1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
16 #include "MapFile.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
20 #include "Symbols.h"
21 #include "SyntheticSections.h"
22 #include "Target.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/StringMap.h"
28 #include "llvm/Support/BLAKE3.h"
29 #include "llvm/Support/Parallel.h"
30 #include "llvm/Support/RandomNumberGenerator.h"
31 #include "llvm/Support/TimeProfiler.h"
32 #include "llvm/Support/xxhash.h"
33 #include <climits>
34 
35 #define DEBUG_TYPE "lld"
36 
37 using namespace llvm;
38 using namespace llvm::ELF;
39 using namespace llvm::object;
40 using namespace llvm::support;
41 using namespace llvm::support::endian;
42 using namespace lld;
43 using namespace lld::elf;
44 
45 namespace {
46 // The writer writes a SymbolTable result to a file.
47 template <class ELFT> class Writer {
48 public:
49   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
50 
51   Writer() : buffer(errorHandler().outputBuffer) {}
52 
53   void run();
54 
55 private:
56   void copyLocalSymbols();
57   void addSectionSymbols();
58   void sortSections();
59   void resolveShfLinkOrder();
60   void finalizeAddressDependentContent();
61   void optimizeBasicBlockJumps();
62   void sortInputSections();
63   void finalizeSections();
64   void checkExecuteOnly();
65   void setReservedSymbolSections();
66 
67   SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part);
68   void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
69                          unsigned pFlags);
70   void assignFileOffsets();
71   void assignFileOffsetsBinary();
72   void setPhdrs(Partition &part);
73   void checkSections();
74   void fixSectionAlignments();
75   void openFile();
76   void writeTrapInstr();
77   void writeHeader();
78   void writeSections();
79   void writeSectionsBinary();
80   void writeBuildId();
81 
82   std::unique_ptr<FileOutputBuffer> &buffer;
83 
84   void addRelIpltSymbols();
85   void addStartEndSymbols();
86   void addStartStopSymbols(OutputSection &osec);
87 
88   uint64_t fileSize;
89   uint64_t sectionHeaderOff;
90 };
91 } // anonymous namespace
92 
93 static bool needsInterpSection() {
94   return !config->relocatable && !config->shared &&
95          !config->dynamicLinker.empty() && script->needsInterpSection();
96 }
97 
98 template <class ELFT> void elf::writeResult() {
99   Writer<ELFT>().run();
100 }
101 
102 static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) {
103   auto it = std::stable_partition(
104       phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
105         if (p->p_type != PT_LOAD)
106           return true;
107         if (!p->firstSec)
108           return false;
109         uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
110         return size != 0;
111       });
112 
113   // Clear OutputSection::ptLoad for sections contained in removed
114   // segments.
115   DenseSet<PhdrEntry *> removed(it, phdrs.end());
116   for (OutputSection *sec : outputSections)
117     if (removed.count(sec->ptLoad))
118       sec->ptLoad = nullptr;
119   phdrs.erase(it, phdrs.end());
120 }
121 
122 void elf::copySectionsIntoPartitions() {
123   SmallVector<InputSectionBase *, 0> newSections;
124   const size_t ehSize = ctx.ehInputSections.size();
125   for (unsigned part = 2; part != partitions.size() + 1; ++part) {
126     for (InputSectionBase *s : ctx.inputSections) {
127       if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE)
128         continue;
129       auto *copy = make<InputSection>(cast<InputSection>(*s));
130       copy->partition = part;
131       newSections.push_back(copy);
132     }
133     for (size_t i = 0; i != ehSize; ++i) {
134       assert(ctx.ehInputSections[i]->isLive());
135       auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]);
136       copy->partition = part;
137       ctx.ehInputSections.push_back(copy);
138     }
139   }
140 
141   ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(),
142                            newSections.end());
143 }
144 
145 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
146                                    uint64_t val, uint8_t stOther = STV_HIDDEN) {
147   Symbol *s = symtab.find(name);
148   if (!s || s->isDefined() || s->isCommon())
149     return nullptr;
150 
151   s->resolve(Defined{nullptr, StringRef(), STB_GLOBAL, stOther, STT_NOTYPE, val,
152                      /*size=*/0, sec});
153   s->isUsedInRegularObj = true;
154   return cast<Defined>(s);
155 }
156 
157 static Defined *addAbsolute(StringRef name) {
158   Symbol *sym = symtab.addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
159                                          STT_NOTYPE, 0, 0, nullptr});
160   sym->isUsedInRegularObj = true;
161   return cast<Defined>(sym);
162 }
163 
164 // The linker is expected to define some symbols depending on
165 // the linking result. This function defines such symbols.
166 void elf::addReservedSymbols() {
167   if (config->emachine == EM_MIPS) {
168     // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
169     // so that it points to an absolute address which by default is relative
170     // to GOT. Default offset is 0x7ff0.
171     // See "Global Data Symbols" in Chapter 6 in the following document:
172     // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
173     ElfSym::mipsGp = addAbsolute("_gp");
174 
175     // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
176     // start of function and 'gp' pointer into GOT.
177     if (symtab.find("_gp_disp"))
178       ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
179 
180     // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
181     // pointer. This symbol is used in the code generated by .cpload pseudo-op
182     // in case of using -mno-shared option.
183     // https://sourceware.org/ml/binutils/2004-12/msg00094.html
184     if (symtab.find("__gnu_local_gp"))
185       ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
186   } else if (config->emachine == EM_PPC) {
187     // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
188     // support Small Data Area, define it arbitrarily as 0.
189     addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
190   } else if (config->emachine == EM_PPC64) {
191     addPPC64SaveRestore();
192   }
193 
194   // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
195   // combines the typical ELF GOT with the small data sections. It commonly
196   // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
197   // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
198   // represent the TOC base which is offset by 0x8000 bytes from the start of
199   // the .got section.
200   // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
201   // correctness of some relocations depends on its value.
202   StringRef gotSymName =
203       (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
204 
205   if (Symbol *s = symtab.find(gotSymName)) {
206     if (s->isDefined()) {
207       error(toString(s->file) + " cannot redefine linker defined symbol '" +
208             gotSymName + "'");
209       return;
210     }
211 
212     uint64_t gotOff = 0;
213     if (config->emachine == EM_PPC64)
214       gotOff = 0x8000;
215 
216     s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL, STV_HIDDEN,
217                        STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
218     ElfSym::globalOffsetTable = cast<Defined>(s);
219   }
220 
221   // __ehdr_start is the location of ELF file headers. Note that we define
222   // this symbol unconditionally even when using a linker script, which
223   // differs from the behavior implemented by GNU linker which only define
224   // this symbol if ELF headers are in the memory mapped segment.
225   addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
226 
227   // __executable_start is not documented, but the expectation of at
228   // least the Android libc is that it points to the ELF header.
229   addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
230 
231   // __dso_handle symbol is passed to cxa_finalize as a marker to identify
232   // each DSO. The address of the symbol doesn't matter as long as they are
233   // different in different DSOs, so we chose the start address of the DSO.
234   addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
235 
236   // If linker script do layout we do not need to create any standard symbols.
237   if (script->hasSectionsCommand)
238     return;
239 
240   auto add = [](StringRef s, int64_t pos) {
241     return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
242   };
243 
244   ElfSym::bss = add("__bss_start", 0);
245   ElfSym::end1 = add("end", -1);
246   ElfSym::end2 = add("_end", -1);
247   ElfSym::etext1 = add("etext", -1);
248   ElfSym::etext2 = add("_etext", -1);
249   ElfSym::edata1 = add("edata", -1);
250   ElfSym::edata2 = add("_edata", -1);
251 }
252 
253 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
254   for (SectionCommand *cmd : script->sectionCommands)
255     if (auto *osd = dyn_cast<OutputDesc>(cmd))
256       if (osd->osec.name == name && osd->osec.partition == partition)
257         return &osd->osec;
258   return nullptr;
259 }
260 
261 template <class ELFT> void elf::createSyntheticSections() {
262   // Initialize all pointers with NULL. This is needed because
263   // you can call lld::elf::main more than once as a library.
264   Out::tlsPhdr = nullptr;
265   Out::preinitArray = nullptr;
266   Out::initArray = nullptr;
267   Out::finiArray = nullptr;
268 
269   // Add the .interp section first because it is not a SyntheticSection.
270   // The removeUnusedSyntheticSections() function relies on the
271   // SyntheticSections coming last.
272   if (needsInterpSection()) {
273     for (size_t i = 1; i <= partitions.size(); ++i) {
274       InputSection *sec = createInterpSection();
275       sec->partition = i;
276       ctx.inputSections.push_back(sec);
277     }
278   }
279 
280   auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); };
281 
282   in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false);
283 
284   Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
285   Out::programHeaders->addralign = config->wordsize;
286 
287   if (config->strip != StripPolicy::All) {
288     in.strTab = std::make_unique<StringTableSection>(".strtab", false);
289     in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab);
290     in.symTabShndx = std::make_unique<SymtabShndxSection>();
291   }
292 
293   in.bss = std::make_unique<BssSection>(".bss", 0, 1);
294   add(*in.bss);
295 
296   // If there is a SECTIONS command and a .data.rel.ro section name use name
297   // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
298   // This makes sure our relro is contiguous.
299   bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro");
300   in.bssRelRo = std::make_unique<BssSection>(
301       hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
302   add(*in.bssRelRo);
303 
304   // Add MIPS-specific sections.
305   if (config->emachine == EM_MIPS) {
306     if (!config->shared && config->hasDynSymTab) {
307       in.mipsRldMap = std::make_unique<MipsRldMapSection>();
308       add(*in.mipsRldMap);
309     }
310     if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create()))
311       add(*in.mipsAbiFlags);
312     if ((in.mipsOptions = MipsOptionsSection<ELFT>::create()))
313       add(*in.mipsOptions);
314     if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create()))
315       add(*in.mipsReginfo);
316   }
317 
318   StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
319 
320   const unsigned threadCount = config->threadCount;
321   for (Partition &part : partitions) {
322     auto add = [&](SyntheticSection &sec) {
323       sec.partition = part.getNumber();
324       ctx.inputSections.push_back(&sec);
325     };
326 
327     if (!part.name.empty()) {
328       part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>();
329       part.elfHeader->name = part.name;
330       add(*part.elfHeader);
331 
332       part.programHeaders =
333           std::make_unique<PartitionProgramHeadersSection<ELFT>>();
334       add(*part.programHeaders);
335     }
336 
337     if (config->buildId != BuildIdKind::None) {
338       part.buildId = std::make_unique<BuildIdSection>();
339       add(*part.buildId);
340     }
341 
342     part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true);
343     part.dynSymTab =
344         std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab);
345     part.dynamic = std::make_unique<DynamicSection<ELFT>>();
346 
347     if (config->emachine == EM_AARCH64 &&
348         config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE) {
349       part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>();
350       add(*part.memtagAndroidNote);
351     }
352 
353     if (config->androidPackDynRelocs)
354       part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
355           relaDynName, threadCount);
356     else
357       part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
358           relaDynName, config->zCombreloc, threadCount);
359 
360     if (config->hasDynSymTab) {
361       add(*part.dynSymTab);
362 
363       part.verSym = std::make_unique<VersionTableSection>();
364       add(*part.verSym);
365 
366       if (!namedVersionDefs().empty()) {
367         part.verDef = std::make_unique<VersionDefinitionSection>();
368         add(*part.verDef);
369       }
370 
371       part.verNeed = std::make_unique<VersionNeedSection<ELFT>>();
372       add(*part.verNeed);
373 
374       if (config->gnuHash) {
375         part.gnuHashTab = std::make_unique<GnuHashTableSection>();
376         add(*part.gnuHashTab);
377       }
378 
379       if (config->sysvHash) {
380         part.hashTab = std::make_unique<HashTableSection>();
381         add(*part.hashTab);
382       }
383 
384       add(*part.dynamic);
385       add(*part.dynStrTab);
386       add(*part.relaDyn);
387     }
388 
389     if (config->relrPackDynRelocs) {
390       part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount);
391       add(*part.relrDyn);
392     }
393 
394     if (!config->relocatable) {
395       if (config->ehFrameHdr) {
396         part.ehFrameHdr = std::make_unique<EhFrameHeader>();
397         add(*part.ehFrameHdr);
398       }
399       part.ehFrame = std::make_unique<EhFrameSection>();
400       add(*part.ehFrame);
401 
402       if (config->emachine == EM_ARM) {
403         // This section replaces all the individual .ARM.exidx InputSections.
404         part.armExidx = std::make_unique<ARMExidxSyntheticSection>();
405         add(*part.armExidx);
406       }
407     }
408 
409     if (!config->packageMetadata.empty()) {
410       part.packageMetadataNote = std::make_unique<PackageMetadataNote>();
411       add(*part.packageMetadataNote);
412     }
413   }
414 
415   if (partitions.size() != 1) {
416     // Create the partition end marker. This needs to be in partition number 255
417     // so that it is sorted after all other partitions. It also has other
418     // special handling (see createPhdrs() and combineEhSections()).
419     in.partEnd =
420         std::make_unique<BssSection>(".part.end", config->maxPageSize, 1);
421     in.partEnd->partition = 255;
422     add(*in.partEnd);
423 
424     in.partIndex = std::make_unique<PartitionIndexSection>();
425     addOptionalRegular("__part_index_begin", in.partIndex.get(), 0);
426     addOptionalRegular("__part_index_end", in.partIndex.get(),
427                        in.partIndex->getSize());
428     add(*in.partIndex);
429   }
430 
431   // Add .got. MIPS' .got is so different from the other archs,
432   // it has its own class.
