefinitionSection>();
438         add(part.verDef);
439       }
440 
441       part.verNeed = make<VersionNeedSection<ELFT>>();
442       add(part.verNeed);
443 
444       if (config->gnuHash) {
445         part.gnuHashTab = make<GnuHashTableSection>();
446         add(part.gnuHashTab);
447       }
448 
449       if (config->sysvHash) {
450         part.hashTab = make<HashTableSection>();
451         add(part.hashTab);
452       }
453 
454       add(part.dynamic);
455       add(part.dynStrTab);
456       add(part.relaDyn);
457     }
458 
459     if (config->relrPackDynRelocs) {
460       part.relrDyn = make<RelrSection<ELFT>>();
461       add(part.relrDyn);
462     }
463 
464     if (!config->relocatable) {
465       if (config->ehFrameHdr) {
466         part.ehFrameHdr = make<EhFrameHeader>();
467         add(part.ehFrameHdr);
468       }
469       part.ehFrame = make<EhFrameSection>();
470       add(part.ehFrame);
471     }
472 
473     if (config->emachine == EM_ARM && !config->relocatable) {
474       // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
475       // InputSections.
476       part.armExidx = make<ARMExidxSyntheticSection>();
477       add(part.armExidx);
478     }
479   }
480 
481   if (partitions.size() != 1) {
482     // Create the partition end marker. This needs to be in partition number 255
483     // so that it is sorted after all other partitions. It also has other
484     // special handling (see createPhdrs() and combineEhSections()).
485     in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
486     in.partEnd->partition = 255;
487     add(in.partEnd);
488 
489     in.partIndex = make<PartitionIndexSection>();
490     addOptionalRegular("__part_index_begin", in.partIndex, 0);
491     addOptionalRegular("__part_index_end", in.partIndex,
492                        in.partIndex->getSize());
493     add(in.partIndex);
494   }
495 
496   // Add .got. MIPS' .got is so different from the other archs,
497   // it has its own class.
498   if (config->emachine == EM_MIPS) {
499     in.mipsGot = make<MipsGotSection>();
500     add(in.mipsGot);
501   } else {
502     in.got = make<GotSection>();
503     add(in.got);
504   }
505 
506   if (config->emachine == EM_PPC) {
507     in.ppc32Got2 = make<PPC32Got2Section>();
508     add(in.ppc32Got2);
509   }
510 
511   if (config->emachine == EM_PPC64) {
512     in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
513     add(in.ppc64LongBranchTarget);
514   }
515 
516   in.gotPlt = make<GotPltSection>();
517   add(in.gotPlt);
518   in.igotPlt = make<IgotPltSection>();
519   add(in.igotPlt);
520 
521   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
522   // it as a relocation and ensure the referenced section is created.
523   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
524     if (target->gotBaseSymInGotPlt)
525       in.gotPlt->hasGotPltOffRel = true;
526     else
527       in.got->hasGotOffRel = true;
528   }
529 
530   if (config->gdbIndex)
531     add(GdbIndexSection::create<ELFT>());
532 
533   // We always need to add rel[a].plt to output if it has entries.
534   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
535   in.relaPlt = make<RelocationSection<ELFT>>(
536       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
537   add(in.relaPlt);
538 
539   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
540   // relocations are processed last by the dynamic loader. We cannot place the
541   // iplt section in .rel.dyn when Android relocation packing is enabled because
542   // that would cause a section type mismatch. However, because the Android
543   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
544   // behaviour by placing the iplt section in .rel.plt.
545   in.relaIplt = make<RelocationSection<ELFT>>(
546       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
547       /*sort=*/false);
548   add(in.relaIplt);
549 
550   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
551       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
552     in.ibtPlt = make<IBTPltSection>();
553     add(in.ibtPlt);
554   }
555 
556   in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
557                                       : make<PltSection>();
558   add(in.plt);
559   in.iplt = make<IpltSection>();
560   add(in.iplt);
561 
562   if (config->andFeatures)
563     add(make<GnuPropertySection>());
564 
565   // .note.GNU-stack is always added when we are creating a re-linkable
566   // object file. Other linkers are using the presence of this marker
567   // section to control the executable-ness of the stack area, but that
568   // is irrelevant these days. Stack area should always be non-executable
569   // by default. So we emit this section unconditionally.
570   if (config->relocatable)
571     add(make<GnuStackSection>());
572 
573   if (in.symTab)
574     add(in.symTab);
575   if (in.symTabShndx)
576     add(in.symTabShndx);
577   add(in.shStrTab);
578   if (in.strTab)
579     add(in.strTab);
580 }
581 
582 // The main function of the writer.
583 template <class ELFT> void Writer<ELFT>::run() {
584   copyLocalSymbols();
585 
586   if (config->copyRelocs)
587     addSectionSymbols();
588 
589   // Now that we have a complete set of output sections. This function
590   // completes section contents. For example, we need to add strings
591   // to the string table, and add entries to .got and .plt.
592   // finalizeSections does that.
593   finalizeSections();
594   checkExecuteOnly();
595   if (errorCount())
596     return;
597 
598   // If -compressed-debug-sections is specified, we need to compress
599   // .debug_* sections. Do it right now because it changes the size of
600   // output sections.
601   for (OutputSection *sec : outputSections)
602     sec->maybeCompress<ELFT>();
603 
604   if (script->hasSectionsCommand)
605     script->allocateHeaders(mainPart->phdrs);
606 
607   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
608   // 0 sized region. This has to be done late since only after assignAddresses
609   // we know the size of the sections.
610   for (Partition &part : partitions)
611     removeEmptyPTLoad(part.phdrs);
612 
613   if (!config->oFormatBinary)
614     assignFileOffsets();
615   else
616     assignFileOffsetsBinary();
617 
618   for (Partition &part : partitions)
619     setPhdrs(part);
620 
621   if (config->relocatable)
622     for (OutputSection *sec : outputSections)
623       sec->addr = 0;
624 
625   // Handle --print-map(-M)/--Map, --cref and --print-archive-stats=. Dump them
626   // before checkSections() because the files may be useful in case
627   // checkSections() or openFile() fails, for example, due to an erroneous file
628   // size.
629   writeMapFile();
630   writeCrossReferenceTable();
631   writeArchiveStats();
632 
633   if (config->checkSections)
634     checkSections();
635 
636   // It does not make sense try to open the file if we have error already.
637   if (errorCount())
638     return;
639 
640   {
641     llvm::TimeTraceScope timeScope("Write output file");
642     // Write the result down to a file.
643     openFile();
644     if (errorCount())
645       return;
646 
647     if (!config->oFormatBinary) {
648       if (config->zSeparate != SeparateSegmentKind::None)
649         writeTrapInstr();
650       writeHeader();
651       writeSections();
652     } else {
653       writeSectionsBinary();
654     }
655 
656     // Backfill .note.gnu.build-id section content. This is done at last
657     // because the content is usually a hash value of the entire output file.
658     writeBuildId();
659     if (errorCount())
660       return;
661 
662     if (auto e = buffer->commit())
663       error("failed to write to the output file: " + toString(std::move(e)));
664   }
665 }
666 
667 template <class ELFT, class RelTy>
668 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
669                                      llvm::ArrayRef<RelTy> rels) {
670   for (const RelTy &rel : rels) {
671     Symbol &sym = file->getRelocTargetSym(rel);
672     if (sym.isLocal())
673       sym.used = true;
674   }
675 }
676 
677 // The function ensures that the "used" field of local symbols reflects the fact
678 // that the symbol is used in a relocation from a live section.
679 template <class ELFT> static void markUsedLocalSymbols() {
680   // With --gc-sections, the field is already filled.
681   // See MarkLive<ELFT>::resolveReloc().
682   if (config->gcSections)
683     return;
684   // Without --gc-sections, the field is initialized with "true".
685   // Drop the flag first and then rise for symbols referenced in relocations.
686   for (InputFile *file : objectFiles) {
687     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
688     for (Symbol *b : f->getLocalSymbols())
689       b->used = false;
690     for (InputSectionBase *s : f->getSections()) {
691       InputSection *isec = dyn_cast_or_null<InputSection>(s);
692       if (!isec)
693         continue;
694       if (isec->type == SHT_REL)
695         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
696       else if (isec->type == SHT_RELA)
697         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
698     }
699   }
700 }
701 
702 static bool shouldKeepInSymtab(const Defined &sym) {
703   if (sym.isSection())
704     return false;
705 
706   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
707   // from live sections.
708   if (config->copyRelocs && sym.used)
709     return true;
710 
711   // Exclude local symbols pointing to .ARM.exidx sections.
712   // They are probably mapping symbols "$d", which are optional for these
713   // sections. After merging the .ARM.exidx sections, some of these symbols
714   // may become dangling. The easiest way to avoid the issue is not to add
715   // them to the symbol table from the beginning.
716   if (config->emachine == EM_ARM && sym.section &&
717       sym.section->type == SHT_ARM_EXIDX)
718     return false;
719 
720   if (config->discard == DiscardPolicy::None)
721     return true;
722   if (config->discard == DiscardPolicy::All)
723     return false;
724 
725   // In ELF assembly .L symbols are normally discarded by the assembler.
726   // If the assembler fails to do so, the linker discards them if
727   // * --discard-locals is used.
728   // * The symbol is in a SHF_MERGE section, which is normally the reason for
729   //   the assembler keeping the .L symbol.
730   StringRef name = sym.getName();
731   bool isLocal = name.startswith(".L") || name.empty();
732   if (!isLocal)
733     return true;
734 
735   if (config->discard == DiscardPolicy::Locals)
736     return false;
737 
738   SectionBase *sec = sym.section;
739   return !sec || !(sec->flags & SHF_MERGE);
740 }
741 
742 static bool includeInSymtab(const Symbol &b) {
743   if (!b.isLocal() && !b.isUsedInRegularObj)
744     return false;
745 
746   if (auto *d = dyn_cast<Defined>(&b)) {
747     // Always include absolute symbols.
748     SectionBase *sec = d->section;
749     if (!sec)
750       return true;
751     sec = sec->repl;
752 
753     // Exclude symbols pointing to garbage-collected sections.
754     if (isa<InputSectionBase>(sec) && !sec->isLive())
755       return false;
756 
757     if (auto *s = dyn_cast<MergeInputSection>(sec))
758       if (!s->getSectionPiece(d->value)->live)
759         return false;
760     return true;
761   }
762   return b.used;
763 }
764 
765 // Local symbols are not in the linker's symbol table. This function scans
766 // each object file's symbol table to copy local symbols to the output.
767 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
768   if (!in.symTab)
769     return;
770   llvm::TimeTraceScope timeScope("Add local symbols");
771   if (config->copyRelocs && config->discard != DiscardPolicy::None)
772     markUsedLocalSymbols<ELFT>();
773   for (InputFile *file : objectFiles) {
774     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
775     for (Symbol *b : f->getLocalSymbols()) {
776       assert(b->isLocal() && "should have been caught in initializeSymbols()");
777       auto *dr = dyn_cast<Defined>(b);
778 
779       // No reason to keep local undefined symbol in symtab.
780       if (!dr)
781         continue;
782       if (!includeInSymtab(*b))
783         continue;
784       if (!shouldKeepInSymtab(*dr))
785         continue;
786       in.symTab->addSymbol(b);
787     }
788   }
789 }
790 
791 // Create a section symbol for each output section so that we can represent
792 // relocations that point to the section. If we know that no relocation is
793 // referring to a section (that happens if the section is a synthetic one), we
794 // don't create a section symbol for that section.
795 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
796   for (BaseCommand *base : script->sectionCommands) {
797     auto *sec = dyn_cast<OutputSection>(base);
798     if (!sec)
799       continue;
800     auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
801       if (auto *isd = dyn_cast<InputSectionDescription>(base))
802         return !isd->sections.empty();
803       return false;
804     });
805     if (i == sec->sectionCommands.end())
806       continue;
807     InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
808 
809     // Relocations are not using REL[A] section symbols.
