1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLDB_UTILITY_ARCHSPEC_H
10 #define LLDB_UTILITY_ARCHSPEC_H
11 
12 #include "lldb/Utility/CompletionRequest.h"
13 #include "lldb/Utility/ConstString.h"
14 #include "lldb/lldb-enumerations.h"
15 #include "lldb/lldb-forward.h"
16 #include "lldb/lldb-private-enumerations.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Support/YAMLTraits.h"
20 #include <cstddef>
21 #include <cstdint>
22 #include <string>
23 
24 namespace lldb_private {
25 
26 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
27 /// specification class.
28 ///
29 /// A class designed to be created from a cpu type and subtype, a
30 /// string representation, or an llvm::Triple.  Keeping all of the conversions
31 /// of strings to architecture enumeration values confined to this class
32 /// allows new architecture support to be added easily.
33 class ArchSpec {
34 public:
35   enum MIPSSubType {
36     eMIPSSubType_unknown,
37     eMIPSSubType_mips32,
38     eMIPSSubType_mips32r2,
39     eMIPSSubType_mips32r6,
40     eMIPSSubType_mips32el,
41     eMIPSSubType_mips32r2el,
42     eMIPSSubType_mips32r6el,
43     eMIPSSubType_mips64,
44     eMIPSSubType_mips64r2,
45     eMIPSSubType_mips64r6,
46     eMIPSSubType_mips64el,
47     eMIPSSubType_mips64r2el,
48     eMIPSSubType_mips64r6el,
49   };
50 
51   // Masks for the ases word of an ABI flags structure.
52   enum MIPSASE {
53     eMIPSAse_dsp = 0x00000001,       // DSP ASE
54     eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
55     eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
56     eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
57     eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
58     eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
59     eMIPSAse_mt = 0x00000040,        // MT ASE
60     eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
61     eMIPSAse_virt = 0x00000100,      // VZ ASE
62     eMIPSAse_msa = 0x00000200,       // MSA ASE
63     eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
64     eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
65     eMIPSAse_xpa = 0x00001000,       // XPA ASE
66     eMIPSAse_mask = 0x00001fff,
67     eMIPSABI_O32 = 0x00002000,
68     eMIPSABI_N32 = 0x00004000,
69     eMIPSABI_N64 = 0x00008000,
70     eMIPSABI_O64 = 0x00020000,
71     eMIPSABI_EABI32 = 0x00040000,
72     eMIPSABI_EABI64 = 0x00080000,
73     eMIPSABI_mask = 0x000ff000
74   };
75 
76   // MIPS Floating point ABI Values
77   enum MIPS_ABI_FP {
78     eMIPS_ABI_FP_ANY = 0x00000000,
79     eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
80     eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
81     eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
82     eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
83     eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
84     eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
85     eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
86     eMIPS_ABI_FP_mask = 0x00700000
87   };
88 
89   // ARM specific e_flags
90   enum ARMeflags {
91     eARM_abi_soft_float = 0x00000200,
92     eARM_abi_hard_float = 0x00000400
93   };
94 
95   enum RISCVeflags {
96     eRISCV_rvc              = 0x00000001, /// RVC, +c
97     eRISCV_float_abi_soft   = 0x00000000, /// soft float
98     eRISCV_float_abi_single = 0x00000002, /// single precision floating point, +f
99     eRISCV_float_abi_double = 0x00000004, /// double precision floating point, +d
100     eRISCV_float_abi_quad   = 0x00000006, /// quad precision floating point, +q
101     eRISCV_float_abi_mask   = 0x00000006,
102     eRISCV_rve              = 0x00000008, /// RVE, +e