433   if (config->emachine == EM_MIPS) {
434     in.mipsGot = std::make_unique<MipsGotSection>();
435     add(*in.mipsGot);
436   } else {
437     in.got = std::make_unique<GotSection>();
438     add(*in.got);
439   }
440 
441   if (config->emachine == EM_PPC) {
442     in.ppc32Got2 = std::make_unique<PPC32Got2Section>();
443     add(*in.ppc32Got2);
444   }
445 
446   if (config->emachine == EM_PPC64) {
447     in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>();
448     add(*in.ppc64LongBranchTarget);
449   }
450 
451   in.gotPlt = std::make_unique<GotPltSection>();
452   add(*in.gotPlt);
453   in.igotPlt = std::make_unique<IgotPltSection>();
454   add(*in.igotPlt);
455 
456   // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
457   // it as a relocation and ensure the referenced section is created.
458   if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
459     if (target->gotBaseSymInGotPlt)
460       in.gotPlt->hasGotPltOffRel = true;
461     else
462       in.got->hasGotOffRel = true;
463   }
464 
465   if (config->gdbIndex)
466     add(*GdbIndexSection::create<ELFT>());
467 
468   // We always need to add rel[a].plt to output if it has entries.
469   // Even for static linking it can contain R_[*]_IRELATIVE relocations.
470   in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
471       config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
472       /*threadCount=*/1);
473   add(*in.relaPlt);
474 
475   // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
476   // relocations are processed last by the dynamic loader. We cannot place the
477   // iplt section in .rel.dyn when Android relocation packing is enabled because
478   // that would cause a section type mismatch. However, because the Android
479   // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
480   // behaviour by placing the iplt section in .rel.plt.
481   in.relaIplt = std::make_unique<RelocationSection<ELFT>>(
482       config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
483       /*sort=*/false, /*threadCount=*/1);
484   add(*in.relaIplt);
485 
486   if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
487       (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
488     in.ibtPlt = std::make_unique<IBTPltSection>();
489     add(*in.ibtPlt);
490   }
491 
492   if (config->emachine == EM_PPC)
493     in.plt = std::make_unique<PPC32GlinkSection>();
494   else
495     in.plt = std::make_unique<PltSection>();
496   add(*in.plt);
497   in.iplt = std::make_unique<IpltSection>();
498   add(*in.iplt);
499 
500   if (config->andFeatures)
501     add(*make<GnuPropertySection>());
502 
503   // .note.GNU-stack is always added when we are creating a re-linkable
504   // object file. Other linkers are using the presence of this marker
505   // section to control the executable-ness of the stack area, but that
506   // is irrelevant these days. Stack area should always be non-executable
507   // by default. So we emit this section unconditionally.
508   if (config->relocatable)
509     add(*make<GnuStackSection>());
510 
511   if (in.symTab)
512     add(*in.symTab);
513   if (in.symTabShndx)
514     add(*in.symTabShndx);
515   add(*in.shStrTab);
516   if (in.strTab)
517     add(*in.strTab);
518 }
519 
520 // The main function of the writer.
521 template <class ELFT> void Writer<ELFT>::run() {
522   copyLocalSymbols();
523 
524   if (config->copyRelocs)
525     addSectionSymbols();
526 
527   // Now that we have a complete set of output sections. This function
528   // completes section contents. For example, we need to add strings
529   // to the string table, and add entries to .got and .plt.
530   // finalizeSections does that.
531   finalizeSections();
532   checkExecuteOnly();
533 
534   // If --compressed-debug-sections is specified, compress .debug_* sections.
535   // Do it right now because it changes the size of output sections.
536   for (OutputSection *sec : outputSections)
537     sec->maybeCompress<ELFT>();
538 
539   if (script->hasSectionsCommand)
540     script->allocateHeaders(mainPart->phdrs);
541 
542   // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
543   // 0 sized region. This has to be done late since only after assignAddresses
544   // we know the size of the sections.
545   for (Partition &part : partitions)
546     removeEmptyPTLoad(part.phdrs);
547 
548   if (!config->oFormatBinary)
549     assignFileOffsets();
550   else
551     assignFileOffsetsBinary();
552 
553   for (Partition &part : partitions)
554     setPhdrs(part);
555 
556   // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
557   // because the files may be useful in case checkSections() or openFile()
558   // fails, for example, due to an erroneous file size.
559   writeMapAndCref();
560 
561   if (config->checkSections)
562     checkSections();
563 
564   // It does not make sense try to open the file if we have error already.
565   if (errorCount())
566     return;
567 
568   {
569     llvm::TimeTraceScope timeScope("Write output file");
570     // Write the result down to a file.
571     openFile();
572     if (errorCount())
573       return;
574 
575     if (!config->oFormatBinary) {
576       if (config->zSeparate != SeparateSegmentKind::None)
577         writeTrapInstr();
578       writeHeader();
579       writeSections();
580     } else {
581       writeSectionsBinary();
582     }
583 
584     // Backfill .note.gnu.build-id section content. This is done at last
585     // because the content is usually a hash value of the entire output file.
586     writeBuildId();
587     if (errorCount())
588       return;
589 
590     if (auto e = buffer->commit())
591       fatal("failed to write output '" + buffer->getPath() +
592             "': " + toString(std::move(e)));
593   }
594 }
595 
596 template <class ELFT, class RelTy>
597 static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
598                                      llvm::ArrayRef<RelTy> rels) {
599   for (const RelTy &rel : rels) {
600     Symbol &sym = file->getRelocTargetSym(rel);
601     if (sym.isLocal())
602       sym.used = true;
603   }
604 }
605 
606 // The function ensures that the "used" field of local symbols reflects the fact
607 // that the symbol is used in a relocation from a live section.
608 template <class ELFT> static void markUsedLocalSymbols() {
609   // With --gc-sections, the field is already filled.
610   // See MarkLive<ELFT>::resolveReloc().
611   if (config->gcSections)
612     return;
613   for (ELFFileBase *file : ctx.objectFiles) {
614     ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
615     for (InputSectionBase *s : f->getSections()) {
616       InputSection *isec = dyn_cast_or_null<InputSection>(s);
617       if (!isec)
618         continue;
619       if (isec->type == SHT_REL)
620         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
621       else if (isec->type == SHT_RELA)
622         markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
623     }
624   }
625 }
626 
627 static bool shouldKeepInSymtab(const Defined &sym) {
628   if (sym.isSection())
629     return false;
630 
631   // If --emit-reloc or -r is given, preserve symbols referenced by relocations
632   // from live sections.
633   if (sym.used && config->copyRelocs)
634     return true;
635 
636   // Exclude local symbols pointing to .ARM.exidx sections.
637   // They are probably mapping symbols "$d", which are optional for these
638   // sections. After merging the .ARM.exidx sections, some of these symbols
639   // may become dangling. The easiest way to avoid the issue is not to add
640   // them to the symbol table from the beginning.
641   if (config->emachine == EM_ARM && sym.section &&
642       sym.section->type == SHT_ARM_EXIDX)
643     return false;
644 
645   if (config->discard == DiscardPolicy::None)
646     return true;
647   if (config->discard == DiscardPolicy::All)
648     return false;
649 
650   // In ELF assembly .L symbols are normally discarded by the assembler.
651   // If the assembler fails to do so, the linker discards them if
652   // * --discard-locals is used.
653   // * The symbol is in a SHF_MERGE section, which is normally the reason for
654   //   the assembler keeping the .L symbol.
655   if (sym.getName().startswith(".L") &&
656       (config->discard == DiscardPolicy::Locals ||
657        (sym.section && (sym.section->flags & SHF_MERGE))))
658     return false;
659   return true;
660 }
661 
662 static bool includeInSymtab(const Symbol &b) {
663   if (auto *d = dyn_cast<Defined>(&b)) {
664     // Always include absolute symbols.
665     SectionBase *sec = d->section;
666     if (!sec)
667       return true;
668 
669     if (auto *s = dyn_cast<MergeInputSection>(sec))
670       return s->getSectionPiece(d->value).live;
671     return sec->isLive();
672   }
673   return b.used || !config->gcSections;
674 }
675 
676 // Local symbols are not in the linker's symbol table. This function scans
677 // each object file's symbol table to copy local symbols to the output.
678 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
679   if (!in.symTab)
680     return;
681   llvm::TimeTraceScope timeScope("Add local symbols");
682   if (config->copyRelocs && config->discard != DiscardPolicy::None)
683     markUsedLocalSymbols<ELFT>();
684   for (ELFFileBase *file : ctx.objectFiles) {
685     for (Symbol *b : file->getLocalSymbols()) {
686       assert(b->isLocal() && "should have been caught in initializeSymbols()");
687       auto *dr = dyn_cast<Defined>(b);
688 
689       // No reason to keep local undefined symbol in symtab.
690       if (!dr)
691         continue;
692       if (includeInSymtab(*b) && shouldKeepInSymtab(*dr))
693         in.symTab->addSymbol(b);
694     }
695   }
696 }
697 
698 // Create a section symbol for each output section so that we can represent
699 // relocations that point to the section. If we know that no relocation is
700 // referring to a section (that happens if the section is a synthetic one), we
701 // don't create a section symbol for that section.
702 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
703   for (SectionCommand *cmd : script->sectionCommands) {
704     auto *osd = dyn_cast<OutputDesc>(cmd);
705     if (!osd)
706       continue;
707     OutputSection &osec = osd->osec;
708     InputSectionBase *isec = nullptr;
709     // Iterate over all input sections and add a STT_SECTION symbol if any input
710     // section may be a relocation target.
711     for (SectionCommand *cmd : osec.commands) {
712       auto *isd = dyn_cast<InputSectionDescription>(cmd);
713       if (!isd)
714         continue;
715       for (InputSectionBase *s : isd->sections) {
716         // Relocations are not using REL[A] section symbols.
717         if (s->type == SHT_REL || s->type == SHT_RELA)
718           continue;
719 
720         // Unlike other synthetic sections, mergeable output sections contain
721         // data copied from input sections, and there may be a relocation
722         // pointing to its contents if -r or --emit-reloc is given.
723         if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE))
724           continue;
725 
726         isec = s;
727         break;
728       }
729     }
730     if (!isec)
731       continue;
732 
733     // Set the symbol to be relative to the output section so that its st_value
734     // equals the output section address. Note, there may be a gap between the
735     // start of the output section and isec.
736     in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0,
737                                      STT_SECTION,
738                                      /*value=*/0, /*size=*/0, &osec));
739   }
740 }
741 
742 // Today's loaders have a feature to make segments read-only after
743 // processing dynamic relocations to enhance security. PT_GNU_RELRO
744 // is defined for that.
745 //
746 // This function returns true if a section needs to be put into a
747 // PT_GNU_RELRO segment.
748 static bool isRelroSection(const OutputSection *sec) {
749   if (!config->zRelro)
750     return false;
751   if (sec->relro)
752     return true;
753 
754   uint64_t flags = sec->flags;
755 
756   // Non-allocatable or non-writable sections don't need RELRO because
757   // they are not writable or not even mapped to memory in the first place.
758   // RELRO is for sections that are essentially read-only but need to
759   // be writable only at process startup to allow dynamic linker to
760   // apply relocations.
761   if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
762     return false;
763 
764   // Once initialized, TLS data segments are used as data templates
765   // for a thread-local storage. For each new thread, runtime
766   // allocates memory for a TLS and copy templates there. No thread
767   // are supposed to use templates directly. Thus, it can be in RELRO.
768   if (flags & SHF_TLS)
769     return true;
770 
771   // .init_array, .preinit_array and .fini_array contain pointers to
772   // functions that are executed on process startup or exit. These
773   // pointers are set by the static linker, and they are not expected
774   // to change at runtime. But if you are an attacker, you could do
775   // interesting things by manipulating pointers in .fini_array, for
776   // example. So they are put into RELRO.
777   uint32_t type = sec->type;
778   if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
779       type == SHT_PREINIT_ARRAY)
780     return true;
781 
782   // .got contains pointers to external symbols. They are resolved by
783   // the dynamic linker when a module is loaded into memory, and after
784   // that they are not expected to change. So, it can be in RELRO.
785   if (in.got && sec == in.got->getParent())
786     return true;
787 
788   // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
789   // through r2 register, which is reserved for that purpose. Since r2 is used
790   // for accessing .got as well, .got and .toc need to be close enough in the
791   // virtual address space. Usually, .toc comes just after .got. Since we place
792   // .got into RELRO, .toc needs to be placed into RELRO too.
793   if (sec->name.equals(".toc"))
794     return true;
795 
796   // .got.plt contains pointers to external function symbols. They are
797   // by default resolved lazily, so we usually cannot put it into RELRO.
798   // However, if "-z now" is given, the lazy symbol resolution is
799   // disabled, which enables us to put it into RELRO.
800   if (sec == in.gotPlt->getParent())
801     return config->zNow;
802 
803   // .dynamic section contains data for the dynamic linker, and
804   // there's no need to write to it at runtime, so it's better to put
805   // it into RELRO.
806   if (sec->name == ".dynamic")
807     return true;
808 
809   // Sections with some special names are put into RELRO. This is a
810   // bit unfortunate because section names shouldn't be significant in
811   // ELF in spirit. But in reality many linker features depend on
812   // magic section names.
813   StringRef s = sec->name;
814   return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
815          s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
816          s == ".fini_array" || s == ".init_array" ||
817          s == ".openbsd.randomdata" || s == ".preinit_array";
818 }
819 
820 // We compute a rank for each section. The rank indicates where the
821 // section should be placed in the file.  Instead of using simple
822 // numbers (0,1,2...), we use a series of flags. One for each decision
823 // point when placing the section.
824 // Using flags has two key properties:
825 // * It is easy to check if a give branch was taken.
826 // * It is easy two see how similar two ranks are (see getRankProximity).