810     if (isec->type == SHT_REL || isec->type == SHT_RELA)
811       continue;
812 
813     // Unlike other synthetic sections, mergeable output sections contain data
814     // copied from input sections, and there may be a relocation pointing to its
815     // contents if -r or -emit-reloc are given.
816     if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
817       continue;
818 
819     // Set the symbol to be relative to the output section so that its st_value
820     // equals the output section address. Note, there may be a gap between the
821     // start of the output section and isec.
822     auto *sym =
823         make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
824                       /*value=*/0, /*size=*/0, isec->getOutputSection());
825     in.symTab->addSymbol(sym);
826   }
827 }
828 
829 // Today's loaders have a feature to make segments read-only after
830 // processing dynamic relocations to enhance security. PT_GNU_RELRO
831 // is defined for that.
832 //
833 // This function returns true if a section needs to be put into a
834 // PT_GNU_RELRO segment.
835 static bool isRelroSection(const OutputSection *sec) {
836   if (!config->zRelro)
837     return false;
838 
839   uint64_t flags = sec->flags;
840 
841   // Non-allocatable or non-writable sections don't need RELRO because
842   // they are not writable or not even mapped to memory in the first place.
843   // RELRO is for sections that are essentially read-only but need to
844   // be writable only at process startup to allow dynamic linker to
845   // apply relocations.
846   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
847     return false;
848 
849   // Once initialized, TLS data segments are used as data templates
850   // for a thread-local storage. For each new thread, runtime
851   // allocates memory for a TLS and copy templates there. No thread
852   // are supposed to use templates directly. Thus, it can be in RELRO.
853   if (flags & SHF_TLS)
854     return true;
855 
856   // .init_array, .preinit_array and .fini_array contain pointers to
857   // functions that are executed on process startup or exit. These
858   // pointers are set by the static linker, and they are not expected
859   // to change at runtime. But if you are an attacker, you could do
860   // interesting things by manipulating pointers in .fini_array, for
861   // example. So they are put into RELRO.
862   uint32_t type = sec->type;
863   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
864       type == SHT_PREINIT_ARRAY)
865     return true;
866 
867   // .got contains pointers to external symbols. They are resolved by
868   // the dynamic linker when a module is loaded into memory, and after
869   // that they are not expected to change. So, it can be in RELRO.
870   if (in.got && sec == in.got->getParent())
871     return true;
872 
873   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
874   // through r2 register, which is reserved for that purpose. Since r2 is used
875   // for accessing .got as well, .got and .toc need to be close enough in the
876   // virtual address space. Usually, .toc comes just after .got. Since we place
877   // .got into RELRO, .toc needs to be placed into RELRO too.
878   if (sec->name.equals(".toc"))
879     return true;
880 
881   // .got.plt contains pointers to external function symbols. They are
882   // by default resolved lazily, so we usually cannot put it into RELRO.
883   // However, if "-z now" is given, the lazy symbol resolution is
884   // disabled, which enables us to put it into RELRO.
885   if (sec == in.gotPlt->getParent())
886     return config->zNow;
887 
888   // .dynamic section contains data for the dynamic linker, and
889   // there's no need to write to it at runtime, so it's better to put
890   // it into RELRO.
891   if (sec->name == ".dynamic")
892     return true;
893 
894   // Sections with some special names are put into RELRO. This is a
895   // bit unfortunate because section names shouldn't be significant in
896   // ELF in spirit. But in reality many linker features depend on
897   // magic section names.
898   StringRef s = sec->name;
899   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
900          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
901          s == ".fini_array" || s == ".init_array" ||
902          s == ".openbsd.randomdata" || s == ".preinit_array";
903 }
904 
905 // We compute a rank for each section. The rank indicates where the
906 // section should be placed in the file.  Instead of using simple
907 // numbers (0,1,2...), we use a series of flags. One for each decision
908 // point when placing the section.
909 // Using flags has two key properties:
910 // * It is easy to check if a give branch was taken.
911 // * It is easy two see how similar two ranks are (see getRankProximity).
912 enum RankFlags {
913   RF_NOT_ADDR_SET = 1 << 27,
914   RF_NOT_ALLOC = 1 << 26,
915   RF_PARTITION = 1 << 18, // Partition number (8 bits)
916   RF_NOT_PART_EHDR = 1 << 17,
917   RF_NOT_PART_PHDR = 1 << 16,
918   RF_NOT_INTERP = 1 << 15,
919   RF_NOT_NOTE = 1 << 14,
920   RF_WRITE = 1 << 13,
921   RF_EXEC_WRITE = 1 << 12,
922   RF_EXEC = 1 << 11,
923   RF_RODATA = 1 << 10,
924   RF_NOT_RELRO = 1 << 9,
925   RF_NOT_TLS = 1 << 8,
926   RF_BSS = 1 << 7,
927   RF_PPC_NOT_TOCBSS = 1 << 6,
928   RF_PPC_TOCL = 1 << 5,
929   RF_PPC_TOC = 1 << 4,
930   RF_PPC_GOT = 1 << 3,
931   RF_PPC_BRANCH_LT = 1 << 2,
932   RF_MIPS_GPREL = 1 << 1,
933   RF_MIPS_NOT_GOT = 1 << 0
934 };
935 
936 static unsigned getSectionRank(const OutputSection *sec) {
937   unsigned rank = sec->partition * RF_PARTITION;
938 
939   // We want to put section specified by -T option first, so we
940   // can start assigning VA starting from them later.
941   if (config->sectionStartMap.count(sec->name))
942     return rank;
943   rank |= RF_NOT_ADDR_SET;
944 
945   // Allocatable sections go first to reduce the total PT_LOAD size and
946   // so debug info doesn't change addresses in actual code.
947   if (!(sec->flags & SHF_ALLOC))
948     return rank | RF_NOT_ALLOC;
949 
950   if (sec->type == SHT_LLVM_PART_EHDR)
951     return rank;
952   rank |= RF_NOT_PART_EHDR;
953 
954   if (sec->type == SHT_LLVM_PART_PHDR)
955     return rank;
956   rank |= RF_NOT_PART_PHDR;
957 
958   // Put .interp first because some loaders want to see that section
959   // on the first page of the executable file when loaded into memory.
960   if (sec->name == ".interp")
961     return rank;
962   rank |= RF_NOT_INTERP;
963 
964   // Put .note sections (which make up one PT_NOTE) at the beginning so that
965   // they are likely to be included in a core file even if core file size is
966   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
967   // included in a core to match core files with executables.
968   if (sec->type == SHT_NOTE)
969     return rank;
970   rank |= RF_NOT_NOTE;
971 
972   // Sort sections based on their access permission in the following
973   // order: R, RX, RWX, RW.  This order is based on the following
974   // considerations:
975   // * Read-only sections come first such that they go in the
976   //   PT_LOAD covering the program headers at the start of the file.
977   // * Read-only, executable sections come next.
978   // * Writable, executable sections follow such that .plt on
979   //   architectures where it needs to be writable will be placed
980   //   between .text and .data.
981   // * Writable sections come last, such that .bss lands at the very
982   //   end of the last PT_LOAD.
983   bool isExec = sec->flags & SHF_EXECINSTR;
984   bool isWrite = sec->flags & SHF_WRITE;
985 
986   if (isExec) {
987     if (isWrite)
988       rank |= RF_EXEC_WRITE;
989     else
990       rank |= RF_EXEC;
991   } else if (isWrite) {
992     rank |= RF_WRITE;
993   } else if (sec->type == SHT_PROGBITS) {
994     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
995     // .eh_frame) closer to .text. They likely contain PC or GOT relative
996     // relocations and there could be relocation overflow if other huge sections
997     // (.dynstr .dynsym) were placed in between.
998     rank |= RF_RODATA;
999   }
1000 
1001   // Place RelRo sections first. After considering SHT_NOBITS below, the
1002   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
1003   // where | marks where page alignment happens. An alternative ordering is
1004   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
1005   // waste more bytes due to 2 alignment places.
1006   if (!isRelroSection(sec))
1007     rank |= RF_NOT_RELRO;
1008 
1009   // If we got here we know that both A and B are in the same PT_LOAD.
1010 
1011   // The TLS initialization block needs to be a single contiguous block in a R/W
1012   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
1013   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
1014   // after PROGBITS.
1015   if (!(sec->flags & SHF_TLS))
1016     rank |= RF_NOT_TLS;
1017 
1018   // Within TLS sections, or within other RelRo sections, or within non-RelRo
1019   // sections, place non-NOBITS sections first.
1020   if (sec->type == SHT_NOBITS)
1021     rank |= RF_BSS;
1022 
1023   // Some architectures have additional ordering restrictions for sections
1024   // within the same PT_LOAD.
1025   if (config->emachine == EM_PPC64) {
1026     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
1027     // that we would like to make sure appear is a specific order to maximize
1028     // their coverage by a single signed 16-bit offset from the TOC base
1029     // pointer. Conversely, the special .tocbss section should be first among
1030     // all SHT_NOBITS sections. This will put it next to the loaded special
1031     // PPC64 sections (and, thus, within reach of the TOC base pointer).
1032     StringRef name = sec->name;
1033     if (name != ".tocbss")
1034       rank |= RF_PPC_NOT_TOCBSS;
1035 
1036     if (name == ".toc1")
1037       rank |= RF_PPC_TOCL;
1038 
1039     if (name == ".toc")
1040       rank |= RF_PPC_TOC;
1041 
1042     if (name == ".got")
1043       rank |= RF_PPC_GOT;
1044 
1045     if (name == ".branch_lt")
1046       rank |= RF_PPC_BRANCH_LT;
1047   }
1048 
1049   if (config->emachine == EM_MIPS) {
1050     // All sections with SHF_MIPS_GPREL flag should be grouped together
1051     // because data in these sections is addressable with a gp relative address.
1052     if (sec->flags & SHF_MIPS_GPREL)
1053       rank |= RF_MIPS_GPREL;
1054 
1055     if (sec->name != ".got")
1056       rank |= RF_MIPS_NOT_GOT;
1057   }
1058 
1059   return rank;
1060 }
1061 
1062 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
1063   const OutputSection *a = cast<OutputSection>(aCmd);
1064   const OutputSection *b = cast<OutputSection>(bCmd);
1065 
1066   if (a->sortRank != b->sortRank)
1067     return a->sortRank < b->sortRank;
1068 
1069   if (!(a->sortRank & RF_NOT_ADDR_SET))
1070     return config->sectionStartMap.lookup(a->name) <
1071            config->sectionStartMap.lookup(b->name);
1072   return false;
1073 }
1074 
1075 void PhdrEntry::add(OutputSection *sec) {
1076   lastSec = sec;
1077   if (!firstSec)
1078     firstSec = sec;
1079   p_align = std::max(p_align, sec->alignment);
1080   if (p_type == PT_LOAD)
1081     sec->ptLoad = this;
1082 }
1083 
1084 // The beginning and the ending of .rel[a].plt section are marked
1085 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1086 // executable. The runtime needs these symbols in order to resolve
1087 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1088 // need these symbols, since IRELATIVE relocs are resolved through GOT
1089 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1090 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1091   if (config->relocatable || config->isPic)
1092     return;
1093 
1094   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1095   // because .rela.plt might be empty and thus removed from output.
1096   // We'll override Out::elfHeader with In.relaIplt later when we are
1097   // sure that .rela.plt exists in output.
1098   ElfSym::relaIpltStart = addOptionalRegular(
1099       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1100       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1101 
1102   ElfSym::relaIpltEnd = addOptionalRegular(
1103       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1104       Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1105 }
1106 
1107 template <class ELFT>
1108 void Writer<ELFT>::forEachRelSec(
1109     llvm::function_ref<void(InputSectionBase &)> fn) {
1110   // Scan all relocations. Each relocation goes through a series
1111   // of tests to determine if it needs special treatment, such as
1112   // creating GOT, PLT, copy relocations, etc.
