1 //===-- DataExtractor.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Utility/DataExtractor.h"
10 
11 #include "lldb/lldb-defines.h"
12 #include "lldb/lldb-enumerations.h"
13 #include "lldb/lldb-forward.h"
14 #include "lldb/lldb-types.h"
15 
16 #include "lldb/Utility/DataBuffer.h"
17 #include "lldb/Utility/DataBufferHeap.h"
18 #include "lldb/Utility/LLDBAssert.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Stream.h"
21 #include "lldb/Utility/StreamString.h"
22 #include "lldb/Utility/UUID.h"
23 
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Support/LEB128.h"
28 #include "llvm/Support/MD5.h"
29 #include "llvm/Support/MathExtras.h"
30 
31 #include <algorithm>
32 #include <array>
33 #include <cassert>
34 #include <cstdint>
35 #include <string>
36 
37 #include <cctype>
38 #include <cinttypes>
39 #include <cstring>
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 
44 static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
45   uint16_t value;
46   memcpy(&value, ptr + offset, 2);
47   return value;
48 }
49 
50 static inline uint32_t ReadInt32(const unsigned char *ptr,
51                                  offset_t offset = 0) {
52   uint32_t value;
53   memcpy(&value, ptr + offset, 4);
54   return value;
55 }
56 
57 static inline uint64_t ReadInt64(const unsigned char *ptr,
58                                  offset_t offset = 0) {
59   uint64_t value;
60   memcpy(&value, ptr + offset, 8);
61   return value;
62 }
63 
64 static inline uint16_t ReadInt16(const void *ptr) {
65   uint16_t value;
66   memcpy(&value, ptr, 2);
67   return value;
68 }
69 
70 static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
71                                      offset_t offset) {
72   uint16_t value;
73   memcpy(&value, ptr + offset, 2);
74   return llvm::byteswap<uint16_t>(value);
75 }
76 
77 static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
78                                      offset_t offset) {
79   uint32_t value;
80   memcpy(&value, ptr + offset, 4);
81   return llvm::byteswap<uint32_t>(value);
82 }
83 
84 static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
85                                      offset_t offset) {
86   uint64_t value;
87   memcpy(&value, ptr + offset, 8);
88   return llvm::byteswap<uint64_t>(value);
89 }
90 
91 static inline uint16_t ReadSwapInt16(const void *ptr) {
92   uint16_t value;
93   memcpy(&value, ptr, 2);
94   return llvm::byteswap<uint16_t>(value);
95 }
96 
97 static inline uint32_t ReadSwapInt32(const void *ptr) {
98   uint32_t value;
99   memcpy(&value, ptr, 4);
100   return llvm::byteswap<uint32_t>(value);
101 }
102 
103 static inline uint64_t ReadSwapInt64(const void *ptr) {
104   uint64_t value;
105   memcpy(&value, ptr, 8);
106   return llvm::byteswap<uint64_t>(value);
107 }
108 
109 static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
110                                     ByteOrder byte_order) {
111   uint64_t res = 0;
112   if (byte_order == eByteOrderBig)
113     for (size_t i = 0; i < byte_size; ++i)
114       res = (res << 8) | data[i];
115   else {
116     assert(byte_order == eByteOrderLittle);
117     for (size_t i = 0; i < byte_size; ++i)
118       res = (res << 8) | data[byte_size - 1 - i];
119   }
120   return res;
121 }
122 
123 DataExtractor::DataExtractor()
124     : m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125       m_data_sp() {}
126 
127 // This constructor allows us to use data that is owned by someone else. The
128 // data must stay around as long as this object is valid.
129 DataExtractor::DataExtractor(const void *data, offset_t length,
130                              ByteOrder endian, uint32_t addr_size,
131                              uint32_t target_byte_size /*=1*/)
132     : m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
133       m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
134       m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
135       m_target_byte_size(target_byte_size) {
136   assert(addr_size >= 1 && addr_size <= 8);
137 }
138 
139 // Make a shared pointer reference to the shared data in "data_sp" and set the
140 // endian swapping setting to "swap", and the address size to "addr_size". The
141 // shared data reference will ensure the data lives as long as any
142 // DataExtractor objects exist that have a reference to this data.
143 DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
144                              uint32_t addr_size,
145                              uint32_t target_byte_size /*=1*/)
146     : m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
147       m_target_byte_size(target_byte_size) {
148   assert(addr_size >= 1 && addr_size <= 8);
149   SetData(data_sp);
150 }
151 
152 // Initialize this object with a subset of the data bytes in "data". If "data"
153 // contains shared data, then a reference to this shared data will added and
154 // the shared data will stay around as long as any object contains a reference
155 // to that data. The endian swap and address size settings are copied from
156 // "data".