827 enum RankFlags {
828   RF_NOT_ADDR_SET = 1 << 27,
829   RF_NOT_ALLOC = 1 << 26,
830   RF_PARTITION = 1 << 18, // Partition number (8 bits)
831   RF_NOT_PART_EHDR = 1 << 17,
832   RF_NOT_PART_PHDR = 1 << 16,
833   RF_NOT_INTERP = 1 << 15,
834   RF_NOT_NOTE = 1 << 14,
835   RF_WRITE = 1 << 13,
836   RF_EXEC_WRITE = 1 << 12,
837   RF_EXEC = 1 << 11,
838   RF_RODATA = 1 << 10,
839   RF_NOT_RELRO = 1 << 9,
840   RF_NOT_TLS = 1 << 8,
841   RF_BSS = 1 << 7,
842   RF_PPC_NOT_TOCBSS = 1 << 6,
843   RF_PPC_TOCL = 1 << 5,
844   RF_PPC_TOC = 1 << 4,
845   RF_PPC_GOT = 1 << 3,
846   RF_PPC_BRANCH_LT = 1 << 2,
847   RF_MIPS_GPREL = 1 << 1,
848   RF_MIPS_NOT_GOT = 1 << 0
849 };
850 
851 static unsigned getSectionRank(const OutputSection &osec) {
852   unsigned rank = osec.partition * RF_PARTITION;
853 
854   // We want to put section specified by -T option first, so we
855   // can start assigning VA starting from them later.
856   if (config->sectionStartMap.count(osec.name))
857     return rank;
858   rank |= RF_NOT_ADDR_SET;
859 
860   // Allocatable sections go first to reduce the total PT_LOAD size and
861   // so debug info doesn't change addresses in actual code.
862   if (!(osec.flags & SHF_ALLOC))
863     return rank | RF_NOT_ALLOC;
864 
865   if (osec.type == SHT_LLVM_PART_EHDR)
866     return rank;
867   rank |= RF_NOT_PART_EHDR;
868 
869   if (osec.type == SHT_LLVM_PART_PHDR)
870     return rank;
871   rank |= RF_NOT_PART_PHDR;
872 
873   // Put .interp first because some loaders want to see that section
874   // on the first page of the executable file when loaded into memory.
875   if (osec.name == ".interp")
876     return rank;
877   rank |= RF_NOT_INTERP;
878 
879   // Put .note sections (which make up one PT_NOTE) at the beginning so that
880   // they are likely to be included in a core file even if core file size is
881   // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
882   // included in a core to match core files with executables.
883   if (osec.type == SHT_NOTE)
884     return rank;
885   rank |= RF_NOT_NOTE;
886 
887   // Sort sections based on their access permission in the following
888   // order: R, RX, RWX, RW.  This order is based on the following
889   // considerations:
890   // * Read-only sections come first such that they go in the
891   //   PT_LOAD covering the program headers at the start of the file.
892   // * Read-only, executable sections come next.
893   // * Writable, executable sections follow such that .plt on
894   //   architectures where it needs to be writable will be placed
895   //   between .text and .data.
896   // * Writable sections come last, such that .bss lands at the very
897   //   end of the last PT_LOAD.
898   bool isExec = osec.flags & SHF_EXECINSTR;
899   bool isWrite = osec.flags & SHF_WRITE;
900 
901   if (isExec) {
902     if (isWrite)
903       rank |= RF_EXEC_WRITE;
904     else
905       rank |= RF_EXEC;
906   } else if (isWrite) {
907     rank |= RF_WRITE;
908   } else if (osec.type == SHT_PROGBITS) {
909     // Make non-executable and non-writable PROGBITS sections (e.g .rodata
910     // .eh_frame) closer to .text. They likely contain PC or GOT relative
911     // relocations and there could be relocation overflow if other huge sections
912     // (.dynstr .dynsym) were placed in between.
913     rank |= RF_RODATA;
914   }
915 
916   // Place RelRo sections first. After considering SHT_NOBITS below, the
917   // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
918   // where | marks where page alignment happens. An alternative ordering is
919   // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
920   // waste more bytes due to 2 alignment places.
921   if (!isRelroSection(&osec))
922     rank |= RF_NOT_RELRO;
923 
924   // If we got here we know that both A and B are in the same PT_LOAD.
925 
926   // The TLS initialization block needs to be a single contiguous block in a R/W
927   // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
928   // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
929   // after PROGBITS.
930   if (!(osec.flags & SHF_TLS))
931     rank |= RF_NOT_TLS;
932 
933   // Within TLS sections, or within other RelRo sections, or within non-RelRo
934   // sections, place non-NOBITS sections first.
935   if (osec.type == SHT_NOBITS)
936     rank |= RF_BSS;
937 
938   // Some architectures have additional ordering restrictions for sections
939   // within the same PT_LOAD.
940   if (config->emachine == EM_PPC64) {
941     // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
942     // that we would like to make sure appear is a specific order to maximize
943     // their coverage by a single signed 16-bit offset from the TOC base
944     // pointer. Conversely, the special .tocbss section should be first among
945     // all SHT_NOBITS sections. This will put it next to the loaded special
946     // PPC64 sections (and, thus, within reach of the TOC base pointer).
947     StringRef name = osec.name;
948     if (name != ".tocbss")
949       rank |= RF_PPC_NOT_TOCBSS;
950 
951     if (name == ".toc1")
952       rank |= RF_PPC_TOCL;
953 
954     if (name == ".toc")
955       rank |= RF_PPC_TOC;
956 
957     if (name == ".got")
958       rank |= RF_PPC_GOT;
959 
960     if (name == ".branch_lt")
961       rank |= RF_PPC_BRANCH_LT;
962   }
963 
964   if (config->emachine == EM_MIPS) {
965     // All sections with SHF_MIPS_GPREL flag should be grouped together
966     // because data in these sections is addressable with a gp relative address.
967     if (osec.flags & SHF_MIPS_GPREL)
968       rank |= RF_MIPS_GPREL;
969 
970     if (osec.name != ".got")
971       rank |= RF_MIPS_NOT_GOT;
972   }
973 
974   return rank;
975 }
976 
977 static bool compareSections(const SectionCommand *aCmd,
978                             const SectionCommand *bCmd) {
979   const OutputSection *a = &cast<OutputDesc>(aCmd)->osec;
980   const OutputSection *b = &cast<OutputDesc>(bCmd)->osec;
981 
982   if (a->sortRank != b->sortRank)
983     return a->sortRank < b->sortRank;
984 
985   if (!(a->sortRank & RF_NOT_ADDR_SET))
986     return config->sectionStartMap.lookup(a->name) <
987            config->sectionStartMap.lookup(b->name);
988   return false;
989 }
990 
991 void PhdrEntry::add(OutputSection *sec) {
992   lastSec = sec;
993   if (!firstSec)
994     firstSec = sec;
995   p_align = std::max(p_align, sec->addralign);
996   if (p_type == PT_LOAD)
997     sec->ptLoad = this;
998 }
999 
1000 // The beginning and the ending of .rel[a].plt section are marked
1001 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1002 // executable. The runtime needs these symbols in order to resolve
1003 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1004 // need these symbols, since IRELATIVE relocs are resolved through GOT
1005 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1006 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1007   if (config->isPic)
1008     return;
1009 
1010   // By default, __rela_iplt_{start,end} belong to a dummy section 0
1011   // because .rela.plt might be empty and thus removed from output.
1012   // We'll override Out::elfHeader with In.relaIplt later when we are
1013   // sure that .rela.plt exists in output.
1014   ElfSym::relaIpltStart = addOptionalRegular(
1015       config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1016       Out::elfHeader, 0, STV_HIDDEN);
1017 
1018   ElfSym::relaIpltEnd = addOptionalRegular(
1019       config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1020       Out::elfHeader, 0, STV_HIDDEN);
1021 }
1022 
1023 // This function generates assignments for predefined symbols (e.g. _end or
1024 // _etext) and inserts them into the commands sequence to be processed at the
1025 // appropriate time. This ensures that the value is going to be correct by the
1026 // time any references to these symbols are processed and is equivalent to
1027 // defining these symbols explicitly in the linker script.
1028 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1029   if (ElfSym::globalOffsetTable) {
1030     // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1031     // to the start of the .got or .got.plt section.
1032     InputSection *sec = in.gotPlt.get();
1033     if (!target->gotBaseSymInGotPlt)
1034       sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get())
1035                        : cast<InputSection>(in.got.get());
1036     ElfSym::globalOffsetTable->section = sec;
1037   }
1038 
1039   // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1040   if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1041     ElfSym::relaIpltStart->section = in.relaIplt.get();
1042     ElfSym::relaIpltEnd->section = in.relaIplt.get();
1043     ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1044   }
1045 
1046   PhdrEntry *last = nullptr;
1047   PhdrEntry *lastRO = nullptr;
1048 
1049   for (Partition &part : partitions) {
1050     for (PhdrEntry *p : part.phdrs) {
1051       if (p->p_type != PT_LOAD)
1052         continue;
1053       last = p;
1054       if (!(p->p_flags & PF_W))
1055         lastRO = p;
1056     }
1057   }
1058 
1059   if (lastRO) {
1060     // _etext is the first location after the last read-only loadable segment.
1061     if (ElfSym::etext1)
1062       ElfSym::etext1->section = lastRO->lastSec;
1063     if (ElfSym::etext2)
1064       ElfSym::etext2->section = lastRO->lastSec;
1065   }
1066 
1067   if (last) {
1068     // _edata points to the end of the last mapped initialized section.
1069     OutputSection *edata = nullptr;
1070     for (OutputSection *os : outputSections) {
1071       if (os->type != SHT_NOBITS)
1072         edata = os;
1073       if (os == last->lastSec)
1074         break;
1075     }
1076 
1077     if (ElfSym::edata1)
1078       ElfSym::edata1->section = edata;
1079     if (ElfSym::edata2)
1080       ElfSym::edata2->section = edata;
1081 
1082     // _end is the first location after the uninitialized data region.
1083     if (ElfSym::end1)
1084       ElfSym::end1->section = last->lastSec;
1085     if (ElfSym::end2)
1086       ElfSym::end2->section = last->lastSec;
1087   }
1088 
1089   if (ElfSym::bss)
1090     ElfSym::bss->section = findSection(".bss");
1091 
1092   // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1093   // be equal to the _gp symbol's value.
1094   if (ElfSym::mipsGp) {
1095     // Find GP-relative section with the lowest address
1096     // and use this address to calculate default _gp value.
1097     for (OutputSection *os : outputSections) {
1098       if (os->flags & SHF_MIPS_GPREL) {
1099         ElfSym::mipsGp->section = os;
1100         ElfSym::mipsGp->value = 0x7ff0;
1101         break;
1102       }
1103     }
1104   }
1105 }
1106 
1107 // We want to find how similar two ranks are.
1108 // The more branches in getSectionRank that match, the more similar they are.
1109 // Since each branch corresponds to a bit flag, we can just use
1110 // countLeadingZeros.
1111 static int getRankProximity(OutputSection *a, SectionCommand *b) {
1112   auto *osd = dyn_cast<OutputDesc>(b);
1113   return (osd && osd->osec.hasInputSections)
1114              ? countLeadingZeros(a->sortRank ^ osd->osec.sortRank)
1115              : -1;
1116 }
1117 
1118 // When placing orphan sections, we want to place them after symbol assignments
1119 // so that an orphan after
1120 //   begin_foo = .;
1121 //   foo : { *(foo) }
1122 //   end_foo = .;
1123 // doesn't break the intended meaning of the begin/end symbols.
1124 // We don't want to go over sections since findOrphanPos is the
1125 // one in charge of deciding the order of the sections.
1126 // We don't want to go over changes to '.', since doing so in
1127 //  rx_sec : { *(rx_sec) }
1128 //  . = ALIGN(0x1000);
1129 //  /* The RW PT_LOAD starts here*/
1130 //  rw_sec : { *(rw_sec) }
1131 // would mean that the RW PT_LOAD would become unaligned.
1132 static bool shouldSkip(SectionCommand *cmd) {
1133   if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1134     return assign->name != ".";
1135   return false;
1136 }
1137 
1138 // We want to place orphan sections so that they share as much
1139 // characteristics with their neighbors as possible. For example, if
1140 // both are rw, or both are tls.
1141 static SmallVectorImpl<SectionCommand *>::iterator
1142 findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b,
1143               SmallVectorImpl<SectionCommand *>::iterator e) {
1144   OutputSection *sec = &cast<OutputDesc>(*e)->osec;
1145 
1146   // Find the first element that has as close a rank as possible.
1147   auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
1148     return getRankProximity(sec, a) < getRankProximity(sec, b);
1149   });
1150   if (i == e)
1151     return e;
1152   if (!isa<OutputDesc>(*i))
1153     return e;
1154   auto foundSec = &cast<OutputDesc>(*i)->osec;
1155 
1156   // Consider all existing sections with the same proximity.
1157   int proximity = getRankProximity(sec, *i);
1158   unsigned sortRank = sec->sortRank;
1159   if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
1160     // Prevent the orphan section to be placed before the found section. If
1161     // custom program headers are defined, that helps to avoid adding it to a
1162     // previous segment and changing flags of that segment, for example, making
1163     // a read-only segment writable. If memory regions are defined, an orphan
1164     // section should continue the same region as the found section to better
1165     // resemble the behavior of GNU ld.