103     eRISCV_tso              = 0x00000010, /// RVTSO (total store ordering)
104   };
105 
106   enum RISCVSubType {
107     eRISCVSubType_unknown,
108     eRISCVSubType_riscv32,
109     eRISCVSubType_riscv64,
110   };
111 
112   enum Core {
113     eCore_arm_generic,
114     eCore_arm_armv4,
115     eCore_arm_armv4t,
116     eCore_arm_armv5,
117     eCore_arm_armv5e,
118     eCore_arm_armv5t,
119     eCore_arm_armv6,
120     eCore_arm_armv6m,
121     eCore_arm_armv7,
122     eCore_arm_armv7l,
123     eCore_arm_armv7f,
124     eCore_arm_armv7s,
125     eCore_arm_armv7k,
126     eCore_arm_armv7m,
127     eCore_arm_armv7em,
128     eCore_arm_xscale,
129 
130     eCore_thumb,
131     eCore_thumbv4t,
132     eCore_thumbv5,
133     eCore_thumbv5e,
134     eCore_thumbv6,
135     eCore_thumbv6m,
136     eCore_thumbv7,
137     eCore_thumbv7s,
138     eCore_thumbv7k,
139     eCore_thumbv7f,
140     eCore_thumbv7m,
141     eCore_thumbv7em,
142     eCore_arm_arm64,
143     eCore_arm_armv8,
144     eCore_arm_armv8l,
145     eCore_arm_arm64e,
146     eCore_arm_arm64_32,
147     eCore_arm_aarch64,
148 
149     eCore_mips32,
150     eCore_mips32r2,
151     eCore_mips32r3,
152     eCore_mips32r5,
153     eCore_mips32r6,
154     eCore_mips32el,
155     eCore_mips32r2el,
156     eCore_mips32r3el,
157     eCore_mips32r5el,
158     eCore_mips32r6el,
159     eCore_mips64,
160     eCore_mips64r2,
161     eCore_mips64r3,
162     eCore_mips64r5,
163     eCore_mips64r6,
164     eCore_mips64el,
165     eCore_mips64r2el,
166     eCore_mips64r3el,
167     eCore_mips64r5el,
168     eCore_mips64r6el,
169 
170     eCore_ppc_generic,
171     eCore_ppc_ppc601,
172     eCore_ppc_ppc602,
173     eCore_ppc_ppc603,
174     eCore_ppc_ppc603e,
175     eCore_ppc_ppc603ev,
176     eCore_ppc_ppc604,
177     eCore_ppc_ppc604e,
178     eCore_ppc_ppc620,
179     eCore_ppc_ppc750,
180     eCore_ppc_ppc7400,
181     eCore_ppc_ppc7450,
182     eCore_ppc_ppc970,
183 
184     eCore_ppc64le_generic,
185     eCore_ppc64_generic,
186     eCore_ppc64_ppc970_64,
187 
188     eCore_s390x_generic,
189 
190     eCore_sparc_generic,
191 
192     eCore_sparc9_generic,
193 
194     eCore_x86_32_i386,
195     eCore_x86_32_i486,
196     eCore_x86_32_i486sx,
197     eCore_x86_32_i686,
198 
199     eCore_x86_64_x86_64,
200     eCore_x86_64_x86_64h, // Haswell enabled x86_64
201     eCore_hexagon_generic,
202     eCore_hexagon_hexagonv4,
203     eCore_hexagon_hexagonv5,
204 
205     eCore_riscv32,
206     eCore_riscv64,
207 
208     eCore_uknownMach32,
209     eCore_uknownMach64,
210 
211     eCore_arc, // little endian ARC
212 
213     eCore_avr,
214 
215     eCore_wasm32,
216 
217     kNumCores,
218 
219     kCore_invalid,
220     // The following constants are used for wildcard matching only
221     kCore_any,
222     kCore_arm_any,
223     kCore_ppc_any,
224     kCore_ppc64_any,
225     kCore_x86_32_any,
226     kCore_x86_64_any,
227     kCore_hexagon_any,
228 
229     kCore_arm_first = eCore_arm_generic,
230     kCore_arm_last = eCore_arm_xscale,
231 
232     kCore_thumb_first = eCore_thumb,
233     kCore_thumb_last = eCore_thumbv7em,
234 
235     kCore_ppc_first = eCore_ppc_generic,
236     kCore_ppc_last = eCore_ppc_ppc970,
237 
238     kCore_ppc64_first = eCore_ppc64_generic,
239     kCore_ppc64_last = eCore_ppc64_ppc970_64,
240 
241     kCore_x86_32_first = eCore_x86_32_i386,
242     kCore_x86_32_last = eCore_x86_32_i686,
243 
244     kCore_x86_64_first = eCore_x86_64_x86_64,
245     kCore_x86_64_last = eCore_x86_64_x86_64h,
246 
247     kCore_hexagon_first = eCore_hexagon_generic,
248     kCore_hexagon_last = eCore_hexagon_hexagonv5,