1113   // Note that relocations for non-alloc sections are directly
1114   // processed by InputSection::relocateNonAlloc.
1115   for (InputSectionBase *isec : inputSections)
1116     if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1117       fn(*isec);
1118   for (Partition &part : partitions) {
1119     for (EhInputSection *es : part.ehFrame->sections)
1120       fn(*es);
1121     if (part.armExidx && part.armExidx->isLive())
1122       for (InputSection *ex : part.armExidx->exidxSections)
1123         fn(*ex);
1124   }
1125 }
1126 
1127 // This function generates assignments for predefined symbols (e.g. _end or
1128 // _etext) and inserts them into the commands sequence to be processed at the
1129 // appropriate time. This ensures that the value is going to be correct by the
1130 // time any references to these symbols are processed and is equivalent to
1131 // defining these symbols explicitly in the linker script.
1132 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1133   if (ElfSym::globalOffsetTable) {
1134     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1135     // to the start of the .got or .got.plt section.
1136     InputSection *gotSection = in.gotPlt;
1137     if (!target->gotBaseSymInGotPlt)
1138       gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1139                               : cast<InputSection>(in.got);
1140     ElfSym::globalOffsetTable->section = gotSection;
1141   }
1142 
1143   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1144   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1145     ElfSym::relaIpltStart->section = in.relaIplt;
1146     ElfSym::relaIpltEnd->section = in.relaIplt;
1147     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1148   }
1149 
1150   PhdrEntry *last = nullptr;
1151   PhdrEntry *lastRO = nullptr;
1152 
1153   for (Partition &part : partitions) {
1154     for (PhdrEntry *p : part.phdrs) {
1155       if (p->p_type != PT_LOAD)
1156         continue;
1157       last = p;
1158       if (!(p->p_flags & PF_W))
1159         lastRO = p;
1160     }
1161   }
1162 
1163   if (lastRO) {
1164     // _etext is the first location after the last read-only loadable segment.
1165     if (ElfSym::etext1)
1166       ElfSym::etext1->section = lastRO->lastSec;
1167     if (ElfSym::etext2)
1168       ElfSym::etext2->section = lastRO->lastSec;
1169   }
1170 
1171   if (last) {
1172     // _edata points to the end of the last mapped initialized section.
1173     OutputSection *edata = nullptr;
1174     for (OutputSection *os : outputSections) {
1175       if (os->type != SHT_NOBITS)
1176         edata = os;
1177       if (os == last->lastSec)
1178         break;
1179     }
1180 
1181     if (ElfSym::edata1)
1182       ElfSym::edata1->section = edata;
1183     if (ElfSym::edata2)
1184       ElfSym::edata2->section = edata;
1185 
1186     // _end is the first location after the uninitialized data region.
1187     if (ElfSym::end1)
1188       ElfSym::end1->section = last->lastSec;
1189     if (ElfSym::end2)
1190       ElfSym::end2->section = last->lastSec;
1191   }
1192 
1193   if (ElfSym::bss)
1194     ElfSym::bss->section = findSection(".bss");
1195 
1196   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1197   // be equal to the _gp symbol's value.
1198   if (ElfSym::mipsGp) {
1199     // Find GP-relative section with the lowest address
1200     // and use this address to calculate default _gp value.
1201     for (OutputSection *os : outputSections) {
1202       if (os->flags & SHF_MIPS_GPREL) {
1203         ElfSym::mipsGp->section = os;
1204         ElfSym::mipsGp->value = 0x7ff0;
1205         break;
1206       }
1207     }
1208   }
1209 }
1210 
1211 // We want to find how similar two ranks are.
1212 // The more branches in getSectionRank that match, the more similar they are.
1213 // Since each branch corresponds to a bit flag, we can just use
1214 // countLeadingZeros.
1215 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1216   return countLeadingZeros(a->sortRank ^ b->sortRank);
1217 }
1218 
1219 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1220   auto *sec = dyn_cast<OutputSection>(b);
1221   return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1222 }
1223 
1224 // When placing orphan sections, we want to place them after symbol assignments
1225 // so that an orphan after
1226 //   begin_foo = .;
1227 //   foo : { *(foo) }
1228 //   end_foo = .;
1229 // doesn't break the intended meaning of the begin/end symbols.
1230 // We don't want to go over sections since findOrphanPos is the
1231 // one in charge of deciding the order of the sections.
1232 // We don't want to go over changes to '.', since doing so in
1233 //  rx_sec : { *(rx_sec) }
1234 //  . = ALIGN(0x1000);
1235 //  /* The RW PT_LOAD starts here*/
1236 //  rw_sec : { *(rw_sec) }
1237 // would mean that the RW PT_LOAD would become unaligned.
1238 static bool shouldSkip(BaseCommand *cmd) {
1239   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1240     return assign->name != ".";
1241   return false;
1242 }
1243 
1244 // We want to place orphan sections so that they share as much
1245 // characteristics with their neighbors as possible. For example, if
1246 // both are rw, or both are tls.
1247 static std::vector<BaseCommand *>::iterator
1248 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1249               std::vector<BaseCommand *>::iterator e) {
1250   OutputSection *sec = cast<OutputSection>(*e);
1251 
1252   // Find the first element that has as close a rank as possible.
1253   auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1254     return getRankProximity(sec, a) < getRankProximity(sec, b);
1255   });
1256   if (i == e)
1257     return e;
1258 
1259   // Consider all existing sections with the same proximity.
1260   int proximity = getRankProximity(sec, *i);
1261   for (; i != e; ++i) {
1262     auto *curSec = dyn_cast<OutputSection>(*i);
1263     if (!curSec || !curSec->hasInputSections)
1264       continue;
1265     if (getRankProximity(sec, curSec) != proximity ||
1266         sec->sortRank < curSec->sortRank)
1267       break;
1268   }
1269 
1270   auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1271     auto *os = dyn_cast<OutputSection>(cmd);
1272     return os && os->hasInputSections;
1273   };
1274   auto j = std::find_if(llvm::make_reverse_iterator(i),
1275                         llvm::make_reverse_iterator(b),
1276                         isOutputSecWithInputSections);
1277   i = j.base();
1278 
1279   // As a special case, if the orphan section is the last section, put
1280   // it at the very end, past any other commands.
1281   // This matches bfd's behavior and is convenient when the linker script fully
1282   // specifies the start of the file, but doesn't care about the end (the non
1283   // alloc sections for example).
1284   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1285   if (nextSec == e)
1286     return e;
1287 
1288   while (i != e && shouldSkip(*i))
1289     ++i;
1290   return i;
1291 }
1292 
1293 // Adds random priorities to sections not already in the map.
1294 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1295   if (config->shuffleSections.empty())
1296     return;
1297 
1298   std::vector<InputSectionBase *> matched, sections = inputSections;
1299   matched.reserve(sections.size());
1300   for (const auto &patAndSeed : config->shuffleSections) {
1301     matched.clear();
1302     for (InputSectionBase *sec : sections)
1303       if (patAndSeed.first.match(sec->name))
1304         matched.push_back(sec);
1305     const uint32_t seed = patAndSeed.second;
1306     if (seed == UINT32_MAX) {
1307       // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1308       // section order is stable even if the number of sections changes. This is
1309       // useful to catch issues like static initialization order fiasco
1310       // reliably.
1311       std::reverse(matched.begin(), matched.end());
1312     } else {
1313       std::mt19937 g(seed ? seed : std::random_device()());
1314       llvm::shuffle(matched.begin(), matched.end(), g);
1315     }
1316     size_t i = 0;
1317     for (InputSectionBase *&sec : sections)
1318       if (patAndSeed.first.match(sec->name))
1319         sec = matched[i++];
1320   }
1321 
1322   // Existing priorities are < 0, so use priorities >= 0 for the missing
1323   // sections.
1324   int prio = 0;
1325   for (InputSectionBase *sec : sections) {
1326     if (order.try_emplace(sec, prio).second)
1327       ++prio;
1328   }
1329 }
1330 
1331 // Builds section order for handling --symbol-ordering-file.
1332 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1333   DenseMap<const InputSectionBase *, int> sectionOrder;
1334   // Use the rarely used option -call-graph-ordering-file to sort sections.
1335   if (!config->callGraphProfile.empty())
1336     return computeCallGraphProfileOrder();
1337 
1338   if (config->symbolOrderingFile.empty())
1339     return sectionOrder;
1340 
1341   struct SymbolOrderEntry {
1342     int priority;
1343     bool present;
1344   };
1345 
1346   // Build a map from symbols to their priorities. Symbols that didn't
1347   // appear in the symbol ordering file have the lowest priority 0.
1348   // All explicitly mentioned symbols have negative (higher) priorities.
1349   DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1350   int priority = -config->symbolOrderingFile.size();
1351   for (StringRef s : config->symbolOrderingFile)
1352     symbolOrder.insert({s, {priority++, false}});
1353 
1354   // Build a map from sections to their priorities.
1355   auto addSym = [&](Symbol &sym) {
1356     auto it = symbolOrder.find(sym.getName());
1357     if (it == symbolOrder.end())
1358       return;
1359     SymbolOrderEntry &ent = it->second;
1360     ent.present = true;
1361 
1362     maybeWarnUnorderableSymbol(&sym);
1363 
1364     if (auto *d = dyn_cast<Defined>(&sym)) {
1365       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1366         int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1367         priority = std::min(priority, ent.priority);
1368       }
1369     }
1370   };
1371 
1372   // We want both global and local symbols. We get the global ones from the
1373   // symbol table and iterate the object files for the local ones.
1374   for (Symbol *sym : symtab->symbols())
1375     if (!sym->isLazy())
1376       addSym(*sym);
1377 
1378   for (InputFile *file : objectFiles)
1379     for (Symbol *sym : file->getSymbols()) {
1380       if (!sym->isLocal())
1381         break;
1382       addSym(*sym);
1383     }
1384 
1385   if (config->warnSymbolOrdering)
1386     for (auto orderEntry : symbolOrder)
1387       if (!orderEntry.second.present)
1388         warn("symbol ordering file: no such symbol: " + orderEntry.first);
1389 
1390   return sectionOrder;
1391 }
1392 
1393 // Sorts the sections in ISD according to the provided section order.
1394 static void
1395 sortISDBySectionOrder(InputSectionDescription *isd,
1396                       const DenseMap<const InputSectionBase *, int> &order) {
1397   std::vector<InputSection *> unorderedSections;
1398   std::vector<std::pair<InputSection *, int>> orderedSections;
1399   uint64_t unorderedSize = 0;
1400 
1401   for (InputSection *isec : isd->sections) {
1402     auto i = order.find(isec);
1403     if (i == order.end()) {
1404       unorderedSections.push_back(isec);
1405       unorderedSize += isec->getSize();
1406       continue;
1407     }
1408     orderedSections.push_back({isec, i->second});
1409   }
1410   llvm::sort(orderedSections, llvm::less_second());
1411 
1412   // Find an insertion point for the ordered section list in the unordered
1413   // section list. On targets with limited-range branches, this is the mid-point
1414   // of the unordered section list. This decreases the likelihood that a range
1415   // extension thunk will be needed to enter or exit the ordered region. If the
1416   // ordered section list is a list of hot functions, we can generally expect
1417   // the ordered functions to be called more often than the unordered functions,
1418   // making it more likely that any particular call will be within range, and
1419   // therefore reducing the number of thunks required.
1420   //
1421   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1422   // If the layout is:
1423   //
1424   // 8MB hot
1425   // 32MB cold
1426   //
1427   // only the first 8-16MB of the cold code (depending on which hot function it
1428   // is actually calling) can call the hot code without a range extension thunk.
1429   // However, if we use this layout:
1430   //
1431   // 16MB cold
1432   // 8MB hot
1433   // 16MB cold
1434   //
1435   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1436   // of the second block of cold code can call the hot code without a thunk. So
1437   // we effectively double the amount of code that could potentially call into
1438   // the hot code without a thunk.