1166     sortRank = std::max(sortRank, foundSec->sortRank);
1167   for (; i != e; ++i) {
1168     auto *curSecDesc = dyn_cast<OutputDesc>(*i);
1169     if (!curSecDesc || !curSecDesc->osec.hasInputSections)
1170       continue;
1171     if (getRankProximity(sec, curSecDesc) != proximity ||
1172         sortRank < curSecDesc->osec.sortRank)
1173       break;
1174   }
1175 
1176   auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
1177     auto *osd = dyn_cast<OutputDesc>(cmd);
1178     return osd && osd->osec.hasInputSections;
1179   };
1180   auto j =
1181       std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b),
1182                    isOutputSecWithInputSections);
1183   i = j.base();
1184 
1185   // As a special case, if the orphan section is the last section, put
1186   // it at the very end, past any other commands.
1187   // This matches bfd's behavior and is convenient when the linker script fully
1188   // specifies the start of the file, but doesn't care about the end (the non
1189   // alloc sections for example).
1190   auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1191   if (nextSec == e)
1192     return e;
1193 
1194   while (i != e && shouldSkip(*i))
1195     ++i;
1196   return i;
1197 }
1198 
1199 // Adds random priorities to sections not already in the map.
1200 static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
1201   if (config->shuffleSections.empty())
1202     return;
1203 
1204   SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections;
1205   matched.reserve(sections.size());
1206   for (const auto &patAndSeed : config->shuffleSections) {
1207     matched.clear();
1208     for (InputSectionBase *sec : sections)
1209       if (patAndSeed.first.match(sec->name))
1210         matched.push_back(sec);
1211     const uint32_t seed = patAndSeed.second;
1212     if (seed == UINT32_MAX) {
1213       // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1214       // section order is stable even if the number of sections changes. This is
1215       // useful to catch issues like static initialization order fiasco
1216       // reliably.
1217       std::reverse(matched.begin(), matched.end());
1218     } else {
1219       std::mt19937 g(seed ? seed : std::random_device()());
1220       llvm::shuffle(matched.begin(), matched.end(), g);
1221     }
1222     size_t i = 0;
1223     for (InputSectionBase *&sec : sections)
1224       if (patAndSeed.first.match(sec->name))
1225         sec = matched[i++];
1226   }
1227 
1228   // Existing priorities are < 0, so use priorities >= 0 for the missing
1229   // sections.
1230   int prio = 0;
1231   for (InputSectionBase *sec : sections) {
1232     if (order.try_emplace(sec, prio).second)
1233       ++prio;
1234   }
1235 }
1236 
1237 // Builds section order for handling --symbol-ordering-file.
1238 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1239   DenseMap<const InputSectionBase *, int> sectionOrder;
1240   // Use the rarely used option --call-graph-ordering-file to sort sections.
1241   if (!config->callGraphProfile.empty())
1242     return computeCallGraphProfileOrder();
1243 
1244   if (config->symbolOrderingFile.empty())
1245     return sectionOrder;
1246 
1247   struct SymbolOrderEntry {
1248     int priority;
1249     bool present;
1250   };
1251 
1252   // Build a map from symbols to their priorities. Symbols that didn't
1253   // appear in the symbol ordering file have the lowest priority 0.
1254   // All explicitly mentioned symbols have negative (higher) priorities.
1255   DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder;
1256   int priority = -config->symbolOrderingFile.size();
1257   for (StringRef s : config->symbolOrderingFile)
1258     symbolOrder.insert({CachedHashStringRef(s), {priority++, false}});
1259 
1260   // Build a map from sections to their priorities.
1261   auto addSym = [&](Symbol &sym) {
1262     auto it = symbolOrder.find(CachedHashStringRef(sym.getName()));
1263     if (it == symbolOrder.end())
1264       return;
1265     SymbolOrderEntry &ent = it->second;
1266     ent.present = true;
1267 
1268     maybeWarnUnorderableSymbol(&sym);
1269 
1270     if (auto *d = dyn_cast<Defined>(&sym)) {
1271       if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1272         int &priority = sectionOrder[cast<InputSectionBase>(sec)];
1273         priority = std::min(priority, ent.priority);
1274       }
1275     }
1276   };
1277 
1278   // We want both global and local symbols. We get the global ones from the
1279   // symbol table and iterate the object files for the local ones.
1280   for (Symbol *sym : symtab.getSymbols())
1281     addSym(*sym);
1282 
1283   for (ELFFileBase *file : ctx.objectFiles)
1284     for (Symbol *sym : file->getLocalSymbols())
1285       addSym(*sym);
1286 
1287   if (config->warnSymbolOrdering)
1288     for (auto orderEntry : symbolOrder)
1289       if (!orderEntry.second.present)
1290         warn("symbol ordering file: no such symbol: " + orderEntry.first.val());
1291 
1292   return sectionOrder;
1293 }
1294 
1295 // Sorts the sections in ISD according to the provided section order.
1296 static void
1297 sortISDBySectionOrder(InputSectionDescription *isd,
1298                       const DenseMap<const InputSectionBase *, int> &order,
1299                       bool executableOutputSection) {
1300   SmallVector<InputSection *, 0> unorderedSections;
1301   SmallVector<std::pair<InputSection *, int>, 0> orderedSections;
1302   uint64_t unorderedSize = 0;
1303   uint64_t totalSize = 0;
1304 
1305   for (InputSection *isec : isd->sections) {
1306     if (executableOutputSection)
1307       totalSize += isec->getSize();
1308     auto i = order.find(isec);
1309     if (i == order.end()) {
1310       unorderedSections.push_back(isec);
1311       unorderedSize += isec->getSize();
1312       continue;
1313     }
1314     orderedSections.push_back({isec, i->second});
1315   }
1316   llvm::sort(orderedSections, llvm::less_second());
1317 
1318   // Find an insertion point for the ordered section list in the unordered
1319   // section list. On targets with limited-range branches, this is the mid-point
1320   // of the unordered section list. This decreases the likelihood that a range
1321   // extension thunk will be needed to enter or exit the ordered region. If the
1322   // ordered section list is a list of hot functions, we can generally expect
1323   // the ordered functions to be called more often than the unordered functions,
1324   // making it more likely that any particular call will be within range, and
1325   // therefore reducing the number of thunks required.
1326   //
1327   // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1328   // If the layout is:
1329   //
1330   // 8MB hot
1331   // 32MB cold
1332   //
1333   // only the first 8-16MB of the cold code (depending on which hot function it
1334   // is actually calling) can call the hot code without a range extension thunk.
1335   // However, if we use this layout:
1336   //
1337   // 16MB cold
1338   // 8MB hot
1339   // 16MB cold
1340   //
1341   // both the last 8-16MB of the first block of cold code and the first 8-16MB
1342   // of the second block of cold code can call the hot code without a thunk. So
1343   // we effectively double the amount of code that could potentially call into
1344   // the hot code without a thunk.
1345   //
1346   // The above is not necessary if total size of input sections in this "isd"
1347   // is small. Note that we assume all input sections are executable if the
1348   // output section is executable (which is not always true but supposed to
1349   // cover most cases).
1350   size_t insPt = 0;
1351   if (executableOutputSection && !orderedSections.empty() &&
1352       target->getThunkSectionSpacing() &&
1353       totalSize >= target->getThunkSectionSpacing()) {
1354     uint64_t unorderedPos = 0;
1355     for (; insPt != unorderedSections.size(); ++insPt) {
1356       unorderedPos += unorderedSections[insPt]->getSize();
1357       if (unorderedPos > unorderedSize / 2)
1358         break;
1359     }
1360   }
1361 
1362   isd->sections.clear();
1363   for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt))
1364     isd->sections.push_back(isec);
1365   for (std::pair<InputSection *, int> p : orderedSections)
1366     isd->sections.push_back(p.first);
1367   for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt))
1368     isd->sections.push_back(isec);
1369 }
1370 
1371 static void sortSection(OutputSection &osec,
1372                         const DenseMap<const InputSectionBase *, int> &order) {
1373   StringRef name = osec.name;
1374 
1375   // Never sort these.
1376   if (name == ".init" || name == ".fini")
1377     return;
1378 
1379   // IRelative relocations that usually live in the .rel[a].dyn section should
1380   // be processed last by the dynamic loader. To achieve that we add synthetic
1381   // sections in the required order from the beginning so that the in.relaIplt
1382   // section is placed last in an output section. Here we just do not apply
1383   // sorting for an output section which holds the in.relaIplt section.
1384   if (in.relaIplt->getParent() == &osec)
1385     return;
1386 
1387   // Sort input sections by priority using the list provided by
1388   // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1389   // digit radix sort. The sections may be sorted stably again by a more
1390   // significant key.
1391   if (!order.empty())
1392     for (SectionCommand *b : osec.commands)
1393       if (auto *isd = dyn_cast<InputSectionDescription>(b))
1394         sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR);
1395 
1396   if (script->hasSectionsCommand)
1397     return;
1398 
1399   if (name == ".init_array" || name == ".fini_array") {
1400     osec.sortInitFini();
1401   } else if (name == ".ctors" || name == ".dtors") {
1402     osec.sortCtorsDtors();
1403   } else if (config->emachine == EM_PPC64 && name == ".toc") {
1404     // .toc is allocated just after .got and is accessed using GOT-relative
1405     // relocations. Object files compiled with small code model have an
1406     // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1407     // To reduce the risk of relocation overflow, .toc contents are sorted so
1408     // that sections having smaller relocation offsets are at beginning of .toc
1409     assert(osec.commands.size() == 1);
1410     auto *isd = cast<InputSectionDescription>(osec.commands[0]);
1411     llvm::stable_sort(isd->sections,
1412                       [](const InputSection *a, const InputSection *b) -> bool {
1413                         return a->file->ppc64SmallCodeModelTocRelocs &&
1414                                !b->file->ppc64SmallCodeModelTocRelocs;
1415                       });
1416   }
1417 }
1418 
1419 // If no layout was provided by linker script, we want to apply default
1420 // sorting for special input sections. This also handles --symbol-ordering-file.
1421 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1422   // Build the order once since it is expensive.
1423   DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1424   maybeShuffle(order);
1425   for (SectionCommand *cmd : script->sectionCommands)
1426     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1427       sortSection(osd->osec, order);
1428 }
1429 
1430 template <class ELFT> void Writer<ELFT>::sortSections() {
1431   llvm::TimeTraceScope timeScope("Sort sections");
1432 
1433   // Don't sort if using -r. It is not necessary and we want to preserve the
1434   // relative order for SHF_LINK_ORDER sections.
1435   if (config->relocatable) {
1436     script->adjustOutputSections();
1437     return;
1438   }
1439 
1440   sortInputSections();
1441 
1442   for (SectionCommand *cmd : script->sectionCommands)
1443     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1444       osd->osec.sortRank = getSectionRank(osd->osec);
1445   if (!script->hasSectionsCommand) {
1446     // We know that all the OutputSections are contiguous in this case.
1447     auto isSection = [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); };
1448     std::stable_sort(
1449         llvm::find_if(script->sectionCommands, isSection),
1450         llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1451         compareSections);
1452   }
1453 
1454   // Process INSERT commands and update output section attributes. From this
1455   // point onwards the order of script->sectionCommands is fixed.
1456   script->processInsertCommands();
1457   script->adjustOutputSections();
1458 
1459   if (!script->hasSectionsCommand)
1460     return;
1461 
1462   // Orphan sections are sections present in the input files which are
1463   // not explicitly placed into the output file by the linker script.
1464   //
1465   // The sections in the linker script are already in the correct
1466   // order. We have to figuere out where to insert the orphan
1467   // sections.
1468   //
1469   // The order of the sections in the script is arbitrary and may not agree with
1470   // compareSections. This means that we cannot easily define a strict weak
1471   // ordering. To see why, consider a comparison of a section in the script and
1472   // one not in the script. We have a two simple options:
1473   // * Make them equivalent (a is not less than b, and b is not less than a).
1474   //   The problem is then that equivalence has to be transitive and we can
1475   //   have sections a, b and c with only b in a script and a less than c
1476   //   which breaks this property.
1477   // * Use compareSectionsNonScript. Given that the script order doesn't have
1478   //   to match, we can end up with sections a, b, c, d where b and c are in the
1479   //   script and c is compareSectionsNonScript less than b. In which case d
1480   //   can be equivalent to c, a to b and d < a. As a concrete example:
1481   //   .a (rx) # not in script
1482   //   .b (rx) # in script
1483   //   .c (ro) # in script
1484   //   .d (ro) # not in script
1485   //
1486   // The way we define an order then is:
1487   // *  Sort only the orphan sections. They are in the end right now.
1488   // *  Move each orphan section to its preferred position. We try
1489   //    to put each section in the last position where it can share
1490   //    a PT_LOAD.
1491   //
1492   // There is some ambiguity as to where exactly a new entry should be
1493   // inserted, because Commands contains not only output section
1494   // commands but also other types of commands such as symbol assignment
1495   // expressions. There's no correct answer here due to the lack of the
1496   // formal specification of the linker script. We use heuristics to
1497   // determine whether a new output command should be added before or
1498   // after another commands. For the details, look at shouldSkip
1499   // function.
1500 
1501   auto i = script->sectionCommands.begin();
1502   auto e = script->sectionCommands.end();
1503   auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
1504     if (auto *osd = dyn_cast<OutputDesc>(cmd))
1505       return osd->osec.sectionIndex == UINT32_MAX;
1506     return false;
1507   });
1508 
1509   // Sort the orphan sections.
1510   std::stable_sort(nonScriptI, e, compareSections);
1511 
1512   // As a horrible special case, skip the first . assignment if it is before any
1513   // section. We do this because it is common to set a load address by starting
1514   // the script with ". = 0xabcd" and the expectation is that every section is
1515   // after that.
1516   auto firstSectionOrDotAssignment =
1517       std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
1518   if (firstSectionOrDotAssignment != e &&
1519       isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1520     ++firstSectionOrDotAssignment;
1521   i = firstSectionOrDotAssignment;
1522 
1523   while (nonScriptI != e) {
1524     auto pos = findOrphanPos(i, nonScriptI);
1525     OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec;
1526 
1527     // As an optimization, find all sections with the same sort rank
1528     // and insert them with one rotate.