157 DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
158                              offset_t length, uint32_t target_byte_size /*=1*/)
159     : m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size),
160       m_data_sp(), m_target_byte_size(target_byte_size) {
161   assert(m_addr_size >= 1 && m_addr_size <= 8);
162   if (data.ValidOffset(offset)) {
163     offset_t bytes_available = data.GetByteSize() - offset;
164     if (length > bytes_available)
165       length = bytes_available;
166     SetData(data, offset, length);
167   }
168 }
169 
170 DataExtractor::DataExtractor(const DataExtractor &rhs)
171     : m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
172       m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
173       m_target_byte_size(rhs.m_target_byte_size) {
174   assert(m_addr_size >= 1 && m_addr_size <= 8);
175 }
176 
177 // Assignment operator
178 const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
179   if (this != &rhs) {
180     m_start = rhs.m_start;
181     m_end = rhs.m_end;
182     m_byte_order = rhs.m_byte_order;
183     m_addr_size = rhs.m_addr_size;
184     m_data_sp = rhs.m_data_sp;
185   }
186   return *this;
187 }
188 
189 DataExtractor::~DataExtractor() = default;
190 
191 // Clears the object contents back to a default invalid state, and release any
192 // references to shared data that this object may contain.
193 void DataExtractor::Clear() {
194   m_start = nullptr;
195   m_end = nullptr;
196   m_byte_order = endian::InlHostByteOrder();
197   m_addr_size = sizeof(void *);
198   m_data_sp.reset();
199 }
200 
201 // If this object contains shared data, this function returns the offset into
202 // that shared data. Else zero is returned.
203 size_t DataExtractor::GetSharedDataOffset() const {
204   if (m_start != nullptr) {
205     const DataBuffer *data = m_data_sp.get();
206     if (data != nullptr) {
207       const uint8_t *data_bytes = data->GetBytes();
208       if (data_bytes != nullptr) {
209         assert(m_start >= data_bytes);
210         return m_start - data_bytes;
211       }
212     }
213   }
214   return 0;
215 }
216 
217 // Set the data with which this object will extract from to data starting at
218 // BYTES and set the length of the data to LENGTH bytes long. The data is
219 // externally owned must be around at least as long as this object points to
220 // the data. No copy of the data is made, this object just refers to this data
221 // and can extract from it. If this object refers to any shared data upon
222 // entry, the reference to that data will be released. Is SWAP is set to true,
223 // any data extracted will be endian swapped.
224 lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
225                                       ByteOrder endian) {
226   m_byte_order = endian;
227   m_data_sp.reset();
228   if (bytes == nullptr || length == 0) {
229     m_start = nullptr;
230     m_end = nullptr;
231   } else {
232     m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
233     m_end = m_start + length;
234   }
235   return GetByteSize();
236 }
237 
238 // Assign the data for this object to be a subrange in "data" starting
239 // "data_offset" bytes into "data" and ending "data_length" bytes later. If
240 // "data_offset" is not a valid offset into "data", then this object will
241 // contain no bytes. If "data_offset" is within "data" yet "data_length" is too
242 // large, the length will be capped at the number of bytes remaining in "data".
243 // If "data" contains a shared pointer to other data, then a ref counted
244 // pointer to that data will be made in this object. If "data" doesn't contain
245 // a shared pointer to data, then the bytes referred to in "data" will need to
246 // exist at least as long as this object refers to those bytes. The address
247 // size and endian swap settings are copied from the current values in "data".
248 lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
249                                       offset_t data_offset,
250                                       offset_t data_length) {
251   m_addr_size = data.m_addr_size;
252   assert(m_addr_size >= 1 && m_addr_size <= 8);
253   // If "data" contains shared pointer to data, then we can use that
254   if (data.m_data_sp) {
255     m_byte_order = data.m_byte_order;
256     return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
257                    data_length);
258   }
259 
260   // We have a DataExtractor object that just has a pointer to bytes
261   if (data.ValidOffset(data_offset)) {
262     if (data_length > data.GetByteSize() - data_offset)
263       data_length = data.GetByteSize() - data_offset;
264     return SetData(data.GetDataStart() + data_offset, data_length,
265                    data.GetByteOrder());
266   }
267   return 0;
268 }
269 
270 // Assign the data for this object to be a subrange of the shared data in
271 // "data_sp" starting "data_offset" bytes into "data_sp" and ending
272 // "data_length" bytes later. If "data_offset" is not a valid offset into
273 // "data_sp", then this object will contain no bytes. If "data_offset" is
274 // within "data_sp" yet "data_length" is too large, the length will be capped
275 // at the number of bytes remaining in "data_sp". A ref counted pointer to the
276 // data in "data_sp" will be made in this object IF the number of bytes this
277 // object refers to in greater than zero (if at least one byte was available
278 // starting at "data_offset") to ensure the data stays around as long as it is
279 // needed. The address size and endian swap settings will remain unchanged from
280 // their current settings.
281 lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
282                                       offset_t data_offset,
283                                       offset_t data_length) {
284   m_start = m_end = nullptr;
285 
286   if (data_length > 0) {
287     m_data_sp = data_sp;
288     if (data_sp) {
289       const size_t data_size = data_sp->GetByteSize();
290       if (data_offset < data_size) {
291         m_start = data_sp->GetBytes() + data_offset;
292         const size_t bytes_left = data_size - data_offset;
293         // Cap the length of we asked for too many
294         if (data_length <= bytes_left)
295           m_end = m_start + data_length; // We got all the bytes we wanted
296         else
297           m_end = m_start + bytes_left; // Not all the bytes requested were
298                                         // available in the shared data
299       }
300     }
301   }
302 
303   size_t new_size = GetByteSize();
304 
305   // Don't hold a shared pointer to the data buffer if we don't share any valid
306   // bytes in the shared buffer.