1439   size_t insPt = 0;
1440   if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1441     uint64_t unorderedPos = 0;
1442     for (; insPt != unorderedSections.size(); ++insPt) {
1443       unorderedPos += unorderedSections[insPt]->getSize();
1444       if (unorderedPos > unorderedSize / 2)
1445         break;
1446     }
1447   }
1448 
1449   isd->sections.clear();
1450   for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1451     isd->sections.push_back(isec);
1452   for (std::pair<InputSection *, int> p : orderedSections)
1453     isd->sections.push_back(p.first);
1454   for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1455     isd->sections.push_back(isec);
1456 }
1457 
1458 static void sortSection(OutputSection *sec,
1459                         const DenseMap<const InputSectionBase *, int> &order) {
1460   StringRef name = sec->name;
1461 
1462   // Never sort these.
1463   if (name == ".init" || name == ".fini")
1464     return;
1465 
1466   // IRelative relocations that usually live in the .rel[a].dyn section should
1467   // be processed last by the dynamic loader. To achieve that we add synthetic
1468   // sections in the required order from the beginning so that the in.relaIplt
1469   // section is placed last in an output section. Here we just do not apply
1470   // sorting for an output section which holds the in.relaIplt section.
1471   if (in.relaIplt->getParent() == sec)
1472     return;
1473 
1474   // Sort input sections by priority using the list provided by
1475   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1476   // digit radix sort. The sections may be sorted stably again by a more
1477   // significant key.
1478   if (!order.empty())
1479     for (BaseCommand *b : sec->sectionCommands)
1480       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1481         sortISDBySectionOrder(isd, order);
1482 
1483   // Sort input sections by section name suffixes for
1484   // __attribute__((init_priority(N))).
1485   if (name == ".init_array" || name == ".fini_array") {
1486     if (!script->hasSectionsCommand)
1487       sec->sortInitFini();
1488     return;
1489   }
1490 
1491   // Sort input sections by the special rule for .ctors and .dtors.
1492   if (name == ".ctors" || name == ".dtors") {
1493     if (!script->hasSectionsCommand)
1494       sec->sortCtorsDtors();
1495     return;
1496   }
1497 
1498   // .toc is allocated just after .got and is accessed using GOT-relative
1499   // relocations. Object files compiled with small code model have an
1500   // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1501   // To reduce the risk of relocation overflow, .toc contents are sorted so that
1502   // sections having smaller relocation offsets are at beginning of .toc
1503   if (config->emachine == EM_PPC64 && name == ".toc") {
1504     if (script->hasSectionsCommand)
1505       return;
1506     assert(sec->sectionCommands.size() == 1);
1507     auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1508     llvm::stable_sort(isd->sections,
1509                       [](const InputSection *a, const InputSection *b) -> bool {
1510                         return a->file->ppc64SmallCodeModelTocRelocs &&
1511                                !b->file->ppc64SmallCodeModelTocRelocs;
1512                       });
1513     return;
1514   }
1515 }
1516 
1517 // If no layout was provided by linker script, we want to apply default
1518 // sorting for special input sections. This also handles --symbol-ordering-file.
1519 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1520   // Build the order once since it is expensive.
1521   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1522   maybeShuffle(order);
1523   for (BaseCommand *base : script->sectionCommands)
1524     if (auto *sec = dyn_cast<OutputSection>(base))
1525       sortSection(sec, order);
1526 }
1527 
1528 template <class ELFT> void Writer<ELFT>::sortSections() {
1529   llvm::TimeTraceScope timeScope("Sort sections");
1530   script->adjustSectionsBeforeSorting();
1531 
1532   // Don't sort if using -r. It is not necessary and we want to preserve the
1533   // relative order for SHF_LINK_ORDER sections.
1534   if (config->relocatable)
1535     return;
1536 
1537   sortInputSections();
1538 
1539   for (BaseCommand *base : script->sectionCommands) {
1540     auto *os = dyn_cast<OutputSection>(base);
1541     if (!os)
1542       continue;
1543     os->sortRank = getSectionRank(os);
1544 
1545     // We want to assign rude approximation values to outSecOff fields
1546     // to know the relative order of the input sections. We use it for
1547     // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1548     uint64_t i = 0;
1549     for (InputSection *sec : getInputSections(os))
1550       sec->outSecOff = i++;
1551   }
1552 
1553   if (!script->hasSectionsCommand) {
1554     // We know that all the OutputSections are contiguous in this case.
1555     auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1556     std::stable_sort(
1557         llvm::find_if(script->sectionCommands, isSection),
1558         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1559         compareSections);
1560 
1561     // Process INSERT commands. From this point onwards the order of
1562     // script->sectionCommands is fixed.
1563     script->processInsertCommands();
1564     return;
1565   }
1566 
1567   script->processInsertCommands();
1568 
1569   // Orphan sections are sections present in the input files which are
1570   // not explicitly placed into the output file by the linker script.
1571   //
1572   // The sections in the linker script are already in the correct
1573   // order. We have to figuere out where to insert the orphan
1574   // sections.
1575   //
1576   // The order of the sections in the script is arbitrary and may not agree with
1577   // compareSections. This means that we cannot easily define a strict weak
1578   // ordering. To see why, consider a comparison of a section in the script and
1579   // one not in the script. We have a two simple options:
1580   // * Make them equivalent (a is not less than b, and b is not less than a).
1581   //   The problem is then that equivalence has to be transitive and we can
1582   //   have sections a, b and c with only b in a script and a less than c
1583   //   which breaks this property.
1584   // * Use compareSectionsNonScript. Given that the script order doesn't have
1585   //   to match, we can end up with sections a, b, c, d where b and c are in the
1586   //   script and c is compareSectionsNonScript less than b. In which case d
1587   //   can be equivalent to c, a to b and d < a. As a concrete example:
1588   //   .a (rx) # not in script
1589   //   .b (rx) # in script
1590   //   .c (ro) # in script
1591   //   .d (ro) # not in script
1592   //
1593   // The way we define an order then is:
1594   // *  Sort only the orphan sections. They are in the end right now.
1595   // *  Move each orphan section to its preferred position. We try
1596   //    to put each section in the last position where it can share
1597   //    a PT_LOAD.
1598   //
1599   // There is some ambiguity as to where exactly a new entry should be
1600   // inserted, because Commands contains not only output section
1601   // commands but also other types of commands such as symbol assignment
1602   // expressions. There's no correct answer here due to the lack of the
1603   // formal specification of the linker script. We use heuristics to
1604   // determine whether a new output command should be added before or
1605   // after another commands. For the details, look at shouldSkip
1606   // function.
1607 
1608   auto i = script->sectionCommands.begin();
1609   auto e = script->sectionCommands.end();
1610   auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1611     if (auto *sec = dyn_cast<OutputSection>(base))
1612       return sec->sectionIndex == UINT32_MAX;
1613     return false;
1614   });
1615 
1616   // Sort the orphan sections.
1617   std::stable_sort(nonScriptI, e, compareSections);
1618 
1619   // As a horrible special case, skip the first . assignment if it is before any
1620   // section. We do this because it is common to set a load address by starting
1621   // the script with ". = 0xabcd" and the expectation is that every section is
1622   // after that.
1623   auto firstSectionOrDotAssignment =
1624       std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1625   if (firstSectionOrDotAssignment != e &&
1626       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1627     ++firstSectionOrDotAssignment;
1628   i = firstSectionOrDotAssignment;
1629 
1630   while (nonScriptI != e) {
1631     auto pos = findOrphanPos(i, nonScriptI);
1632     OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1633 
1634     // As an optimization, find all sections with the same sort rank
1635     // and insert them with one rotate.
1636     unsigned rank = orphan->sortRank;
1637     auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1638       return cast<OutputSection>(cmd)->sortRank != rank;
1639     });
1640     std::rotate(pos, nonScriptI, end);
1641     nonScriptI = end;
1642   }
1643 
1644   script->adjustSectionsAfterSorting();
1645 }
1646 
1647 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1648   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1649   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1650   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1651   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1652   if (!la || !lb)
1653     return la && !lb;
1654   OutputSection *aOut = la->getParent();
1655   OutputSection *bOut = lb->getParent();
1656 
1657   if (aOut != bOut)
1658     return aOut->addr < bOut->addr;
1659   return la->outSecOff < lb->outSecOff;
1660 }
1661 
1662 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1663   llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1664   for (OutputSection *sec : outputSections) {
1665     if (!(sec->flags & SHF_LINK_ORDER))
1666       continue;
1667 
1668     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1669     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1670     if (!config->relocatable && config->emachine == EM_ARM &&
1671         sec->type == SHT_ARM_EXIDX)
1672       continue;
1673 
1674     // Link order may be distributed across several InputSectionDescriptions.
1675     // Sorting is performed separately.
1676     std::vector<InputSection **> scriptSections;
1677     std::vector<InputSection *> sections;
1678     for (BaseCommand *base : sec->sectionCommands) {
1679       auto *isd = dyn_cast<InputSectionDescription>(base);
1680       if (!isd)
1681         continue;
1682       bool hasLinkOrder = false;
1683       scriptSections.clear();
1684       sections.clear();
1685       for (InputSection *&isec : isd->sections) {
1686         if (isec->flags & SHF_LINK_ORDER) {
1687           InputSection *link = isec->getLinkOrderDep();
1688           if (link && !link->getParent())
1689             error(toString(isec) + ": sh_link points to discarded section " +
1690                   toString(link));
1691           hasLinkOrder = true;
1692         }
1693         scriptSections.push_back(&isec);
1694         sections.push_back(isec);
1695       }
1696       if (hasLinkOrder && errorCount() == 0) {
1697         llvm::stable_sort(sections, compareByFilePosition);
1698         for (int i = 0, n = sections.size(); i != n; ++i)
1699           *scriptSections[i] = sections[i];
1700       }
1701     }
1702   }
1703 }
1704 
1705 static void finalizeSynthetic(SyntheticSection *sec) {
1706   if (sec && sec->isNeeded() && sec->getParent()) {
1707     llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1708     sec->finalizeContents();
1709   }
1710 }
1711 
1712 // We need to generate and finalize the content that depends on the address of
1713 // InputSections. As the generation of the content may also alter InputSection
1714 // addresses we must converge to a fixed point. We do that here. See the comment
1715 // in Writer<ELFT>::finalizeSections().
1716 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1717   llvm::TimeTraceScope timeScope("Finalize address dependent content");
1718   ThunkCreator tc;
1719   AArch64Err843419Patcher a64p;
1720   ARMErr657417Patcher a32p;
1721   script->assignAddresses();
1722   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1723   // do require the relative addresses of OutputSections because linker scripts
1724   // can assign Virtual Addresses to OutputSections that are not monotonically
1725   // increasing.
1726   for (Partition &part : partitions)
1727     finalizeSynthetic(part.armExidx);
1728   resolveShfLinkOrder();
1729 
1730   // Converts call x@GDPLT to call __tls_get_addr
1731   if (config->emachine == EM_HEXAGON)
1732     hexagonTLSSymbolUpdate(outputSections);
1733 
1734   int assignPasses = 0;
1735   for (;;) {
1736     bool changed = target->needsThunks && tc.createThunks(outputSections);
1737 
1738     // With Thunk Size much smaller than branch range we expect to
1739     // converge quickly; if we get to 15 something has gone wrong.