1529     unsigned rank = orphan->sortRank;
1530     auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
1531       return cast<OutputDesc>(cmd)->osec.sortRank != rank;
1532     });
1533     std::rotate(pos, nonScriptI, end);
1534     nonScriptI = end;
1535   }
1536 
1537   script->adjustSectionsAfterSorting();
1538 }
1539 
1540 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1541   InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
1542   InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
1543   // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1544   // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1545   if (!la || !lb)
1546     return la && !lb;
1547   OutputSection *aOut = la->getParent();
1548   OutputSection *bOut = lb->getParent();
1549 
1550   if (aOut != bOut)
1551     return aOut->addr < bOut->addr;
1552   return la->outSecOff < lb->outSecOff;
1553 }
1554 
1555 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1556   llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
1557   for (OutputSection *sec : outputSections) {
1558     if (!(sec->flags & SHF_LINK_ORDER))
1559       continue;
1560 
1561     // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1562     // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1563     if (!config->relocatable && config->emachine == EM_ARM &&
1564         sec->type == SHT_ARM_EXIDX)
1565       continue;
1566 
1567     // Link order may be distributed across several InputSectionDescriptions.
1568     // Sorting is performed separately.
1569     SmallVector<InputSection **, 0> scriptSections;
1570     SmallVector<InputSection *, 0> sections;
1571     for (SectionCommand *cmd : sec->commands) {
1572       auto *isd = dyn_cast<InputSectionDescription>(cmd);
1573       if (!isd)
1574         continue;
1575       bool hasLinkOrder = false;
1576       scriptSections.clear();
1577       sections.clear();
1578       for (InputSection *&isec : isd->sections) {
1579         if (isec->flags & SHF_LINK_ORDER) {
1580           InputSection *link = isec->getLinkOrderDep();
1581           if (link && !link->getParent())
1582             error(toString(isec) + ": sh_link points to discarded section " +
1583                   toString(link));
1584           hasLinkOrder = true;
1585         }
1586         scriptSections.push_back(&isec);
1587         sections.push_back(isec);
1588       }
1589       if (hasLinkOrder && errorCount() == 0) {
1590         llvm::stable_sort(sections, compareByFilePosition);
1591         for (int i = 0, n = sections.size(); i != n; ++i)
1592           *scriptSections[i] = sections[i];
1593       }
1594     }
1595   }
1596 }
1597 
1598 static void finalizeSynthetic(SyntheticSection *sec) {
1599   if (sec && sec->isNeeded() && sec->getParent()) {
1600     llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
1601     sec->finalizeContents();
1602   }
1603 }
1604 
1605 // We need to generate and finalize the content that depends on the address of
1606 // InputSections. As the generation of the content may also alter InputSection
1607 // addresses we must converge to a fixed point. We do that here. See the comment
1608 // in Writer<ELFT>::finalizeSections().
1609 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1610   llvm::TimeTraceScope timeScope("Finalize address dependent content");
1611   ThunkCreator tc;
1612   AArch64Err843419Patcher a64p;
1613   ARMErr657417Patcher a32p;
1614   script->assignAddresses();
1615   // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1616   // do require the relative addresses of OutputSections because linker scripts
1617   // can assign Virtual Addresses to OutputSections that are not monotonically
1618   // increasing.
1619   for (Partition &part : partitions)
1620     finalizeSynthetic(part.armExidx.get());
1621   resolveShfLinkOrder();
1622 
1623   // Converts call x@GDPLT to call __tls_get_addr
1624   if (config->emachine == EM_HEXAGON)
1625     hexagonTLSSymbolUpdate(outputSections);
1626 
1627   uint32_t pass = 0, assignPasses = 0;
1628   for (;;) {
1629     bool changed = target->needsThunks ? tc.createThunks(pass, outputSections)
1630                                        : target->relaxOnce(pass);
1631     ++pass;
1632 
1633     // With Thunk Size much smaller than branch range we expect to
1634     // converge quickly; if we get to 15 something has gone wrong.
1635     if (changed && pass >= 15) {
1636       error(target->needsThunks ? "thunk creation not converged"
1637                                 : "relaxation not converged");
1638       break;
1639     }
1640 
1641     if (config->fixCortexA53Errata843419) {
1642       if (changed)
1643         script->assignAddresses();
1644       changed |= a64p.createFixes();
1645     }
1646     if (config->fixCortexA8) {
1647       if (changed)
1648         script->assignAddresses();
1649       changed |= a32p.createFixes();
1650     }
1651 
1652     if (in.mipsGot)
1653       in.mipsGot->updateAllocSize();
1654 
1655     for (Partition &part : partitions) {
1656       changed |= part.relaDyn->updateAllocSize();
1657       if (part.relrDyn)
1658         changed |= part.relrDyn->updateAllocSize();
1659     }
1660 
1661     const Defined *changedSym = script->assignAddresses();
1662     if (!changed) {
1663       // Some symbols may be dependent on section addresses. When we break the
1664       // loop, the symbol values are finalized because a previous
1665       // assignAddresses() finalized section addresses.
1666       if (!changedSym)
1667         break;
1668       if (++assignPasses == 5) {
1669         errorOrWarn("assignment to symbol " + toString(*changedSym) +
1670                     " does not converge");
1671         break;
1672       }
1673     }
1674   }
1675   if (!config->relocatable && config->emachine == EM_RISCV)
1676     riscvFinalizeRelax(pass);
1677 
1678   if (config->relocatable)
1679     for (OutputSection *sec : outputSections)
1680       sec->addr = 0;
1681 
1682   // If addrExpr is set, the address may not be a multiple of the alignment.
1683   // Warn because this is error-prone.
1684   for (SectionCommand *cmd : script->sectionCommands)
1685     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1686       OutputSection *osec = &osd->osec;
1687       if (osec->addr % osec->addralign != 0)
1688         warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " +
1689              osec->name + " is not a multiple of alignment (" +
1690              Twine(osec->addralign) + ")");
1691     }
1692 }
1693 
1694 // If Input Sections have been shrunk (basic block sections) then
1695 // update symbol values and sizes associated with these sections.  With basic
1696 // block sections, input sections can shrink when the jump instructions at
1697 // the end of the section are relaxed.
1698 static void fixSymbolsAfterShrinking() {
1699   for (InputFile *File : ctx.objectFiles) {
1700     parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
1701       auto *def = dyn_cast<Defined>(Sym);
1702       if (!def)
1703         return;
1704 
1705       const SectionBase *sec = def->section;
1706       if (!sec)
1707         return;
1708 
1709       const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec);
1710       if (!inputSec || !inputSec->bytesDropped)
1711         return;
1712 
1713       const size_t OldSize = inputSec->content().size();
1714       const size_t NewSize = OldSize - inputSec->bytesDropped;
1715 
1716       if (def->value > NewSize && def->value <= OldSize) {
1717         LLVM_DEBUG(llvm::dbgs()
1718                    << "Moving symbol " << Sym->getName() << " from "
1719                    << def->value << " to "
1720                    << def->value - inputSec->bytesDropped << " bytes\n");
1721         def->value -= inputSec->bytesDropped;
1722         return;
1723       }
1724 
1725       if (def->value + def->size > NewSize && def->value <= OldSize &&
1726           def->value + def->size <= OldSize) {
1727         LLVM_DEBUG(llvm::dbgs()
1728                    << "Shrinking symbol " << Sym->getName() << " from "
1729                    << def->size << " to " << def->size - inputSec->bytesDropped
1730                    << " bytes\n");
1731         def->size -= inputSec->bytesDropped;
1732       }
1733     });
1734   }
1735 }
1736 
1737 // If basic block sections exist, there are opportunities to delete fall thru
1738 // jumps and shrink jump instructions after basic block reordering.  This
1739 // relaxation pass does that.  It is only enabled when --optimize-bb-jumps
1740 // option is used.
1741 template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
1742   assert(config->optimizeBBJumps);
1743   SmallVector<InputSection *, 0> storage;
1744 
1745   script->assignAddresses();
1746   // For every output section that has executable input sections, this
1747   // does the following:
1748   //   1. Deletes all direct jump instructions in input sections that
1749   //      jump to the following section as it is not required.
1750   //   2. If there are two consecutive jump instructions, it checks
1751   //      if they can be flipped and one can be deleted.
1752   for (OutputSection *osec : outputSections) {
1753     if (!(osec->flags & SHF_EXECINSTR))
1754       continue;
1755     ArrayRef<InputSection *> sections = getInputSections(*osec, storage);
1756     size_t numDeleted = 0;
1757     // Delete all fall through jump instructions.  Also, check if two
1758     // consecutive jump instructions can be flipped so that a fall
1759     // through jmp instruction can be deleted.
1760     for (size_t i = 0, e = sections.size(); i != e; ++i) {
1761       InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
1762       InputSection &sec = *sections[i];
1763       numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next);
1764     }
1765     if (numDeleted > 0) {
1766       script->assignAddresses();
1767       LLVM_DEBUG(llvm::dbgs()
1768                  << "Removing " << numDeleted << " fall through jumps\n");
1769     }
1770   }
1771 
1772   fixSymbolsAfterShrinking();
1773 
1774   for (OutputSection *osec : outputSections)
1775     for (InputSection *is : getInputSections(*osec, storage))
1776       is->trim();
1777 }
1778 
1779 // In order to allow users to manipulate linker-synthesized sections,
1780 // we had to add synthetic sections to the input section list early,
1781 // even before we make decisions whether they are needed. This allows
1782 // users to write scripts like this: ".mygot : { .got }".
1783 //
1784 // Doing it has an unintended side effects. If it turns out that we
1785 // don't need a .got (for example) at all because there's no
1786 // relocation that needs a .got, we don't want to emit .got.
1787 //
1788 // To deal with the above problem, this function is called after
1789 // scanRelocations is called to remove synthetic sections that turn
1790 // out to be empty.
1791 static void removeUnusedSyntheticSections() {
1792   // All input synthetic sections that can be empty are placed after
1793   // all regular ones. Reverse iterate to find the first synthetic section
1794   // after a non-synthetic one which will be our starting point.
1795   auto start =
1796       llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) {
1797         return !isa<SyntheticSection>(s);
1798       }).base();
1799 
1800   // Remove unused synthetic sections from ctx.inputSections;
1801   DenseSet<InputSectionBase *> unused;
1802   auto end =
1803       std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) {
1804         auto *sec = cast<SyntheticSection>(s);
1805         if (sec->getParent() && sec->isNeeded())
1806           return false;
1807         unused.insert(sec);
1808         return true;
1809       });
1810   ctx.inputSections.erase(end, ctx.inputSections.end());
1811 
1812   // Remove unused synthetic sections from the corresponding input section
1813   // description and orphanSections.
1814   for (auto *sec : unused)
1815     if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
1816       for (SectionCommand *cmd : osec->commands)
1817         if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
1818           llvm::erase_if(isd->sections, [&](InputSection *isec) {
1819             return unused.count(isec);
1820           });
1821   llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
1822     return unused.count(sec);
1823   });
1824 }
1825 
1826 // Create output section objects and add them to OutputSections.
1827 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1828   if (!config->relocatable) {
1829     Out::preinitArray = findSection(".preinit_array");
1830     Out::initArray = findSection(".init_array");
1831     Out::finiArray = findSection(".fini_array");
1832 
1833     // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1834     // symbols for sections, so that the runtime can get the start and end
1835     // addresses of each section by section name. Add such symbols.
1836     addStartEndSymbols();
1837     for (SectionCommand *cmd : script->sectionCommands)
1838       if (auto *osd = dyn_cast<OutputDesc>(cmd))
1839         addStartStopSymbols(osd->osec);
1840 
1841     // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1842     // It should be okay as no one seems to care about the type.
1843     // Even the author of gold doesn't remember why gold behaves that way.
1844     // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1845     if (mainPart->dynamic->parent) {
1846       Symbol *s = symtab.addSymbol(Defined{
1847           /*file=*/nullptr, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE,
1848           /*value=*/0, /*size=*/0, mainPart->dynamic.get()});
1849       s->isUsedInRegularObj = true;
1850     }
1851 
1852     // Define __rel[a]_iplt_{start,end} symbols if needed.
1853     addRelIpltSymbols();
1854 
1855     // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1856     // should only be defined in an executable. If .sdata does not exist, its
1857     // value/section does not matter but it has to be relative, so set its
1858     // st_shndx arbitrarily to 1 (Out::elfHeader).
1859     if (config->emachine == EM_RISCV && !config->shared) {
1860       OutputSection *sec = findSection(".sdata");
1861       addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader, 0x800,
1862                          STV_DEFAULT);
1863     }
1864 
1865     if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
1866       // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1867       // way that:
1868       //
1869       // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1870       // computes 0.
1871       // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1872       // in the TLS block).
1873       //
1874       // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1875       // as an absolute symbol of zero. This is different from GNU linkers which
1876       // define _TLS_MODULE_BASE_ relative to the first TLS section.
1877       Symbol *s = symtab.find("_TLS_MODULE_BASE_");
1878       if (s && s->isUndefined()) {
1879         s->resolve(Defined{/*file=*/nullptr, StringRef(), STB_GLOBAL,
1880                            STV_HIDDEN, STT_TLS, /*value=*/0, 0,
1881                            /*section=*/nullptr});
1882         ElfSym::tlsModuleBase = cast<Defined>(s);
1883       }
1884     }
1885 
1886     // This responsible for splitting up .eh_frame section into
1887     // pieces. The relocation scan uses those pieces, so this has to be
1888     // earlier.