249 
250     kCore_mips32_first = eCore_mips32,
251     kCore_mips32_last = eCore_mips32r6,
252 
253     kCore_mips32el_first = eCore_mips32el,
254     kCore_mips32el_last = eCore_mips32r6el,
255 
256     kCore_mips64_first = eCore_mips64,
257     kCore_mips64_last = eCore_mips64r6,
258 
259     kCore_mips64el_first = eCore_mips64el,
260     kCore_mips64el_last = eCore_mips64r6el,
261 
262     kCore_mips_first = eCore_mips32,
263     kCore_mips_last = eCore_mips64r6el
264 
265   };
266 
267   /// Default constructor.
268   ///
269   /// Default constructor that initializes the object with invalid cpu type
270   /// and subtype values.
271   ArchSpec();
272 
273   /// Constructor over triple.
274   ///
275   /// Constructs an ArchSpec with properties consistent with the given Triple.
276   explicit ArchSpec(const llvm::Triple &triple);
277   explicit ArchSpec(const char *triple_cstr);
278   explicit ArchSpec(llvm::StringRef triple_str);
279   /// Constructor over architecture name.
280   ///
281   /// Constructs an ArchSpec with properties consistent with the given object
282   /// type and architecture name.
283   explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
284                     uint32_t cpu_subtype);
285 
286   /// Destructor.
287   ~ArchSpec();
288 
289   /// Returns true if the OS, vendor and environment fields of the triple are
290   /// unset. The triple is expected to be normalized
291   /// (llvm::Triple::normalize).
292   static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
293 
294   static void ListSupportedArchNames(StringList &list);
295   static void AutoComplete(CompletionRequest &request);
296 
297   /// Returns a static string representing the current architecture.
298   ///
299   /// \return A static string corresponding to the current
300   ///         architecture.
301   const char *GetArchitectureName() const;
302 
303   /// if MIPS architecture return true.
304   ///
305   ///  \return a boolean value.
306   bool IsMIPS() const;
307 
308   /// Returns a string representing current architecture as a target CPU for
309   /// tools like compiler, disassembler etc.
310   ///
311   /// \return A string representing target CPU for the current
312   ///         architecture.
313   std::string GetClangTargetCPU() const;
314 
315   /// Return a string representing target application ABI.
316   ///
317   /// \return A string representing target application ABI.
318   std::string GetTargetABI() const;
319 
320   /// Clears the object state.
321   ///
322   /// Clears the object state back to a default invalid state.
323   void Clear();
324 
325   /// Returns the size in bytes of an address of the current architecture.
326   ///
327   /// \return The byte size of an address of the current architecture.
328   uint32_t GetAddressByteSize() const;
329 
330   /// Returns a machine family for the current architecture.
331   ///
332   /// \return An LLVM arch type.
333   llvm::Triple::ArchType GetMachine() const;
334 
335   /// Returns the distribution id of the architecture.
336   ///
337   /// This will be something like "ubuntu", "fedora", etc. on Linux.
338   ///
339   /// \return A ConstString ref containing the distribution id,
340   ///         potentially empty.
341   ConstString GetDistributionId() const;
342 
343   /// Set the distribution id of the architecture.
344   ///
345   /// This will be something like "ubuntu", "fedora", etc. on Linux. This
346   /// should be the same value returned by HostInfo::GetDistributionId ().
347   void SetDistributionId(const char *distribution_id);
348 
349   /// Tests if this ArchSpec is valid.