1740     if (changed && tc.pass >= 15) {
1741       error("thunk creation not converged");
1742       break;
1743     }
1744 
1745     if (config->fixCortexA53Errata843419) {
1746       if (changed)
1747         script->assignAddresses();
1748       changed |= a64p.createFixes();
1749     }
1750     if (config->fixCortexA8) {
1751       if (changed)
1752         script->assignAddresses();
1753       changed |= a32p.createFixes();
1754     }
1755 
1756     if (in.mipsGot)
1757       in.mipsGot->updateAllocSize();
1758 
1759     for (Partition &part : partitions) {
1760       changed |= part.relaDyn->updateAllocSize();
1761       if (part.relrDyn)
1762         changed |= part.relrDyn->updateAllocSize();
1763     }
1764 
1765     const Defined *changedSym = script->assignAddresses();
1766     if (!changed) {
1767       // Some symbols may be dependent on section addresses. When we break the
1768       // loop, the symbol values are finalized because a previous
1769       // assignAddresses() finalized section addresses.
1770       if (!changedSym)
1771         break;
1772       if (++assignPasses == 5) {
1773         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1774                     " does not converge");
1775         break;
1776       }
1777     }
1778   }
1779 
1780   // If addrExpr is set, the address may not be a multiple of the alignment.
1781   // Warn because this is error-prone.
1782   for (BaseCommand *cmd : script->sectionCommands)
1783     if (auto *os = dyn_cast<OutputSection>(cmd))
1784       if (os->addr % os->alignment != 0)
1785         warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
1786              os->name + " is not a multiple of alignment (" +
1787              Twine(os->alignment) + ")");
1788 }
1789 
1790 // If Input Sections have been shrunk (basic block sections) then
1791 // update symbol values and sizes associated with these sections.  With basic
1792 // block sections, input sections can shrink when the jump instructions at
1793 // the end of the section are relaxed.
1794 static void fixSymbolsAfterShrinking() {
1795   for (InputFile *File : objectFiles) {
1796     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1797       auto *def = dyn_cast<Defined>(Sym);
1798       if (!def)
1799         return;
1800 
1801       const SectionBase *sec = def->section;
1802       if (!sec)
1803         return;
1804 
1805       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
1806       if (!inputSec || !inputSec->bytesDropped)
1807         return;
1808 
1809       const size_t OldSize = inputSec->data().size();
1810       const size_t NewSize = OldSize - inputSec->bytesDropped;
1811 
1812       if (def->value > NewSize && def->value <= OldSize) {
1813         LLVM_DEBUG(llvm::dbgs()
1814                    << "Moving symbol " << Sym->getName() << " from "
1815                    << def->value << " to "
1816                    << def->value - inputSec->bytesDropped << " bytes\n");
1817         def->value -= inputSec->bytesDropped;
1818         return;
1819       }
1820 
1821       if (def->value + def->size > NewSize && def->value <= OldSize &&
1822           def->value + def->size <= OldSize) {
1823         LLVM_DEBUG(llvm::dbgs()
1824                    << "Shrinking symbol " << Sym->getName() << " from "
1825                    << def->size << " to " << def->size - inputSec->bytesDropped
1826                    << " bytes\n");
1827         def->size -= inputSec->bytesDropped;
1828       }
1829     });
1830   }
1831 }
1832 
1833 // If basic block sections exist, there are opportunities to delete fall thru
1834 // jumps and shrink jump instructions after basic block reordering.  This
1835 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1836 // option is used.
1837 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1838   assert(config->optimizeBBJumps);
1839 
1840   script->assignAddresses();
1841   // For every output section that has executable input sections, this
1842   // does the following:
1843   //   1. Deletes all direct jump instructions in input sections that
1844   //      jump to the following section as it is not required.
1845   //   2. If there are two consecutive jump instructions, it checks
1846   //      if they can be flipped and one can be deleted.
1847   for (OutputSection *os : outputSections) {
1848     if (!(os->flags & SHF_EXECINSTR))
1849       continue;
1850     std::vector<InputSection *> sections = getInputSections(os);
1851     std::vector<unsigned> result(sections.size());
1852     // Delete all fall through jump instructions.  Also, check if two
1853     // consecutive jump instructions can be flipped so that a fall
1854     // through jmp instruction can be deleted.
1855     parallelForEachN(0, sections.size(), [&](size_t i) {
1856       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1857       InputSection &is = *sections[i];
1858       result[i] =
1859           target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
1860     });
1861     size_t numDeleted = std::count(result.begin(), result.end(), 1);
1862     if (numDeleted > 0) {
1863       script->assignAddresses();
1864       LLVM_DEBUG(llvm::dbgs()
1865                  << "Removing " << numDeleted << " fall through jumps\n");
1866     }
1867   }
1868 
1869   fixSymbolsAfterShrinking();
1870 
1871   for (OutputSection *os : outputSections) {
1872     std::vector<InputSection *> sections = getInputSections(os);
1873     for (InputSection *is : sections)
1874       is->trim();
1875   }
1876 }
1877 
1878 // In order to allow users to manipulate linker-synthesized sections,
1879 // we had to add synthetic sections to the input section list early,
1880 // even before we make decisions whether they are needed. This allows
1881 // users to write scripts like this: ".mygot : { .got }".
1882 //
1883 // Doing it has an unintended side effects. If it turns out that we
1884 // don't need a .got (for example) at all because there's no
1885 // relocation that needs a .got, we don't want to emit .got.
1886 //
1887 // To deal with the above problem, this function is called after
1888 // scanRelocations is called to remove synthetic sections that turn
1889 // out to be empty.
1890 static void removeUnusedSyntheticSections() {
1891   // All input synthetic sections that can be empty are placed after
1892   // all regular ones. Reverse iterate to find the first synthetic section
1893   // after a non-synthetic one which will be our starting point.
1894   auto start = std::find_if(inputSections.rbegin(), inputSections.rend(),
1895                             [](InputSectionBase *s) {
1896                               return !isa<SyntheticSection>(s);
1897                             })
1898                    .base();
1899 
1900   DenseSet<InputSectionDescription *> isdSet;
1901   // Mark unused synthetic sections for deletion
1902   auto end = std::stable_partition(
1903       start, inputSections.end(), [&](InputSectionBase *s) {
1904         SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1905         OutputSection *os = ss->getParent();
1906         if (!os || ss->isNeeded())
1907           return true;
1908 
1909         // If we reach here, then ss is an unused synthetic section and we want
1910         // to remove it from the corresponding input section description, and
1911         // orphanSections.
1912         for (BaseCommand *b : os->sectionCommands)
1913           if (auto *isd = dyn_cast<InputSectionDescription>(b))
1914             isdSet.insert(isd);
1915 
1916         llvm::erase_if(
1917             script->orphanSections,
1918             [=](const InputSectionBase *isec) { return isec == ss; });
1919 
1920         return false;
1921       });
1922 
1923   DenseSet<InputSectionBase *> unused(end, inputSections.end());
1924   for (auto *isd : isdSet)
1925     llvm::erase_if(isd->sections,
1926                    [=](InputSection *isec) { return unused.count(isec); });
1927 
1928   // Erase unused synthetic sections.
1929   inputSections.erase(end, inputSections.end());
1930 }
1931 
1932 // Create output section objects and add them to OutputSections.
1933 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1934   Out::preinitArray = findSection(".preinit_array");
1935   Out::initArray = findSection(".init_array");
1936   Out::finiArray = findSection(".fini_array");
1937 
1938   // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1939   // symbols for sections, so that the runtime can get the start and end
1940   // addresses of each section by section name. Add such symbols.
1941   if (!config->relocatable) {
1942     addStartEndSymbols();
1943     for (BaseCommand *base : script->sectionCommands)
1944       if (auto *sec = dyn_cast<OutputSection>(base))
1945         addStartStopSymbols(sec);
1946   }
1947 
1948   // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1949   // It should be okay as no one seems to care about the type.
1950   // Even the author of gold doesn't remember why gold behaves that way.
1951   // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1952   if (mainPart->dynamic->parent)
1953     symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1954                               STV_HIDDEN, STT_NOTYPE,
1955                               /*value=*/0, /*size=*/0, mainPart->dynamic});
1956 
1957   // Define __rel[a]_iplt_{start,end} symbols if needed.
1958   addRelIpltSymbols();
1959 
1960   // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1961   // should only be defined in an executable. If .sdata does not exist, its
1962   // value/section does not matter but it has to be relative, so set its
1963   // st_shndx arbitrarily to 1 (Out::elfHeader).
1964   if (config->emachine == EM_RISCV && !config->shared) {
1965     OutputSection *sec = findSection(".sdata");
1966     ElfSym::riscvGlobalPointer =
1967         addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1968                            0x800, STV_DEFAULT, STB_GLOBAL);
1969   }
1970 
1971   if (config->emachine == EM_X86_64) {
1972     // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1973     // way that:
1974     //
1975     // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1976     // computes 0.
1977     // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1978     // the TLS block).
1979     //
1980     // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1981     // an absolute symbol of zero. This is different from GNU linkers which
1982     // define _TLS_MODULE_BASE_ relative to the first TLS section.
1983     Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1984     if (s && s->isUndefined()) {
1985       s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1986                          STT_TLS, /*value=*/0, 0,
1987                          /*section=*/nullptr});
1988       ElfSym::tlsModuleBase = cast<Defined>(s);
1989     }
1990   }
1991 
1992   {
1993     llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1994     // This responsible for splitting up .eh_frame section into
1995     // pieces. The relocation scan uses those pieces, so this has to be
1996     // earlier.
1997     for (Partition &part : partitions)
1998       finalizeSynthetic(part.ehFrame);
1999   }
2000 
2001   for (Symbol *sym : symtab->symbols())
2002     sym->isPreemptible = computeIsPreemptible(*sym);
2003 
2004   // Change values of linker-script-defined symbols from placeholders (assigned
2005   // by declareSymbols) to actual definitions.
2006   script->processSymbolAssignments();
2007 
2008   {
2009     llvm::TimeTraceScope timeScope("Scan relocations");
2010     // Scan relocations. This must be done after every symbol is declared so
2011     // that we can correctly decide if a dynamic relocation is needed. This is
2012     // called after processSymbolAssignments() because it needs to know whether
2013     // a linker-script-defined symbol is absolute.
2014     ppc64noTocRelax.clear();
2015     if (!config->relocatable) {
2016       forEachRelSec(scanRelocations<ELFT>);
2017       reportUndefinedSymbols<ELFT>();
2018     }
2019   }
2020 
2021   if (in.plt && in.plt->isNeeded())
2022     in.plt->addSymbols();
2023   if (in.iplt && in.iplt->isNeeded())
2024     in.iplt->addSymbols();
2025 
2026   if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
2027     auto diagnose =
2028         config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
2029             ? errorOrWarn
2030             : warn;
2031     // Error on undefined symbols in a shared object, if all of its DT_NEEDED
2032     // entries are seen. These cases would otherwise lead to runtime errors
2033     // reported by the dynamic linker.
2034     //
2035     // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
2036     // catch more cases. That is too much for us. Our approach resembles the one
2037     // used in ld.gold, achieves a good balance to be useful but not too smart.
2038     for (SharedFile *file : sharedFiles) {
2039       bool allNeededIsKnown =
2040           llvm::all_of(file->dtNeeded, [&](StringRef needed) {
2041             return symtab->soNames.count(needed);
2042           });
2043       if (!allNeededIsKnown)
2044         continue;
2045       for (Symbol *sym : file->requiredSymbols)
2046         if (sym->isUndefined() && !sym->isWeak())
2047           diagnose(toString(file) + ": undefined reference to " +
2048                    toString(*sym) + " [--no-allow-shlib-undefined]");
2049     }
2050   }
2051 
2052   {
2053     llvm::TimeTraceScope timeScope("Add symbols to symtabs");
2054     // Now that we have defined all possible global symbols including linker-
2055     // synthesized ones. Visit all symbols to give the finishing touches.
2056     for (Symbol *sym : symtab->symbols()) {
2057       if (!includeInSymtab(*sym))
2058         continue;
2059       if (in.symTab)
2060         in.symTab->addSymbol(sym);
2061 
2062       if (sym->includeInDynsym()) {
2063         partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
2064         if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
2065           if (file->isNeeded && !sym->isUndefined())
2066             addVerneed(sym);
2067       }
2068     }
2069 
2070     // We also need to scan the dynamic relocation tables of the other
2071     // partitions and add any referenced symbols to the partition's dynsym.