1889     {
1890       llvm::TimeTraceScope timeScope("Finalize .eh_frame");
1891       for (Partition &part : partitions)
1892         finalizeSynthetic(part.ehFrame.get());
1893     }
1894 
1895     if (config->hasDynSymTab) {
1896       parallelForEach(symtab.getSymbols(), [](Symbol *sym) {
1897         sym->isPreemptible = computeIsPreemptible(*sym);
1898       });
1899     }
1900   }
1901 
1902   // Change values of linker-script-defined symbols from placeholders (assigned
1903   // by declareSymbols) to actual definitions.
1904   script->processSymbolAssignments();
1905 
1906   if (!config->relocatable) {
1907     llvm::TimeTraceScope timeScope("Scan relocations");
1908     // Scan relocations. This must be done after every symbol is declared so
1909     // that we can correctly decide if a dynamic relocation is needed. This is
1910     // called after processSymbolAssignments() because it needs to know whether
1911     // a linker-script-defined symbol is absolute.
1912     ppc64noTocRelax.clear();
1913     scanRelocations<ELFT>();
1914     reportUndefinedSymbols();
1915     postScanRelocations();
1916 
1917     if (in.plt && in.plt->isNeeded())
1918       in.plt->addSymbols();
1919     if (in.iplt && in.iplt->isNeeded())
1920       in.iplt->addSymbols();
1921 
1922     if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
1923       auto diagnose =
1924           config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
1925               ? errorOrWarn
1926               : warn;
1927       // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1928       // entries are seen. These cases would otherwise lead to runtime errors
1929       // reported by the dynamic linker.
1930       //
1931       // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1932       // to catch more cases. That is too much for us. Our approach resembles
1933       // the one used in ld.gold, achieves a good balance to be useful but not
1934       // too smart.
1935       for (SharedFile *file : ctx.sharedFiles) {
1936         bool allNeededIsKnown =
1937             llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1938               return symtab.soNames.count(CachedHashStringRef(needed));
1939             });
1940         if (!allNeededIsKnown)
1941           continue;
1942         for (Symbol *sym : file->requiredSymbols)
1943           if (sym->isUndefined() && !sym->isWeak())
1944             diagnose("undefined reference due to --no-allow-shlib-undefined: " +
1945                      toString(*sym) + "\n>>> referenced by " + toString(file));
1946       }
1947     }
1948   }
1949 
1950   {
1951     llvm::TimeTraceScope timeScope("Add symbols to symtabs");
1952     // Now that we have defined all possible global symbols including linker-
1953     // synthesized ones. Visit all symbols to give the finishing touches.
1954     for (Symbol *sym : symtab.getSymbols()) {
1955       if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
1956         continue;
1957       if (!config->relocatable)
1958         sym->binding = sym->computeBinding();
1959       if (in.symTab)
1960         in.symTab->addSymbol(sym);
1961 
1962       if (sym->includeInDynsym()) {
1963         partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1964         if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1965           if (file->isNeeded && !sym->isUndefined())
1966             addVerneed(sym);
1967       }
1968     }
1969 
1970     // We also need to scan the dynamic relocation tables of the other
1971     // partitions and add any referenced symbols to the partition's dynsym.
1972     for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1973       DenseSet<Symbol *> syms;
1974       for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1975         syms.insert(e.sym);
1976       for (DynamicReloc &reloc : part.relaDyn->relocs)
1977         if (reloc.sym && reloc.needsDynSymIndex() &&
1978             syms.insert(reloc.sym).second)
1979           part.dynSymTab->addSymbol(reloc.sym);
1980     }
1981   }
1982 
1983   if (in.mipsGot)
1984     in.mipsGot->build();
1985 
1986   removeUnusedSyntheticSections();
1987   script->diagnoseOrphanHandling();
1988 
1989   sortSections();
1990 
1991   // Create a list of OutputSections, assign sectionIndex, and populate
1992   // in.shStrTab.
1993   for (SectionCommand *cmd : script->sectionCommands)
1994     if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1995       OutputSection *osec = &osd->osec;
1996       outputSections.push_back(osec);
1997       osec->sectionIndex = outputSections.size();
1998       osec->shName = in.shStrTab->addString(osec->name);
1999     }
2000 
2001   // Prefer command line supplied address over other constraints.
2002   for (OutputSection *sec : outputSections) {
2003     auto i = config->sectionStartMap.find(sec->name);
2004     if (i != config->sectionStartMap.end())
2005       sec->addrExpr = [=] { return i->second; };
2006   }
2007 
2008   // With the outputSections available check for GDPLT relocations
2009   // and add __tls_get_addr symbol if needed.
2010   if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
2011     Symbol *sym = symtab.addSymbol(Undefined{
2012         nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
2013     sym->isPreemptible = true;
2014     partitions[0].dynSymTab->addSymbol(sym);
2015   }
2016 
2017   // This is a bit of a hack. A value of 0 means undef, so we set it
2018   // to 1 to make __ehdr_start defined. The section number is not
2019   // particularly relevant.
2020   Out::elfHeader->sectionIndex = 1;
2021   Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
2022 
2023   // Binary and relocatable output does not have PHDRS.
2024   // The headers have to be created before finalize as that can influence the
2025   // image base and the dynamic section on mips includes the image base.
2026   if (!config->relocatable && !config->oFormatBinary) {
2027     for (Partition &part : partitions) {
2028       part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
2029                                               : createPhdrs(part);
2030       if (config->emachine == EM_ARM) {
2031         // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2032         addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
2033       }
2034       if (config->emachine == EM_MIPS) {
2035         // Add separate segments for MIPS-specific sections.
2036         addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
2037         addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
2038         addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
2039       }
2040     }
2041     Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
2042 
2043     // Find the TLS segment. This happens before the section layout loop so that
2044     // Android relocation packing can look up TLS symbol addresses. We only need
2045     // to care about the main partition here because all TLS symbols were moved
2046     // to the main partition (see MarkLive.cpp).
2047     for (PhdrEntry *p : mainPart->phdrs)
2048       if (p->p_type == PT_TLS)
2049         Out::tlsPhdr = p;
2050   }
2051 
2052   // Some symbols are defined in term of program headers. Now that we
2053   // have the headers, we can find out which sections they point to.
2054   setReservedSymbolSections();
2055 
2056   {
2057     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2058 
2059     finalizeSynthetic(in.bss.get());
2060     finalizeSynthetic(in.bssRelRo.get());
2061     finalizeSynthetic(in.symTabShndx.get());
2062     finalizeSynthetic(in.shStrTab.get());
2063     finalizeSynthetic(in.strTab.get());
2064     finalizeSynthetic(in.got.get());
2065     finalizeSynthetic(in.mipsGot.get());
2066     finalizeSynthetic(in.igotPlt.get());
2067     finalizeSynthetic(in.gotPlt.get());
2068     finalizeSynthetic(in.relaIplt.get());
2069     finalizeSynthetic(in.relaPlt.get());
2070     finalizeSynthetic(in.plt.get());
2071     finalizeSynthetic(in.iplt.get());
2072     finalizeSynthetic(in.ppc32Got2.get());
2073     finalizeSynthetic(in.partIndex.get());
2074 
2075     // Dynamic section must be the last one in this list and dynamic
2076     // symbol table section (dynSymTab) must be the first one.
2077     for (Partition &part : partitions) {
2078       if (part.relaDyn) {
2079         part.relaDyn->mergeRels();
2080         // Compute DT_RELACOUNT to be used by part.dynamic.
2081         part.relaDyn->partitionRels();
2082         finalizeSynthetic(part.relaDyn.get());
2083       }
2084       if (part.relrDyn) {
2085         part.relrDyn->mergeRels();
2086         finalizeSynthetic(part.relrDyn.get());
2087       }
2088 
2089       finalizeSynthetic(part.dynSymTab.get());
2090       finalizeSynthetic(part.gnuHashTab.get());
2091       finalizeSynthetic(part.hashTab.get());
2092       finalizeSynthetic(part.verDef.get());
2093       finalizeSynthetic(part.ehFrameHdr.get());
2094       finalizeSynthetic(part.verSym.get());
2095       finalizeSynthetic(part.verNeed.get());
2096       finalizeSynthetic(part.dynamic.get());
2097     }
2098   }
2099 
2100   if (!script->hasSectionsCommand && !config->relocatable)
2101     fixSectionAlignments();
2102 
2103   // This is used to:
2104   // 1) Create "thunks":
2105   //    Jump instructions in many ISAs have small displacements, and therefore
2106   //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
2107   //    JAL instruction can target only +-1 MiB from PC. It is a linker's
2108   //    responsibility to create and insert small pieces of code between
2109   //    sections to extend the ranges if jump targets are out of range. Such
2110   //    code pieces are called "thunks".
2111   //
2112   //    We add thunks at this stage. We couldn't do this before this point
2113   //    because this is the earliest point where we know sizes of sections and
2114   //    their layouts (that are needed to determine if jump targets are in
2115   //    range).
2116   //
2117   // 2) Update the sections. We need to generate content that depends on the
2118   //    address of InputSections. For example, MIPS GOT section content or
2119   //    android packed relocations sections content.
2120   //
2121   // 3) Assign the final values for the linker script symbols. Linker scripts
2122   //    sometimes using forward symbol declarations. We want to set the correct
2123   //    values. They also might change after adding the thunks.
2124   finalizeAddressDependentContent();
2125 
2126   // All information needed for OutputSection part of Map file is available.
2127   if (errorCount())
2128     return;
2129 
2130   {
2131     llvm::TimeTraceScope timeScope("Finalize synthetic sections");
2132     // finalizeAddressDependentContent may have added local symbols to the
2133     // static symbol table.
2134     finalizeSynthetic(in.symTab.get());
2135     finalizeSynthetic(in.ppc64LongBranchTarget.get());
2136   }
2137 
2138   // Relaxation to delete inter-basic block jumps created by basic block
2139   // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2140   // can relax jump instructions based on symbol offset.
2141   if (config->optimizeBBJumps)
2142     optimizeBasicBlockJumps();
2143 
2144   // Fill other section headers. The dynamic table is finalized
2145   // at the end because some tags like RELSZ depend on result
2146   // of finalizing other sections.
2147   for (OutputSection *sec : outputSections)
2148     sec->finalize();
2149 }
2150 
2151 // Ensure data sections are not mixed with executable sections when
2152 // --execute-only is used. --execute-only make pages executable but not
2153 // readable.
2154 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
2155   if (!config->executeOnly)
2156     return;
2157 
2158   SmallVector<InputSection *, 0> storage;
2159   for (OutputSection *osec : outputSections)
2160     if (osec->flags & SHF_EXECINSTR)
2161       for (InputSection *isec : getInputSections(*osec, storage))
2162         if (!(isec->flags & SHF_EXECINSTR))
2163           error("cannot place " + toString(isec) + " into " +
2164                 toString(osec->name) +
2165                 ": --execute-only does not support intermingling data and code");
2166 }
2167 
2168 // The linker is expected to define SECNAME_start and SECNAME_end
2169 // symbols for a few sections. This function defines them.
2170 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
2171   // If a section does not exist, there's ambiguity as to how we
2172   // define _start and _end symbols for an init/fini section. Since
2173   // the loader assume that the symbols are always defined, we need to
2174   // always define them. But what value? The loader iterates over all
2175   // pointers between _start and _end to run global ctors/dtors, so if
2176   // the section is empty, their symbol values don't actually matter
2177   // as long as _start and _end point to the same location.
2178   //
2179   // That said, we don't want to set the symbols to 0 (which is
2180   // probably the simplest value) because that could cause some
2181   // program to fail to link due to relocation overflow, if their
2182   // program text is above 2 GiB. We use the address of the .text
2183   // section instead to prevent that failure.
2184   //
2185   // In rare situations, the .text section may not exist. If that's the
2186   // case, use the image base address as a last resort.
2187   OutputSection *Default = findSection(".text");
2188   if (!Default)
2189     Default = Out::elfHeader;
2190 
2191   auto define = [=](StringRef start, StringRef end, OutputSection *os) {
2192     if (os && !script->isDiscarded(os)) {
2193       addOptionalRegular(start, os, 0);
2194       addOptionalRegular(end, os, -1);
2195     } else {
2196       addOptionalRegular(start, Default, 0);
2197       addOptionalRegular(end, Default, 0);
2198     }
2199   };
2200 
2201   define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
2202   define("__init_array_start", "__init_array_end", Out::initArray);
2203   define("__fini_array_start", "__fini_array_end", Out::finiArray);
2204 
2205   if (OutputSection *sec = findSection(".ARM.exidx"))
2206     define("__exidx_start", "__exidx_end", sec);
2207 }
2208 
2209 // If a section name is valid as a C identifier (which is rare because of
2210 // the leading '.'), linkers are expected to define __start_<secname> and
2211 // __stop_<secname> symbols. They are at beginning and end of the section,
2212 // respectively. This is not requested by the ELF standard, but GNU ld and
2213 // gold provide the feature, and used by many programs.
2214 template <class ELFT>
2215 void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) {
2216   StringRef s = osec.name;
2217   if (!isValidCIdentifier(s))
2218     return;
2219   addOptionalRegular(saver().save("__start_" + s), &osec, 0,
2220                      config->zStartStopVisibility);
2221   addOptionalRegular(saver().save("__stop_" + s), &osec, -1,
2222                      config->zStartStopVisibility);
2223 }
2224 
2225 static bool needsPtLoad(OutputSection *sec) {
2226   if (!(sec->flags & SHF_ALLOC))
2227     return false;
2228 
2229   // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2230   // responsible for allocating space for them, not the PT_LOAD that
2231   // contains the TLS initialization image.