350   ///
351   /// \return True if the current architecture is valid, false
352   ///         otherwise.
353   bool IsValid() const {
354     return m_core >= eCore_arm_generic && m_core < kNumCores;
355   }
356   explicit operator bool() const { return IsValid(); }
357 
358   bool TripleVendorWasSpecified() const {
359     return !m_triple.getVendorName().empty();
360   }
361 
362   bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
363 
364   bool TripleEnvironmentWasSpecified() const {
365     return m_triple.hasEnvironment();
366   }
367 
368   /// Merges fields from another ArchSpec into this ArchSpec.
369   ///
370   /// This will use the supplied ArchSpec to fill in any fields of the triple
371   /// in this ArchSpec which were unspecified.  This can be used to refine a
372   /// generic ArchSpec with a more specific one. For example, if this
373   /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
374   /// have a triple which is x64-pc-windows-msvc, then merging that triple
375   /// into this one will result in the triple i386-pc-windows-msvc.
376   ///
377   void MergeFrom(const ArchSpec &other);
378 
379   /// Change the architecture object type, CPU type and OS type.
380   ///
381   /// \param[in] arch_type The object type of this ArchSpec.
382   ///
383   /// \param[in] cpu The required CPU type.
384   ///
385   /// \param[in] os The optional OS type
386   /// The default value of 0 was chosen to from the ELF spec value
387   /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
388   /// format uses this parameter and 0 does not work, use a value over
389   /// 255 because in the ELF header this is value is only a byte.
390   ///
391   /// \return True if the object, and CPU were successfully set.
392   ///
393   /// As a side effect, the vendor value is usually set to unknown. The
394   /// exceptions are
395   ///   aarch64-apple-ios
396   ///   arm-apple-ios
397   ///   thumb-apple-ios
398   ///   x86-apple-
399   ///   x86_64-apple-
400   ///
401   /// As a side effect, the os value is usually set to unknown The exceptions
402   /// are
403   ///   *-*-aix
404   ///   aarch64-apple-ios
405   ///   arm-apple-ios
406   ///   thumb-apple-ios
407   ///   powerpc-apple-darwin
408   ///   *-*-freebsd
409   ///   *-*-linux
410   ///   *-*-netbsd
411   ///   *-*-openbsd
412   ///   *-*-solaris
413   bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
414                        uint32_t os = 0);
415 
416   /// Returns the byte order for the architecture specification.
417   ///
418   /// \return The endian enumeration for the current endianness of
419   ///     the architecture specification
420   lldb::ByteOrder GetByteOrder() const;
421 
422   /// Sets this ArchSpec's byte order.
423   ///
424   /// In the common case there is no need to call this method as the byte
425   /// order can almost always be determined by the architecture. However, many
426   /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
427   /// byte order may be incorrect.
428   void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
429 
430   uint32_t GetMinimumOpcodeByteSize() const;
431 
432   uint32_t GetMaximumOpcodeByteSize() const;
433 
434   Core GetCore() const { return m_core; }
435 
436   uint32_t GetMachOCPUType() const;
437 
438   uint32_t GetMachOCPUSubType() const;
439 
440   /// Architecture data byte width accessor
441   ///
442   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
443   /// from the Architecture's data bus
444   uint32_t GetDataByteSize() const;
445 
446   /// Architecture code byte width accessor
447   ///
448   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
449   /// from the Architecture's code bus
450   uint32_t GetCodeByteSize() const;
451 
452   /// Architecture triple accessor.
453   ///
454   /// \return A triple describing this ArchSpec.
455   llvm::Triple &GetTriple() { return m_triple; }
456 
457   /// Architecture triple accessor.
458   ///
459   /// \return A triple describing this ArchSpec.
460   const llvm::Triple &GetTriple() const { return m_triple; }
461 
462   void DumpTriple(llvm::raw_ostream &s) const;
463 
464   /// Architecture triple setter.