2072     for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
2073       DenseSet<Symbol *> syms;
2074       for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
2075         syms.insert(e.sym);
2076       for (DynamicReloc &reloc : part.relaDyn->relocs)
2077         if (reloc.sym && reloc.needsDynSymIndex() &&
2078             syms.insert(reloc.sym).second)
2079           part.dynSymTab->addSymbol(reloc.sym);
2080     }
2081   }
2082 
2083   // Do not proceed if there was an undefined symbol.
2084   if (errorCount())
2085     return;
2086 
2087   if (in.mipsGot)
2088     in.mipsGot->build();
2089 
2090   removeUnusedSyntheticSections();
2091   script->diagnoseOrphanHandling();
2092 
2093   sortSections();
2094 
2095   // Now that we have the final list, create a list of all the
2096   // OutputSections for convenience.
2097   for (BaseCommand *base : script->sectionCommands)
2098     if (auto *sec = dyn_cast<OutputSection>(base))
2099       outputSections.push_back(sec);
2100 
2101   // Prefer command line supplied address over other constraints.
2102   for (OutputSection *sec : outputSections) {
2103     auto i = config->sectionStartMap.find(sec->name);
2104     if (i != config->sectionStartMap.end())
2105       sec->addrExpr = [=] { return i->second; };
2106   }
2107 
2108   // With the outputSections available check for GDPLT relocations
2109   // and add __tls_get_addr symbol if needed.
2110   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2111     Symbol *sym = symtab->addSymbol(Undefined{
2112         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2113     sym->isPreemptible = true;
2114     partitions[0].dynSymTab->addSymbol(sym);
2115   }
2116 
2117   // This is a bit of a hack. A value of 0 means undef, so we set it
2118   // to 1 to make __ehdr_start defined. The section number is not
2119   // particularly relevant.
2120   Out::elfHeader->sectionIndex = 1;
2121 
2122   for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
2123     OutputSection *sec = outputSections[i];
2124     sec->sectionIndex = i + 1;
2125     sec->shName = in.shStrTab->addString(sec->name);
2126   }
2127 
2128   // Binary and relocatable output does not have PHDRS.
2129   // The headers have to be created before finalize as that can influence the
2130   // image base and the dynamic section on mips includes the image base.
2131   if (!config->relocatable && !config->oFormatBinary) {
2132     for (Partition &part : partitions) {
2133       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2134                                               : createPhdrs(part);
2135       if (config->emachine == EM_ARM) {
2136         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2137         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2138       }
2139       if (config->emachine == EM_MIPS) {
2140         // Add separate segments for MIPS-specific sections.
2141         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2142         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2143         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2144       }
2145     }
2146     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2147 
2148     // Find the TLS segment. This happens before the section layout loop so that
2149     // Android relocation packing can look up TLS symbol addresses. We only need
2150     // to care about the main partition here because all TLS symbols were moved
2151     // to the main partition (see MarkLive.cpp).
2152     for (PhdrEntry *p : mainPart->phdrs)
2153       if (p->p_type == PT_TLS)
2154         Out::tlsPhdr = p;
2155   }
2156 
2157   // Some symbols are defined in term of program headers. Now that we
2158   // have the headers, we can find out which sections they point to.
2159   setReservedSymbolSections();
2160 
2161   {
2162     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2163 
2164     finalizeSynthetic(in.bss);
2165     finalizeSynthetic(in.bssRelRo);
2166     finalizeSynthetic(in.symTabShndx);
2167     finalizeSynthetic(in.shStrTab);
2168     finalizeSynthetic(in.strTab);
2169     finalizeSynthetic(in.got);
2170     finalizeSynthetic(in.mipsGot);
2171     finalizeSynthetic(in.igotPlt);
2172     finalizeSynthetic(in.gotPlt);
2173     finalizeSynthetic(in.relaIplt);
2174     finalizeSynthetic(in.relaPlt);
2175     finalizeSynthetic(in.plt);
2176     finalizeSynthetic(in.iplt);
2177     finalizeSynthetic(in.ppc32Got2);
2178     finalizeSynthetic(in.partIndex);
2179 
2180     // Dynamic section must be the last one in this list and dynamic
2181     // symbol table section (dynSymTab) must be the first one.
2182     for (Partition &part : partitions) {
2183       finalizeSynthetic(part.dynSymTab);
2184       finalizeSynthetic(part.gnuHashTab);
2185       finalizeSynthetic(part.hashTab);
2186       finalizeSynthetic(part.verDef);
2187       finalizeSynthetic(part.relaDyn);
2188       finalizeSynthetic(part.relrDyn);
2189       finalizeSynthetic(part.ehFrameHdr);
2190       finalizeSynthetic(part.verSym);
2191       finalizeSynthetic(part.verNeed);
2192       finalizeSynthetic(part.dynamic);
2193     }
2194   }
2195 
2196   if (!script->hasSectionsCommand && !config->relocatable)
2197     fixSectionAlignments();
2198 
2199   // This is used to:
2200   // 1) Create "thunks":
2201   //    Jump instructions in many ISAs have small displacements, and therefore
2202   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2203   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2204   //    responsibility to create and insert small pieces of code between
2205   //    sections to extend the ranges if jump targets are out of range. Such
2206   //    code pieces are called "thunks".
2207   //
2208   //    We add thunks at this stage. We couldn't do this before this point
2209   //    because this is the earliest point where we know sizes of sections and
2210   //    their layouts (that are needed to determine if jump targets are in
2211   //    range).
2212   //
2213   // 2) Update the sections. We need to generate content that depends on the
2214   //    address of InputSections. For example, MIPS GOT section content or
2215   //    android packed relocations sections content.
2216   //
2217   // 3) Assign the final values for the linker script symbols. Linker scripts
2218   //    sometimes using forward symbol declarations. We want to set the correct
2219   //    values. They also might change after adding the thunks.
2220   finalizeAddressDependentContent();
2221   if (errorCount())
2222     return;
2223 
2224   {
2225     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2226     // finalizeAddressDependentContent may have added local symbols to the
2227     // static symbol table.
2228     finalizeSynthetic(in.symTab);
2229     finalizeSynthetic(in.ppc64LongBranchTarget);
2230   }
2231 
2232   // Relaxation to delete inter-basic block jumps created by basic block
2233   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2234   // can relax jump instructions based on symbol offset.
2235   if (config->optimizeBBJumps)
2236     optimizeBasicBlockJumps();
2237 
2238   // Fill other section headers. The dynamic table is finalized
2239   // at the end because some tags like RELSZ depend on result
2240   // of finalizing other sections.
2241   for (OutputSection *sec : outputSections)
2242     sec->finalize();
2243 }
2244 
2245 // Ensure data sections are not mixed with executable sections when
2246 // -execute-only is used. -execute-only is a feature to make pages executable
2247 // but not readable, and the feature is currently supported only on AArch64.
2248 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2249   if (!config->executeOnly)
2250     return;
2251 
2252   for (OutputSection *os : outputSections)
2253     if (os->flags & SHF_EXECINSTR)
2254       for (InputSection *isec : getInputSections(os))
2255         if (!(isec->flags & SHF_EXECINSTR))
2256           error("cannot place " + toString(isec) + " into " + toString(os->name) +
2257                 ": -execute-only does not support intermingling data and code");
2258 }
2259 
2260 // The linker is expected to define SECNAME_start and SECNAME_end
2261 // symbols for a few sections. This function defines them.
2262 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2263   // If a section does not exist, there's ambiguity as to how we
2264   // define _start and _end symbols for an init/fini section. Since
2265   // the loader assume that the symbols are always defined, we need to
2266   // always define them. But what value? The loader iterates over all
2267   // pointers between _start and _end to run global ctors/dtors, so if
2268   // the section is empty, their symbol values don't actually matter
2269   // as long as _start and _end point to the same location.
2270   //
2271   // That said, we don't want to set the symbols to 0 (which is
2272   // probably the simplest value) because that could cause some
2273   // program to fail to link due to relocation overflow, if their
2274   // program text is above 2 GiB. We use the address of the .text
2275   // section instead to prevent that failure.
2276   //
2277   // In rare situations, the .text section may not exist. If that's the
2278   // case, use the image base address as a last resort.
2279   OutputSection *Default = findSection(".text");
2280   if (!Default)
2281     Default = Out::elfHeader;
2282 
2283   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2284     if (os) {
2285       addOptionalRegular(start, os, 0);
2286       addOptionalRegular(end, os, -1);
2287     } else {
2288       addOptionalRegular(start, Default, 0);
2289       addOptionalRegular(end, Default, 0);
2290     }
2291   };
2292 
2293   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2294   define("__init_array_start", "__init_array_end", Out::initArray);
2295   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2296 
2297   if (OutputSection *sec = findSection(".ARM.exidx"))
2298     define("__exidx_start", "__exidx_end", sec);
2299 }
2300 
2301 // If a section name is valid as a C identifier (which is rare because of
2302 // the leading '.'), linkers are expected to define __start_<secname> and
2303 // __stop_<secname> symbols. They are at beginning and end of the section,
2304 // respectively. This is not requested by the ELF standard, but GNU ld and
2305 // gold provide the feature, and used by many programs.
2306 template <class ELFT>
2307 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
2308   StringRef s = sec->name;
2309   if (!isValidCIdentifier(s))
2310     return;
2311   addOptionalRegular(saver.save("__start_" + s), sec, 0,
2312                      config->zStartStopVisibility);
2313   addOptionalRegular(saver.save("__stop_" + s), sec, -1,
2314                      config->zStartStopVisibility);
2315 }
2316 
2317 static bool needsPtLoad(OutputSection *sec) {
2318   if (!(sec->flags & SHF_ALLOC))
2319     return false;
2320 
2321   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2322   // responsible for allocating space for them, not the PT_LOAD that
2323   // contains the TLS initialization image.
2324   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2325     return false;
2326   return true;
2327 }
2328 
2329 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2330 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2331 // RW. This means that there is no alignment in the RO to RX transition and we
2332 // cannot create a PT_LOAD there.
2333 static uint64_t computeFlags(uint64_t flags) {
2334   if (config->omagic)
2335     return PF_R | PF_W | PF_X;
2336   if (config->executeOnly && (flags & PF_X))
2337     return flags & ~PF_R;
2338   if (config->singleRoRx && !(flags & PF_W))
2339     return flags | PF_X;
2340   return flags;
2341 }
2342 
2343 // Decide which program headers to create and which sections to include in each
2344 // one.
2345 template <class ELFT>
2346 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2347   std::vector<PhdrEntry *> ret;
2348   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2349     ret.push_back(make<PhdrEntry>(type, flags));
2350     return ret.back();
2351   };
2352 
2353   unsigned partNo = part.getNumber();
2354   bool isMain = partNo == 1;
2355 
2356   // Add the first PT_LOAD segment for regular output sections.
2357   uint64_t flags = computeFlags(PF_R);
2358   PhdrEntry *load = nullptr;
2359 
2360   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2361   // PT_LOAD.
2362   if (!config->nmagic && !config->omagic) {
2363     // The first phdr entry is PT_PHDR which describes the program header
2364     // itself.
2365     if (isMain)
2366       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2367     else
2368       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2369 
2370     // PT_INTERP must be the second entry if exists.
2371     if (OutputSection *cmd = findSection(".interp", partNo))
2372       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2373 
2374     // Add the headers. We will remove them if they don't fit.
2375     // In the other partitions the headers are ordinary sections, so they don't
2376     // need to be added here.
2377     if (isMain) {
2378       load = addHdr(PT_LOAD, flags);
2379       load->add(Out::elfHeader);
2380       load->add(Out::programHeaders);
2381     }
2382   }
2383 
2384   // PT_GNU_RELRO includes all sections that should be marked as
2385   // read-only by dynamic linker after processing relocations.