2232   if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2233     return false;
2234   return true;
2235 }
2236 
2237 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2238 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2239 // RW. This means that there is no alignment in the RO to RX transition and we
2240 // cannot create a PT_LOAD there.
2241 static uint64_t computeFlags(uint64_t flags) {
2242   if (config->omagic)
2243     return PF_R | PF_W | PF_X;
2244   if (config->executeOnly && (flags & PF_X))
2245     return flags & ~PF_R;
2246   if (config->singleRoRx && !(flags & PF_W))
2247     return flags | PF_X;
2248   return flags;
2249 }
2250 
2251 // Decide which program headers to create and which sections to include in each
2252 // one.
2253 template <class ELFT>
2254 SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) {
2255   SmallVector<PhdrEntry *, 0> ret;
2256   auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2257     ret.push_back(make<PhdrEntry>(type, flags));
2258     return ret.back();
2259   };
2260 
2261   unsigned partNo = part.getNumber();
2262   bool isMain = partNo == 1;
2263 
2264   // Add the first PT_LOAD segment for regular output sections.
2265   uint64_t flags = computeFlags(PF_R);
2266   PhdrEntry *load = nullptr;
2267 
2268   // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2269   // PT_LOAD.
2270   if (!config->nmagic && !config->omagic) {
2271     // The first phdr entry is PT_PHDR which describes the program header
2272     // itself.
2273     if (isMain)
2274       addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2275     else
2276       addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2277 
2278     // PT_INTERP must be the second entry if exists.
2279     if (OutputSection *cmd = findSection(".interp", partNo))
2280       addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2281 
2282     // Add the headers. We will remove them if they don't fit.
2283     // In the other partitions the headers are ordinary sections, so they don't
2284     // need to be added here.
2285     if (isMain) {
2286       load = addHdr(PT_LOAD, flags);
2287       load->add(Out::elfHeader);
2288       load->add(Out::programHeaders);
2289     }
2290   }
2291 
2292   // PT_GNU_RELRO includes all sections that should be marked as
2293   // read-only by dynamic linker after processing relocations.
2294   // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2295   // an error message if more than one PT_GNU_RELRO PHDR is required.
2296   PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2297   bool inRelroPhdr = false;
2298   OutputSection *relroEnd = nullptr;
2299   for (OutputSection *sec : outputSections) {
2300     if (sec->partition != partNo || !needsPtLoad(sec))
2301       continue;
2302     if (isRelroSection(sec)) {
2303       inRelroPhdr = true;
2304       if (!relroEnd)
2305         relRo->add(sec);
2306       else
2307         error("section: " + sec->name + " is not contiguous with other relro" +
2308               " sections");
2309     } else if (inRelroPhdr) {
2310       inRelroPhdr = false;
2311       relroEnd = sec;
2312     }
2313   }
2314 
2315   for (OutputSection *sec : outputSections) {
2316     if (!needsPtLoad(sec))
2317       continue;
2318 
2319     // Normally, sections in partitions other than the current partition are
2320     // ignored. But partition number 255 is a special case: it contains the
2321     // partition end marker (.part.end). It needs to be added to the main
2322     // partition so that a segment is created for it in the main partition,
2323     // which will cause the dynamic loader to reserve space for the other
2324     // partitions.
2325     if (sec->partition != partNo) {
2326       if (isMain && sec->partition == 255)
2327         addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2328       continue;
2329     }
2330 
2331     // Segments are contiguous memory regions that has the same attributes
2332     // (e.g. executable or writable). There is one phdr for each segment.
2333     // Therefore, we need to create a new phdr when the next section has
2334     // different flags or is loaded at a discontiguous address or memory
2335     // region using AT or AT> linker script command, respectively. At the same
2336     // time, we don't want to create a separate load segment for the headers,
2337     // even if the first output section has an AT or AT> attribute.
2338     uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2339     bool sameLMARegion =
2340         load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2341     if (!(load && newFlags == flags && sec != relroEnd &&
2342           sec->memRegion == load->firstSec->memRegion &&
2343           (sameLMARegion || load->lastSec == Out::programHeaders))) {
2344       load = addHdr(PT_LOAD, newFlags);
2345       flags = newFlags;
2346     }
2347 
2348     load->add(sec);
2349   }
2350 
2351   // Add a TLS segment if any.
2352   PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2353   for (OutputSection *sec : outputSections)
2354     if (sec->partition == partNo && sec->flags & SHF_TLS)
2355       tlsHdr->add(sec);
2356   if (tlsHdr->firstSec)
2357     ret.push_back(tlsHdr);
2358 
2359   // Add an entry for .dynamic.
2360   if (OutputSection *sec = part.dynamic->getParent())
2361     addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2362 
2363   if (relRo->firstSec)
2364     ret.push_back(relRo);
2365 
2366   // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2367   if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2368       part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2369     addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2370         ->add(part.ehFrameHdr->getParent());
2371 
2372   // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2373   // the dynamic linker fill the segment with random data.
2374   if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2375     addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2376 
2377   if (config->zGnustack != GnuStackKind::None) {
2378     // PT_GNU_STACK is a special section to tell the loader to make the
2379     // pages for the stack non-executable. If you really want an executable
2380     // stack, you can pass -z execstack, but that's not recommended for
2381     // security reasons.
2382     unsigned perm = PF_R | PF_W;
2383     if (config->zGnustack == GnuStackKind::Exec)
2384       perm |= PF_X;
2385     addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2386   }
2387 
2388   // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2389   // is expected to perform W^X violations, such as calling mprotect(2) or
2390   // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2391   // OpenBSD.
2392   if (config->zWxneeded)
2393     addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2394 
2395   if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2396     addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2397 
2398   // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2399   // same alignment.
2400   PhdrEntry *note = nullptr;
2401   for (OutputSection *sec : outputSections) {
2402     if (sec->partition != partNo)
2403       continue;
2404     if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2405       if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign)
2406         note = addHdr(PT_NOTE, PF_R);
2407       note->add(sec);
2408     } else {
2409       note = nullptr;
2410     }
2411   }
2412   return ret;
2413 }
2414 
2415 template <class ELFT>
2416 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2417                                      unsigned pType, unsigned pFlags) {
2418   unsigned partNo = part.getNumber();
2419   auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2420     return cmd->partition == partNo && cmd->type == shType;
2421   });
2422   if (i == outputSections.end())
2423     return;
2424 
2425   PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2426   entry->add(*i);
2427   part.phdrs.push_back(entry);
2428 }
2429 
2430 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2431 // This is achieved by assigning an alignment expression to addrExpr of each
2432 // such section.
2433 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2434   const PhdrEntry *prev;
2435   auto pageAlign = [&](const PhdrEntry *p) {
2436     OutputSection *cmd = p->firstSec;
2437     if (!cmd)
2438       return;
2439     cmd->alignExpr = [align = cmd->addralign]() { return align; };
2440     if (!cmd->addrExpr) {
2441       // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2442       // padding in the file contents.
2443       //
2444       // When -z separate-code is used we must not have any overlap in pages
2445       // between an executable segment and a non-executable segment. We align to
2446       // the next maximum page size boundary on transitions between executable
2447       // and non-executable segments.
2448       //
2449       // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2450       // sections will be extracted to a separate file. Align to the next
2451       // maximum page size boundary so that we can find the ELF header at the
2452       // start. We cannot benefit from overlapping p_offset ranges with the
2453       // previous segment anyway.
2454       if (config->zSeparate == SeparateSegmentKind::Loadable ||
2455           (config->zSeparate == SeparateSegmentKind::Code && prev &&
2456            (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2457           cmd->type == SHT_LLVM_PART_EHDR)
2458         cmd->addrExpr = [] {
2459           return alignToPowerOf2(script->getDot(), config->maxPageSize);
2460         };
2461       // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2462       // it must be the RW. Align to p_align(PT_TLS) to make sure
2463       // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2464       // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2465       // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2466       // be congruent to 0 modulo p_align(PT_TLS).
2467       //
2468       // Technically this is not required, but as of 2019, some dynamic loaders
2469       // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2470       // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2471       // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2472       // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2473       // blocks correctly. We need to keep the workaround for a while.
2474       else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2475         cmd->addrExpr = [] {
2476           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2477                  alignToPowerOf2(script->getDot() % config->maxPageSize,
2478                                  Out::tlsPhdr->p_align);
2479         };
2480       else
2481         cmd->addrExpr = [] {
2482           return alignToPowerOf2(script->getDot(), config->maxPageSize) +
2483                  script->getDot() % config->maxPageSize;
2484         };
2485     }
2486   };
2487 
2488   for (Partition &part : partitions) {
2489     prev = nullptr;
2490     for (const PhdrEntry *p : part.phdrs)
2491       if (p->p_type == PT_LOAD && p->firstSec) {
2492         pageAlign(p);
2493         prev = p;
2494       }
2495   }
2496 }
2497 
2498 // Compute an in-file position for a given section. The file offset must be the
2499 // same with its virtual address modulo the page size, so that the loader can
2500 // load executables without any address adjustment.
2501 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2502   // The first section in a PT_LOAD has to have congruent offset and address
2503   // modulo the maximum page size.
2504   if (os->ptLoad && os->ptLoad->firstSec == os)
2505     return alignTo(off, os->ptLoad->p_align, os->addr);
2506 
2507   // File offsets are not significant for .bss sections other than the first one
2508   // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2509   // increasing rather than setting to zero.
2510   if (os->type == SHT_NOBITS &&
2511       (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
2512      return off;
2513 
2514   // If the section is not in a PT_LOAD, we just have to align it.
2515   if (!os->ptLoad)
2516      return alignToPowerOf2(off, os->addralign);
2517 
2518   // If two sections share the same PT_LOAD the file offset is calculated
2519   // using this formula: Off2 = Off1 + (VA2 - VA1).
2520   OutputSection *first = os->ptLoad->firstSec;
2521   return first->offset + os->addr - first->addr;
2522 }
2523 
2524 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2525   // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2526   auto needsOffset = [](OutputSection &sec) {
2527     return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
2528   };
2529   uint64_t minAddr = UINT64_MAX;
2530   for (OutputSection *sec : outputSections)
2531     if (needsOffset(*sec)) {
2532       sec->offset = sec->getLMA();
2533       minAddr = std::min(minAddr, sec->offset);
2534     }
2535 
2536   // Sections are laid out at LMA minus minAddr.
2537   fileSize = 0;
2538   for (OutputSection *sec : outputSections)
2539     if (needsOffset(*sec)) {
2540       sec->offset -= minAddr;
2541       fileSize = std::max(fileSize, sec->offset + sec->size);
2542     }
2543 }
2544 
2545 static std::string rangeToString(uint64_t addr, uint64_t len) {
2546   return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2547 }
2548 
2549 // Assign file offsets to output sections.
2550 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2551   Out::programHeaders->offset = Out::elfHeader->size;
2552   uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
2553 
2554   PhdrEntry *lastRX = nullptr;
2555   for (Partition &part : partitions)
2556     for (PhdrEntry *p : part.phdrs)
2557       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2558         lastRX = p;
2559 
2560   // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2561   // will not occupy file offsets contained by a PT_LOAD.
2562   for (OutputSection *sec : outputSections) {
2563     if (!(sec->flags & SHF_ALLOC))
2564       continue;
2565     off = computeFileOffset(sec, off);
2566     sec->offset = off;
2567     if (sec->type != SHT_NOBITS)
2568       off += sec->size;
2569 
2570     // If this is a last section of the last executable segment and that
2571     // segment is the last loadable segment, align the offset of the
2572     // following section to avoid loading non-segments parts of the file.
2573     if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2574         lastRX->lastSec == sec)
2575       off = alignToPowerOf2(off, config->maxPageSize);
2576   }
2577   for (OutputSection *osec : outputSections)
2578     if (!(osec->flags & SHF_ALLOC)) {
2579       osec->offset = alignToPowerOf2(off, osec->addralign);
2580       off = osec->offset + osec->size;
2581     }
2582 
2583   sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
2584   fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2585 
2586   // Our logic assumes that sections have rising VA within the same segment.
2587   // With use of linker scripts it is possible to violate this rule and get file
2588   // offset overlaps or overflows. That should never happen with a valid script
2589   // which does not move the location counter backwards and usually scripts do
2590   // not do that. Unfortunately, there are apps in the wild, for example, Linux
2591   // kernel, which control segment distribution explicitly and move the counter
2592   // backwards, so we have to allow doing that to support linking them. We
2593   // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2594   // we want to prevent file size overflows because it would crash the linker.
2595   for (OutputSection *sec : outputSections) {
2596     if (sec->type == SHT_NOBITS)
2597       continue;
2598     if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2599       error("unable to place section " + sec->name + " at file offset " +
2600             rangeToString(sec->offset, sec->size) +
2601             "; check your linker script for overflows");
2602   }
2603 }
2604 
2605 // Finalize the program headers. We call this function after we assign
2606 // file offsets and VAs to all sections.
2607 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2608   for (PhdrEntry *p : part.phdrs) {
2609     OutputSection *first = p->firstSec;
2610     OutputSection *last = p->lastSec;
2611 
2612     if (first) {
2613       p->p_filesz = last->offset - first->offset;
2614       if (last->type != SHT_NOBITS)
2615         p->p_filesz += last->size;
2616 
2617       p->p_memsz = last->addr + last->size - first->addr;
2618       p->p_offset = first->offset;
2619       p->p_vaddr = first->addr;
2620 
2621       // File offsets in partitions other than the main partition are relative
2622       // to the offset of the ELF headers. Perform that adjustment now.