465   ///
466   /// Configures this ArchSpec according to the given triple.  If the triple
467   /// has unknown components in all of the vendor, OS, and the optional
468   /// environment field (i.e. "i386-unknown-unknown") then default values are
469   /// taken from the host.  Architecture and environment components are used
470   /// to further resolve the CPU type and subtype, endian characteristics,
471   /// etc.
472   ///
473   /// \return A triple describing this ArchSpec.
474   bool SetTriple(const llvm::Triple &triple);
475 
476   bool SetTriple(llvm::StringRef triple_str);
477 
478   /// Returns the default endianness of the architecture.
479   ///
480   /// \return The endian enumeration for the default endianness of
481   ///         the architecture.
482   lldb::ByteOrder GetDefaultEndian() const;
483 
484   /// Returns true if 'char' is a signed type by default in the architecture
485   /// false otherwise
486   ///
487   /// \return True if 'char' is a signed type by default on the
488   ///         architecture and false otherwise.
489   bool CharIsSignedByDefault() const;
490 
491   /// Compare an ArchSpec to another ArchSpec, requiring an exact cpu type
492   /// match between them. e.g. armv7s is not an exact match with armv7 - this
493   /// would return false
494   ///
495   /// \return true if the two ArchSpecs match.
496   bool IsExactMatch(const ArchSpec &rhs) const;
497 
498   /// Compare an ArchSpec to another ArchSpec, requiring a compatible cpu type
499   /// match between them. e.g. armv7s is compatible with armv7 - this method
500   /// would return true
501   ///
502   /// \return true if the two ArchSpecs are compatible
503   bool IsCompatibleMatch(const ArchSpec &rhs) const;
504 
505   bool IsFullySpecifiedTriple() const;
506 
507   void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different,
508                               bool &vendor_different, bool &os_different,
509                               bool &os_version_different,
510                               bool &env_different) const;
511 
512   /// Detect whether this architecture uses thumb code exclusively
513   ///
514   /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
515   /// the Thumb instructions, never Arm.  We should normally pick up
516   /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
517   /// on each function - but when doing bare-boards low level debugging
518   /// (especially common with these embedded processors), we may not have
519   /// those things easily accessible.
520   ///
521   /// \return true if this is an arm ArchSpec which can only execute Thumb
522   ///         instructions
523   bool IsAlwaysThumbInstructions() const;
524 
525   uint32_t GetFlags() const { return m_flags; }
526 
527   void SetFlags(uint32_t flags) { m_flags = flags; }
528 
529   void SetFlags(const std::string &elf_abi);
530 
531 protected:
532   bool IsEqualTo(const ArchSpec &rhs, bool exact_match) const;
533   void UpdateCore();
534 
535   llvm::Triple m_triple;
536   Core m_core = kCore_invalid;
537   lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
538 
539   // Additional arch flags which we cannot get from triple and core For MIPS
540   // these are application specific extensions like micromips, mips16 etc.
541   uint32_t m_flags = 0;
542 
543   ConstString m_distribution_id;
544 
545   // Called when m_def or m_entry are changed.  Fills in all remaining members
546   // with default values.
547   void CoreUpdated(bool update_triple);
548 };
549 
550 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
551 /// operator.
552 ///
553 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
554 ///
555 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
556 /// rhs The Left Hand Side ArchSpec object to compare.
557 ///
558 /// \return true if \a lhs is less than \a rhs
559 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
560 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
561 
562 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
563 
564 } // namespace lldb_private
565 
566 namespace llvm {
567 namespace yaml {
568 template <> struct ScalarTraits<lldb_private::ArchSpec> {
569   static void output(const lldb_private::ArchSpec &, void *, raw_ostream &);
570   static StringRef input(StringRef, void *, lldb_private::ArchSpec &);
571   static QuotingType mustQuote(StringRef S) { return QuotingType::Double; }
572 };
573 } // namespace yaml
574 } // namespace llvm
575 
576 LLVM_YAML_IS_SEQUENCE_VECTOR(lldb_private::ArchSpec)
577 
578 #endif // LLDB_UTILITY_ARCHSPEC_H
579