2386   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2387   // an error message if more than one PT_GNU_RELRO PHDR is required.
2388   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2389   bool inRelroPhdr = false;
2390   OutputSection *relroEnd = nullptr;
2391   for (OutputSection *sec : outputSections) {
2392     if (sec->partition != partNo || !needsPtLoad(sec))
2393       continue;
2394     if (isRelroSection(sec)) {
2395       inRelroPhdr = true;
2396       if (!relroEnd)
2397         relRo->add(sec);
2398       else
2399         error("section: " + sec->name + " is not contiguous with other relro" +
2400               " sections");
2401     } else if (inRelroPhdr) {
2402       inRelroPhdr = false;
2403       relroEnd = sec;
2404     }
2405   }
2406 
2407   for (OutputSection *sec : outputSections) {
2408     if (!needsPtLoad(sec))
2409       continue;
2410 
2411     // Normally, sections in partitions other than the current partition are
2412     // ignored. But partition number 255 is a special case: it contains the
2413     // partition end marker (.part.end). It needs to be added to the main
2414     // partition so that a segment is created for it in the main partition,
2415     // which will cause the dynamic loader to reserve space for the other
2416     // partitions.
2417     if (sec->partition != partNo) {
2418       if (isMain && sec->partition == 255)
2419         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2420       continue;
2421     }
2422 
2423     // Segments are contiguous memory regions that has the same attributes
2424     // (e.g. executable or writable). There is one phdr for each segment.
2425     // Therefore, we need to create a new phdr when the next section has
2426     // different flags or is loaded at a discontiguous address or memory
2427     // region using AT or AT> linker script command, respectively. At the same
2428     // time, we don't want to create a separate load segment for the headers,
2429     // even if the first output section has an AT or AT> attribute.
2430     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2431     bool sameLMARegion =
2432         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2433     if (!(load && newFlags == flags && sec != relroEnd &&
2434           sec->memRegion == load->firstSec->memRegion &&
2435           (sameLMARegion || load->lastSec == Out::programHeaders))) {
2436       load = addHdr(PT_LOAD, newFlags);
2437       flags = newFlags;
2438     }
2439 
2440     load->add(sec);
2441   }
2442 
2443   // Add a TLS segment if any.
2444   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2445   for (OutputSection *sec : outputSections)
2446     if (sec->partition == partNo && sec->flags & SHF_TLS)
2447       tlsHdr->add(sec);
2448   if (tlsHdr->firstSec)
2449     ret.push_back(tlsHdr);
2450 
2451   // Add an entry for .dynamic.
2452   if (OutputSection *sec = part.dynamic->getParent())
2453     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2454 
2455   if (relRo->firstSec)
2456     ret.push_back(relRo);
2457 
2458   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2459   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2460       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2461     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2462         ->add(part.ehFrameHdr->getParent());
2463 
2464   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2465   // the dynamic linker fill the segment with random data.
2466   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2467     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2468 
2469   if (config->zGnustack != GnuStackKind::None) {
2470     // PT_GNU_STACK is a special section to tell the loader to make the
2471     // pages for the stack non-executable. If you really want an executable
2472     // stack, you can pass -z execstack, but that's not recommended for
2473     // security reasons.
2474     unsigned perm = PF_R | PF_W;
2475     if (config->zGnustack == GnuStackKind::Exec)
2476       perm |= PF_X;
2477     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2478   }
2479 
2480   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2481   // is expected to perform W^X violations, such as calling mprotect(2) or
2482   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2483   // OpenBSD.
2484   if (config->zWxneeded)
2485     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2486 
2487   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2488     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2489 
2490   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2491   // same alignment.
2492   PhdrEntry *note = nullptr;
2493   for (OutputSection *sec : outputSections) {
2494     if (sec->partition != partNo)
2495       continue;
2496     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2497       if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2498         note = addHdr(PT_NOTE, PF_R);
2499       note->add(sec);
2500     } else {
2501       note = nullptr;
2502     }
2503   }
2504   return ret;
2505 }
2506 
2507 template <class ELFT>
2508 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2509                                      unsigned pType, unsigned pFlags) {
2510   unsigned partNo = part.getNumber();
2511   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2512     return cmd->partition == partNo && cmd->type == shType;
2513   });
2514   if (i == outputSections.end())
2515     return;
2516 
2517   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2518   entry->add(*i);
2519   part.phdrs.push_back(entry);
2520 }
2521 
2522 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2523 // This is achieved by assigning an alignment expression to addrExpr of each
2524 // such section.
2525 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2526   const PhdrEntry *prev;
2527   auto pageAlign = [&](const PhdrEntry *p) {
2528     OutputSection *cmd = p->firstSec;
2529     if (!cmd)
2530       return;
2531     cmd->alignExpr = [align = cmd->alignment]() { return align; };
2532     if (!cmd->addrExpr) {
2533       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2534       // padding in the file contents.
2535       //
2536       // When -z separate-code is used we must not have any overlap in pages
2537       // between an executable segment and a non-executable segment. We align to
2538       // the next maximum page size boundary on transitions between executable
2539       // and non-executable segments.
2540       //
2541       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2542       // sections will be extracted to a separate file. Align to the next
2543       // maximum page size boundary so that we can find the ELF header at the
2544       // start. We cannot benefit from overlapping p_offset ranges with the
2545       // previous segment anyway.
2546       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2547           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2548            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2549           cmd->type == SHT_LLVM_PART_EHDR)
2550         cmd->addrExpr = [] {
2551           return alignTo(script->getDot(), config->maxPageSize);
2552         };
2553       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2554       // it must be the RW. Align to p_align(PT_TLS) to make sure
2555       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2556       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2557       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2558       // be congruent to 0 modulo p_align(PT_TLS).
2559       //
2560       // Technically this is not required, but as of 2019, some dynamic loaders
2561       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2562       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2563       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2564       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2565       // blocks correctly. We need to keep the workaround for a while.
2566       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2567         cmd->addrExpr = [] {
2568           return alignTo(script->getDot(), config->maxPageSize) +
2569                  alignTo(script->getDot() % config->maxPageSize,
2570                          Out::tlsPhdr->p_align);
2571         };
2572       else
2573         cmd->addrExpr = [] {
2574           return alignTo(script->getDot(), config->maxPageSize) +
2575                  script->getDot() % config->maxPageSize;
2576         };
2577     }
2578   };
2579 
2580   for (Partition &part : partitions) {
2581     prev = nullptr;
2582     for (const PhdrEntry *p : part.phdrs)
2583       if (p->p_type == PT_LOAD && p->firstSec) {
2584         pageAlign(p);
2585         prev = p;
2586       }
2587   }
2588 }
2589 
2590 // Compute an in-file position for a given section. The file offset must be the
2591 // same with its virtual address modulo the page size, so that the loader can
2592 // load executables without any address adjustment.
2593 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2594   // The first section in a PT_LOAD has to have congruent offset and address
2595   // modulo the maximum page size.
2596   if (os->ptLoad && os->ptLoad->firstSec == os)
2597     return alignTo(off, os->ptLoad->p_align, os->addr);
2598 
2599   // File offsets are not significant for .bss sections other than the first one
2600   // in a PT_LOAD. By convention, we keep section offsets monotonically
2601   // increasing rather than setting to zero.
2602    if (os->type == SHT_NOBITS)
2603      return off;
2604 
2605   // If the section is not in a PT_LOAD, we just have to align it.
2606   if (!os->ptLoad)
2607     return alignTo(off, os->alignment);
2608 
2609   // If two sections share the same PT_LOAD the file offset is calculated
2610   // using this formula: Off2 = Off1 + (VA2 - VA1).
2611   OutputSection *first = os->ptLoad->firstSec;
2612   return first->offset + os->addr - first->addr;
2613 }
2614 
2615 // Set an in-file position to a given section and returns the end position of
2616 // the section.
2617 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2618   off = computeFileOffset(os, off);
2619   os->offset = off;
2620 
2621   if (os->type == SHT_NOBITS)
2622     return off;
2623   return off + os->size;
2624 }
2625 
2626 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2627   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2628   auto needsOffset = [](OutputSection &sec) {
2629     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2630   };
2631   uint64_t minAddr = UINT64_MAX;
2632   for (OutputSection *sec : outputSections)
2633     if (needsOffset(*sec)) {
2634       sec->offset = sec->getLMA();
2635       minAddr = std::min(minAddr, sec->offset);
2636     }
2637 
2638   // Sections are laid out at LMA minus minAddr.
2639   fileSize = 0;
2640   for (OutputSection *sec : outputSections)
2641     if (needsOffset(*sec)) {
2642       sec->offset -= minAddr;
2643       fileSize = std::max(fileSize, sec->offset + sec->size);
2644     }
2645 }
2646 
2647 static std::string rangeToString(uint64_t addr, uint64_t len) {
2648   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2649 }
2650 
2651 // Assign file offsets to output sections.
2652 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2653   uint64_t off = 0;
2654   off = setFileOffset(Out::elfHeader, off);
2655   off = setFileOffset(Out::programHeaders, off);
2656 
2657   PhdrEntry *lastRX = nullptr;
2658   for (Partition &part : partitions)
2659     for (PhdrEntry *p : part.phdrs)
2660       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2661         lastRX = p;
2662 
2663   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2664   // will not occupy file offsets contained by a PT_LOAD.
2665   for (OutputSection *sec : outputSections) {
2666     if (!(sec->flags & SHF_ALLOC))
2667       continue;
2668     off = setFileOffset(sec, off);
2669 
2670     // If this is a last section of the last executable segment and that
2671     // segment is the last loadable segment, align the offset of the
2672     // following section to avoid loading non-segments parts of the file.
2673     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2674         lastRX->lastSec == sec)
2675       off = alignTo(off, config->commonPageSize);
2676   }
2677   for (OutputSection *sec : outputSections)
2678     if (!(sec->flags & SHF_ALLOC))
2679       off = setFileOffset(sec, off);
2680 
2681   sectionHeaderOff = alignTo(off, config->wordsize);
2682   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2683 
2684   // Our logic assumes that sections have rising VA within the same segment.
2685   // With use of linker scripts it is possible to violate this rule and get file
2686   // offset overlaps or overflows. That should never happen with a valid script
2687   // which does not move the location counter backwards and usually scripts do
2688   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2689   // kernel, which control segment distribution explicitly and move the counter
2690   // backwards, so we have to allow doing that to support linking them. We
2691   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2692   // we want to prevent file size overflows because it would crash the linker.
2693   for (OutputSection *sec : outputSections) {
2694     if (sec->type == SHT_NOBITS)
2695       continue;
2696     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2697       error("unable to place section " + sec->name + " at file offset " +
2698             rangeToString(sec->offset, sec->size) +
2699             "; check your linker script for overflows");
2700   }
2701 }
2702 
2703 // Finalize the program headers. We call this function after we assign
2704 // file offsets and VAs to all sections.
2705 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2706   for (PhdrEntry *p : part.phdrs) {
2707     OutputSection *first = p->firstSec;
2708     OutputSection *last = p->lastSec;
2709 
2710     if (first) {
2711       p->p_filesz = last->offset - first->offset;
2712       if (last->type != SHT_NOBITS)
2713         p->p_filesz += last->size;
2714 
2715       p->p_memsz = last->addr + last->size - first->addr;
2716       p->p_offset = first->offset;
2717       p->p_vaddr = first->addr;
2718 
2719       // File offsets in partitions other than the main partition are relative
2720       // to the offset of the ELF headers. Perform that adjustment now.
2721       if (part.elfHeader)
2722         p->p_offset -= part.elfHeader->getParent()->offset;
2723 
2724       if (!p->hasLMA)
2725         p->p_paddr = first->getLMA();
2726     }
2727 
2728     if (p->p_type == PT_GNU_RELRO) {
2729       p->p_align = 1;
2730       // musl/glibc ld.so rounds the size down, so we need to round up
2731       // to protect the last page. This is a no-op on FreeBSD which always
2732       // rounds up.