2623       if (part.elfHeader)
2624         p->p_offset -= part.elfHeader->getParent()->offset;
2625 
2626       if (!p->hasLMA)
2627         p->p_paddr = first->getLMA();
2628     }
2629 
2630     if (p->p_type == PT_GNU_RELRO) {
2631       p->p_align = 1;
2632       // musl/glibc ld.so rounds the size down, so we need to round up
2633       // to protect the last page. This is a no-op on FreeBSD which always
2634       // rounds up.
2635       p->p_memsz =
2636           alignToPowerOf2(p->p_offset + p->p_memsz, config->commonPageSize) -
2637           p->p_offset;
2638     }
2639   }
2640 }
2641 
2642 // A helper struct for checkSectionOverlap.
2643 namespace {
2644 struct SectionOffset {
2645   OutputSection *sec;
2646   uint64_t offset;
2647 };
2648 } // namespace
2649 
2650 // Check whether sections overlap for a specific address range (file offsets,
2651 // load and virtual addresses).
2652 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2653                          bool isVirtualAddr) {
2654   llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2655     return a.offset < b.offset;
2656   });
2657 
2658   // Finding overlap is easy given a vector is sorted by start position.
2659   // If an element starts before the end of the previous element, they overlap.
2660   for (size_t i = 1, end = sections.size(); i < end; ++i) {
2661     SectionOffset a = sections[i - 1];
2662     SectionOffset b = sections[i];
2663     if (b.offset >= a.offset + a.sec->size)
2664       continue;
2665 
2666     // If both sections are in OVERLAY we allow the overlapping of virtual
2667     // addresses, because it is what OVERLAY was designed for.
2668     if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2669       continue;
2670 
2671     errorOrWarn("section " + a.sec->name + " " + name +
2672                 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2673                 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2674                 b.sec->name + " range is " +
2675                 rangeToString(b.offset, b.sec->size));
2676   }
2677 }
2678 
2679 // Check for overlapping sections and address overflows.
2680 //
2681 // In this function we check that none of the output sections have overlapping
2682 // file offsets. For SHF_ALLOC sections we also check that the load address
2683 // ranges and the virtual address ranges don't overlap
2684 template <class ELFT> void Writer<ELFT>::checkSections() {
2685   // First, check that section's VAs fit in available address space for target.
2686   for (OutputSection *os : outputSections)
2687     if ((os->addr + os->size < os->addr) ||
2688         (!ELFT::Is64Bits && os->addr + os->size > uint64_t(UINT32_MAX) + 1))
2689       errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2690                   " of size 0x" + utohexstr(os->size) +
2691                   " exceeds available address space");
2692 
2693   // Check for overlapping file offsets. In this case we need to skip any
2694   // section marked as SHT_NOBITS. These sections don't actually occupy space in
2695   // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2696   // binary is specified only add SHF_ALLOC sections are added to the output
2697   // file so we skip any non-allocated sections in that case.
2698   std::vector<SectionOffset> fileOffs;
2699   for (OutputSection *sec : outputSections)
2700     if (sec->size > 0 && sec->type != SHT_NOBITS &&
2701         (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2702       fileOffs.push_back({sec, sec->offset});
2703   checkOverlap("file", fileOffs, false);
2704 
2705   // When linking with -r there is no need to check for overlapping virtual/load
2706   // addresses since those addresses will only be assigned when the final
2707   // executable/shared object is created.
2708   if (config->relocatable)
2709     return;
2710 
2711   // Checking for overlapping virtual and load addresses only needs to take
2712   // into account SHF_ALLOC sections since others will not be loaded.
2713   // Furthermore, we also need to skip SHF_TLS sections since these will be
2714   // mapped to other addresses at runtime and can therefore have overlapping
2715   // ranges in the file.
2716   std::vector<SectionOffset> vmas;
2717   for (OutputSection *sec : outputSections)
2718     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2719       vmas.push_back({sec, sec->addr});
2720   checkOverlap("virtual address", vmas, true);
2721 
2722   // Finally, check that the load addresses don't overlap. This will usually be
2723   // the same as the virtual addresses but can be different when using a linker
2724   // script with AT().
2725   std::vector<SectionOffset> lmas;
2726   for (OutputSection *sec : outputSections)
2727     if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2728       lmas.push_back({sec, sec->getLMA()});
2729   checkOverlap("load address", lmas, false);
2730 }
2731 
2732 // The entry point address is chosen in the following ways.
2733 //
2734 // 1. the '-e' entry command-line option;
2735 // 2. the ENTRY(symbol) command in a linker control script;
2736 // 3. the value of the symbol _start, if present;
2737 // 4. the number represented by the entry symbol, if it is a number;
2738 // 5. the address 0.
2739 static uint64_t getEntryAddr() {
2740   // Case 1, 2 or 3
2741   if (Symbol *b = symtab.find(config->entry))
2742     return b->getVA();
2743 
2744   // Case 4
2745   uint64_t addr;
2746   if (to_integer(config->entry, addr))
2747     return addr;
2748 
2749   // Case 5
2750   if (config->warnMissingEntry)
2751     warn("cannot find entry symbol " + config->entry +
2752          "; not setting start address");
2753   return 0;
2754 }
2755 
2756 static uint16_t getELFType() {
2757   if (config->isPic)
2758     return ET_DYN;
2759   if (config->relocatable)
2760     return ET_REL;
2761   return ET_EXEC;
2762 }
2763 
2764 template <class ELFT> void Writer<ELFT>::writeHeader() {
2765   writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2766   writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2767 
2768   auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2769   eHdr->e_type = getELFType();
2770   eHdr->e_entry = getEntryAddr();
2771   eHdr->e_shoff = sectionHeaderOff;
2772 
2773   // Write the section header table.
2774   //
2775   // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2776   // and e_shstrndx fields. When the value of one of these fields exceeds
2777   // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2778   // use fields in the section header at index 0 to store
2779   // the value. The sentinel values and fields are:
2780   // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2781   // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2782   auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2783   size_t num = outputSections.size() + 1;
2784   if (num >= SHN_LORESERVE)
2785     sHdrs->sh_size = num;
2786   else
2787     eHdr->e_shnum = num;
2788 
2789   uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2790   if (strTabIndex >= SHN_LORESERVE) {
2791     sHdrs->sh_link = strTabIndex;
2792     eHdr->e_shstrndx = SHN_XINDEX;
2793   } else {
2794     eHdr->e_shstrndx = strTabIndex;
2795   }
2796 
2797   for (OutputSection *sec : outputSections)
2798     sec->writeHeaderTo<ELFT>(++sHdrs);
2799 }
2800 
2801 // Open a result file.
2802 template <class ELFT> void Writer<ELFT>::openFile() {
2803   uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2804   if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2805     std::string msg;
2806     raw_string_ostream s(msg);
2807     s << "output file too large: " << Twine(fileSize) << " bytes\n"
2808       << "section sizes:\n";
2809     for (OutputSection *os : outputSections)
2810       s << os->name << ' ' << os->size << "\n";
2811     error(s.str());
2812     return;
2813   }
2814 
2815   unlinkAsync(config->outputFile);
2816   unsigned flags = 0;
2817   if (!config->relocatable)
2818     flags |= FileOutputBuffer::F_executable;
2819   if (!config->mmapOutputFile)
2820     flags |= FileOutputBuffer::F_no_mmap;
2821   Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2822       FileOutputBuffer::create(config->outputFile, fileSize, flags);
2823 
2824   if (!bufferOrErr) {
2825     error("failed to open " + config->outputFile + ": " +
2826           llvm::toString(bufferOrErr.takeError()));
2827     return;
2828   }
2829   buffer = std::move(*bufferOrErr);
2830   Out::bufferStart = buffer->getBufferStart();
2831 }
2832 
2833 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2834   parallel::TaskGroup tg;
2835   for (OutputSection *sec : outputSections)
2836     if (sec->flags & SHF_ALLOC)
2837       sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2838 }
2839 
2840 static void fillTrap(uint8_t *i, uint8_t *end) {
2841   for (; i + 4 <= end; i += 4)
2842     memcpy(i, &target->trapInstr, 4);
2843 }
2844 
2845 // Fill the last page of executable segments with trap instructions
2846 // instead of leaving them as zero. Even though it is not required by any
2847 // standard, it is in general a good thing to do for security reasons.
2848 //
2849 // We'll leave other pages in segments as-is because the rest will be
2850 // overwritten by output sections.
2851 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2852   for (Partition &part : partitions) {
2853     // Fill the last page.
2854     for (PhdrEntry *p : part.phdrs)
2855       if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2856         fillTrap(Out::bufferStart +
2857                      alignDown(p->firstSec->offset + p->p_filesz, 4),
2858                  Out::bufferStart +
2859                      alignToPowerOf2(p->firstSec->offset + p->p_filesz,
2860                                      config->maxPageSize));
2861 
2862     // Round up the file size of the last segment to the page boundary iff it is
2863     // an executable segment to ensure that other tools don't accidentally
2864     // trim the instruction padding (e.g. when stripping the file).
2865     PhdrEntry *last = nullptr;
2866     for (PhdrEntry *p : part.phdrs)
2867       if (p->p_type == PT_LOAD)
2868         last = p;
2869 
2870     if (last && (last->p_flags & PF_X))
2871       last->p_memsz = last->p_filesz =
2872           alignToPowerOf2(last->p_filesz, config->maxPageSize);
2873   }
2874 }
2875 
2876 // Write section contents to a mmap'ed file.
2877 template <class ELFT> void Writer<ELFT>::writeSections() {
2878   llvm::TimeTraceScope timeScope("Write sections");
2879 
2880   {
2881     // In -r or --emit-relocs mode, write the relocation sections first as in
2882     // ELf_Rel targets we might find out that we need to modify the relocated
2883     // section while doing it.
2884     parallel::TaskGroup tg;
2885     for (OutputSection *sec : outputSections)
2886       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2887         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2888   }
2889   {
2890     parallel::TaskGroup tg;
2891     for (OutputSection *sec : outputSections)
2892       if (sec->type != SHT_REL && sec->type != SHT_RELA)
2893         sec->writeTo<ELFT>(Out::bufferStart + sec->offset, tg);
2894   }
2895 
2896   // Finally, check that all dynamic relocation addends were written correctly.
2897   if (config->checkDynamicRelocs && config->writeAddends) {
2898     for (OutputSection *sec : outputSections)
2899       if (sec->type == SHT_REL || sec->type == SHT_RELA)
2900         sec->checkDynRelAddends(Out::bufferStart);
2901   }
2902 }
2903 
2904 // Computes a hash value of Data using a given hash function.
2905 // In order to utilize multiple cores, we first split data into 1MB
2906 // chunks, compute a hash for each chunk, and then compute a hash value
2907 // of the hash values.
2908 static void
2909 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2910             llvm::ArrayRef<uint8_t> data,
2911             std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2912   std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2913   const size_t hashesSize = chunks.size() * hashBuf.size();
2914   std::unique_ptr<uint8_t[]> hashes(new uint8_t[hashesSize]);
2915 
2916   // Compute hash values.
2917   parallelFor(0, chunks.size(), [&](size_t i) {
2918     hashFn(hashes.get() + i * hashBuf.size(), chunks[i]);
2919   });
2920 
2921   // Write to the final output buffer.
2922   hashFn(hashBuf.data(), ArrayRef(hashes.get(), hashesSize));
2923 }
2924 
2925 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2926   if (!mainPart->buildId || !mainPart->buildId->getParent())
2927     return;
2928 
2929   if (config->buildId == BuildIdKind::Hexstring) {
2930     for (Partition &part : partitions)
2931       part.buildId->writeBuildId(config->buildIdVector);
2932     return;
2933   }
2934 
2935   // Compute a hash of all sections of the output file.
2936   size_t hashSize = mainPart->buildId->hashSize;
2937   std::unique_ptr<uint8_t[]> buildId(new uint8_t[hashSize]);
2938   MutableArrayRef<uint8_t> output(buildId.get(), hashSize);
2939   llvm::ArrayRef<uint8_t> input{Out::bufferStart, size_t(fileSize)};
2940 
2941   // Fedora introduced build ID as "approximation of true uniqueness across all
2942   // binaries that might be used by overlapping sets of people". It does not
2943   // need some security goals that some hash algorithms strive to provide, e.g.
2944   // (second-)preimage and collision resistance. In practice people use 'md5'
2945   // and 'sha1' just for different lengths. Implement them with the more
2946   // efficient BLAKE3.
2947   switch (config->buildId) {
2948   case BuildIdKind::Fast:
2949     computeHash(output, input, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2950       write64le(dest, xxHash64(arr));
2951     });
2952     break;
2953   case BuildIdKind::Md5:
2954     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2955       memcpy(dest, BLAKE3::hash<16>(arr).data(), hashSize);
2956     });
2957     break;
2958   case BuildIdKind::Sha1:
2959     computeHash(output, input, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2960       memcpy(dest, BLAKE3::hash<20>(arr).data(), hashSize);
2961     });
2962     break;
2963   case BuildIdKind::Uuid:
2964     if (auto ec = llvm::getRandomBytes(buildId.get(), hashSize))
2965       error("entropy source failure: " + ec.message());
2966     break;
2967   default:
2968     llvm_unreachable("unknown BuildIdKind");
2969   }
2970   for (Partition &part : partitions)
2971     part.buildId->writeBuildId(output);
2972 }
2973 
2974 template void elf::createSyntheticSections<ELF32LE>();
2975 template void elf::createSyntheticSections<ELF32BE>();
2976 template void elf::createSyntheticSections<ELF64LE>();
2977 template void elf::createSyntheticSections<ELF64BE>();
2978 
2979 template void elf::writeResult<ELF32LE>();
2980 template void elf::writeResult<ELF32BE>();
2981 template void elf::writeResult<ELF64LE>();
2982 template void elf::writeResult<ELF64BE>();
2983