2733       p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2734                    p->p_offset;
2735     }
2736   }
2737 }
2738 
2739 // A helper struct for checkSectionOverlap.
2740 namespace {
2741 struct SectionOffset {
2742   OutputSection *sec;
2743   uint64_t offset;
2744 };
2745 } // namespace
2746 
2747 // Check whether sections overlap for a specific address range (file offsets,
2748 // load and virtual addresses).
2749 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2750                          bool isVirtualAddr) {
2751   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2752     return a.offset < b.offset;
2753   });
2754 
2755   // Finding overlap is easy given a vector is sorted by start position.
2756   // If an element starts before the end of the previous element, they overlap.
2757   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2758     SectionOffset a = sections[i - 1];
2759     SectionOffset b = sections[i];
2760     if (b.offset >= a.offset + a.sec->size)
2761       continue;
2762 
2763     // If both sections are in OVERLAY we allow the overlapping of virtual
2764     // addresses, because it is what OVERLAY was designed for.
2765     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2766       continue;
2767 
2768     errorOrWarn("section " + a.sec->name + " " + name +
2769                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2770                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2771                 b.sec->name + " range is " +
2772                 rangeToString(b.offset, b.sec->size));
2773   }
2774 }
2775 
2776 // Check for overlapping sections and address overflows.
2777 //
2778 // In this function we check that none of the output sections have overlapping
2779 // file offsets. For SHF_ALLOC sections we also check that the load address
2780 // ranges and the virtual address ranges don't overlap
2781 template <class ELFT> void Writer<ELFT>::checkSections() {
2782   // First, check that section's VAs fit in available address space for target.
2783   for (OutputSection *os : outputSections)
2784     if ((os->addr + os->size < os->addr) ||
2785         (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2786       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2787                   " of size 0x" + utohexstr(os->size) +
2788                   " exceeds available address space");
2789 
2790   // Check for overlapping file offsets. In this case we need to skip any
2791   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2792   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2793   // binary is specified only add SHF_ALLOC sections are added to the output
2794   // file so we skip any non-allocated sections in that case.
2795   std::vector<SectionOffset> fileOffs;
2796   for (OutputSection *sec : outputSections)
2797     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2798         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2799       fileOffs.push_back({sec, sec->offset});
2800   checkOverlap("file", fileOffs, false);
2801 
2802   // When linking with -r there is no need to check for overlapping virtual/load
2803   // addresses since those addresses will only be assigned when the final
2804   // executable/shared object is created.
2805   if (config->relocatable)
2806     return;
2807 
2808   // Checking for overlapping virtual and load addresses only needs to take
2809   // into account SHF_ALLOC sections since others will not be loaded.
2810   // Furthermore, we also need to skip SHF_TLS sections since these will be
2811   // mapped to other addresses at runtime and can therefore have overlapping
2812   // ranges in the file.
2813   std::vector<SectionOffset> vmas;
2814   for (OutputSection *sec : outputSections)
2815     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2816       vmas.push_back({sec, sec->addr});
2817   checkOverlap("virtual address", vmas, true);
2818 
2819   // Finally, check that the load addresses don't overlap. This will usually be
2820   // the same as the virtual addresses but can be different when using a linker
2821   // script with AT().
2822   std::vector<SectionOffset> lmas;
2823   for (OutputSection *sec : outputSections)
2824     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2825       lmas.push_back({sec, sec->getLMA()});
2826   checkOverlap("load address", lmas, false);
2827 }
2828 
2829 // The entry point address is chosen in the following ways.
2830 //
2831 // 1. the '-e' entry command-line option;
2832 // 2. the ENTRY(symbol) command in a linker control script;
2833 // 3. the value of the symbol _start, if present;
2834 // 4. the number represented by the entry symbol, if it is a number;
2835 // 5. the address of the first byte of the .text section, if present;
2836 // 6. the address 0.
2837 static uint64_t getEntryAddr() {
2838   // Case 1, 2 or 3
2839   if (Symbol *b = symtab->find(config->entry))
2840     return b->getVA();
2841 
2842   // Case 4
2843   uint64_t addr;
2844   if (to_integer(config->entry, addr))
2845     return addr;
2846 
2847   // Case 5
2848   if (OutputSection *sec = findSection(".text")) {
2849     if (config->warnMissingEntry)
2850       warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2851            utohexstr(sec->addr));
2852     return sec->addr;
2853   }
2854 
2855   // Case 6
2856   if (config->warnMissingEntry)
2857     warn("cannot find entry symbol " + config->entry +
2858          "; not setting start address");
2859   return 0;
2860 }
2861 
2862 static uint16_t getELFType() {
2863   if (config->isPic)
2864     return ET_DYN;
2865   if (config->relocatable)
2866     return ET_REL;
2867   return ET_EXEC;
2868 }
2869 
2870 template <class ELFT> void Writer<ELFT>::writeHeader() {
2871   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2872   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2873 
2874   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2875   eHdr->e_type = getELFType();
2876   eHdr->e_entry = getEntryAddr();
2877   eHdr->e_shoff = sectionHeaderOff;
2878 
2879   // Write the section header table.
2880   //
2881   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2882   // and e_shstrndx fields. When the value of one of these fields exceeds
2883   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2884   // use fields in the section header at index 0 to store
2885   // the value. The sentinel values and fields are:
2886   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2887   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2888   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2889   size_t num = outputSections.size() + 1;
2890   if (num >= SHN_LORESERVE)
2891     sHdrs->sh_size = num;
2892   else
2893     eHdr->e_shnum = num;
2894 
2895   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2896   if (strTabIndex >= SHN_LORESERVE) {
2897     sHdrs->sh_link = strTabIndex;
2898     eHdr->e_shstrndx = SHN_XINDEX;
2899   } else {
2900     eHdr->e_shstrndx = strTabIndex;
2901   }
2902 
2903   for (OutputSection *sec : outputSections)
2904     sec->writeHeaderTo<ELFT>(++sHdrs);
2905 }
2906 
2907 // Open a result file.
2908 template <class ELFT> void Writer<ELFT>::openFile() {
2909   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2910   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2911     std::string msg;
2912     raw_string_ostream s(msg);
2913     s << "output file too large: " << Twine(fileSize) << " bytes\n"
2914       << "section sizes:\n";
2915     for (OutputSection *os : outputSections)
2916       s << os->name << ' ' << os->size << "\n";
2917     error(s.str());
2918     return;
2919   }
2920 
2921   unlinkAsync(config->outputFile);
2922   unsigned flags = 0;
2923   if (!config->relocatable)
2924     flags |= FileOutputBuffer::F_executable;
2925   if (!config->mmapOutputFile)
2926     flags |= FileOutputBuffer::F_no_mmap;
2927   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2928       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2929 
2930   if (!bufferOrErr) {
2931     error("failed to open " + config->outputFile + ": " +
2932           llvm::toString(bufferOrErr.takeError()));
2933     return;
2934   }
2935   buffer = std::move(*bufferOrErr);
2936   Out::bufferStart = buffer->getBufferStart();
2937 }
2938 
2939 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2940   for (OutputSection *sec : outputSections)
2941     if (sec->flags & SHF_ALLOC)
2942       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2943 }
2944 
2945 static void fillTrap(uint8_t *i, uint8_t *end) {
2946   for (; i + 4 <= end; i += 4)
2947     memcpy(i, &target->trapInstr, 4);
2948 }
2949 
2950 // Fill the last page of executable segments with trap instructions
2951 // instead of leaving them as zero. Even though it is not required by any
2952 // standard, it is in general a good thing to do for security reasons.
2953 //
2954 // We'll leave other pages in segments as-is because the rest will be
2955 // overwritten by output sections.
2956 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2957   for (Partition &part : partitions) {
2958     // Fill the last page.
2959     for (PhdrEntry *p : part.phdrs)
2960       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2961         fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2962                                               config->commonPageSize),
2963                  Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2964                                             config->commonPageSize));
2965 
2966     // Round up the file size of the last segment to the page boundary iff it is
2967     // an executable segment to ensure that other tools don't accidentally
2968     // trim the instruction padding (e.g. when stripping the file).
2969     PhdrEntry *last = nullptr;
2970     for (PhdrEntry *p : part.phdrs)
2971       if (p->p_type == PT_LOAD)
2972         last = p;
2973 
2974     if (last && (last->p_flags & PF_X))
2975       last->p_memsz = last->p_filesz =
2976           alignTo(last->p_filesz, config->commonPageSize);
2977   }
2978 }
2979 
2980 // Write section contents to a mmap'ed file.
2981 template <class ELFT> void Writer<ELFT>::writeSections() {
2982   // In -r or -emit-relocs mode, write the relocation sections first as in
2983   // ELf_Rel targets we might find out that we need to modify the relocated
2984   // section while doing it.
2985   for (OutputSection *sec : outputSections)
2986     if (sec->type == SHT_REL || sec->type == SHT_RELA)
2987       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2988 
2989   for (OutputSection *sec : outputSections)
2990     if (sec->type != SHT_REL && sec->type != SHT_RELA)
2991       sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2992 
2993   // Finally, check that all dynamic relocation addends were written correctly.
2994   if (config->checkDynamicRelocs && config->writeAddends) {
2995     for (OutputSection *sec : outputSections)
2996       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2997         sec->checkDynRelAddends(Out::bufferStart);
2998   }
2999 }
3000 
3001 // Computes a hash value of Data using a given hash function.
3002 // In order to utilize multiple cores, we first split data into 1MB
3003 // chunks, compute a hash for each chunk, and then compute a hash value
3004 // of the hash values.
3005 static void
3006 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
3007             llvm::ArrayRef<uint8_t> data,
3008             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
3009   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
3010   std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
3011 
3012   // Compute hash values.
3013   parallelForEachN(0, chunks.size(), [&](size_t i) {
3014     hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
3015   });
3016 
3017   // Write to the final output buffer.
3018   hashFn(hashBuf.data(), hashes);
3019 }
3020 
3021 template <class ELFT> void Writer<ELFT>::writeBuildId() {
3022   if (!mainPart->buildId || !mainPart->buildId->getParent())
3023     return;
3024 
3025   if (config->buildId == BuildIdKind::Hexstring) {
3026     for (Partition &part : partitions)
3027       part.buildId->writeBuildId(config->buildIdVector);
3028     return;
3029   }
3030 
3031   // Compute a hash of all sections of the output file.
3032   size_t hashSize = mainPart->buildId->hashSize;
3033   std::vector<uint8_t> buildId(hashSize);
3034   llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
3035 
3036   switch (config->buildId) {
3037   case BuildIdKind::Fast:
3038     computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
3039       write64le(dest, xxHash64(arr));
3040     });
3041     break;
3042   case BuildIdKind::Md5:
3043     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3044       memcpy(dest, MD5::hash(arr).data(), hashSize);
3045     });
3046     break;
3047   case BuildIdKind::Sha1:
3048     computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
3049       memcpy(dest, SHA1::hash(arr).data(), hashSize);
3050     });
3051     break;
3052   case BuildIdKind::Uuid:
3053     if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
3054       error("entropy source failure: " + ec.message());
3055     break;
3056   default:
3057     llvm_unreachable("unknown BuildIdKind");
3058   }
3059   for (Partition &part : partitions)
3060     part.buildId->writeBuildId(buildId);
3061 }
3062 
3063 template void elf::createSyntheticSections<ELF32LE>();
3064 template void elf::createSyntheticSections<ELF32BE>();
3065 template void elf::createSyntheticSections<ELF64LE>();
3066 template void elf::createSyntheticSections<ELF64BE>();
3067 
3068 template void elf::writeResult<ELF32LE>();
3069 template void elf::writeResult<ELF32BE>();
3070 template void elf::writeResult<ELF64LE>();
3071 template void elf::writeResult<ELF64BE>();
3072