307   if (new_size == 0)
308     m_data_sp.reset();
309 
310   return new_size;
311 }
312 
313 // Extract a single unsigned char from the binary data and update the offset
314 // pointed to by "offset_ptr".
315 //
316 // RETURNS the byte that was extracted, or zero on failure.
317 uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
318   const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
319   if (data)
320     return *data;
321   return 0;
322 }
323 
324 // Extract "count" unsigned chars from the binary data and update the offset
325 // pointed to by "offset_ptr". The extracted data is copied into "dst".
326 //
327 // RETURNS the non-nullptr buffer pointer upon successful extraction of
328 // all the requested bytes, or nullptr when the data is not available in the
329 // buffer due to being out of bounds, or insufficient data.
330 void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
331                            uint32_t count) const {
332   const uint8_t *data =
333       static_cast<const uint8_t *>(GetData(offset_ptr, count));
334   if (data) {
335     // Copy the data into the buffer
336     memcpy(dst, data, count);
337     // Return a non-nullptr pointer to the converted data as an indicator of
338     // success
339     return dst;
340   }
341   return nullptr;
342 }
343 
344 // Extract a single uint16_t from the data and update the offset pointed to by
345 // "offset_ptr".
346 //
347 // RETURNS the uint16_t that was extracted, or zero on failure.
348 uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
349   uint16_t val = 0;
350   const uint8_t *data =
351       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
352   if (data) {
353     if (m_byte_order != endian::InlHostByteOrder())
354       val = ReadSwapInt16(data);
355     else
356       val = ReadInt16(data);
357   }
358   return val;
359 }
360 
361 uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
362   uint16_t val;
363   if (m_byte_order == endian::InlHostByteOrder())
364     val = ReadInt16(m_start, *offset_ptr);
365   else
366     val = ReadSwapInt16(m_start, *offset_ptr);
367   *offset_ptr += sizeof(val);
368   return val;
369 }
370 
371 uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
372   uint32_t val;
373   if (m_byte_order == endian::InlHostByteOrder())
374     val = ReadInt32(m_start, *offset_ptr);
375   else
376     val = ReadSwapInt32(m_start, *offset_ptr);
377   *offset_ptr += sizeof(val);
378   return val;
379 }
380 
381 uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
382   uint64_t val;
383   if (m_byte_order == endian::InlHostByteOrder())
384     val = ReadInt64(m_start, *offset_ptr);
385   else
386     val = ReadSwapInt64(m_start, *offset_ptr);
387   *offset_ptr += sizeof(val);
388   return val;
389 }
390 
391 // Extract "count" uint16_t values from the binary data and update the offset
392 // pointed to by "offset_ptr". The extracted data is copied into "dst".
393 //
394 // RETURNS the non-nullptr buffer pointer upon successful extraction of
395 // all the requested bytes, or nullptr when the data is not available in the
396 // buffer due to being out of bounds, or insufficient data.
397 void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
398                             uint32_t count) const {
399   const size_t src_size = sizeof(uint16_t) * count;
400   const uint16_t *src =
401       static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
402   if (src) {
403     if (m_byte_order != endian::InlHostByteOrder()) {
404       uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
405       uint16_t *dst_end = dst_pos + count;
406       const uint16_t *src_pos = src;
407       while (dst_pos < dst_end) {
408         *dst_pos = ReadSwapInt16(src_pos);
409         ++dst_pos;
410         ++src_pos;
411       }
412     } else {
413       memcpy(void_dst, src, src_size);
414     }
415     // Return a non-nullptr pointer to the converted data as an indicator of
416     // success
417     return void_dst;
418   }
419   return nullptr;
420 }
421 
422 // Extract a single uint32_t from the data and update the offset pointed to by
423 // "offset_ptr".
424 //
425 // RETURNS the uint32_t that was extracted, or zero on failure.
426 uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
427   uint32_t val = 0;
428   const uint8_t *data =
429       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
430   if (data) {
431     if (m_byte_order != endian::InlHostByteOrder()) {
432       val = ReadSwapInt32(data);
433     } else {
434       memcpy(&val, data, 4);
435     }
436   }
437   return val;
438 }
439 
440 // Extract "count" uint32_t values from the binary data and update the offset
441 // pointed to by "offset_ptr". The extracted data is copied into "dst".
442 //
443 // RETURNS the non-nullptr buffer pointer upon successful extraction of
444 // all the requested bytes, or nullptr when the data is not available in the
445 // buffer due to being out of bounds, or insufficient data.
446 void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
447                             uint32_t count) const {
448   const size_t src_size = sizeof(uint32_t) * count;
449   const uint32_t *src =
450       static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
451   if (src) {
452     if (m_byte_order != endian::InlHostByteOrder()) {
453       uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
454       uint32_t *dst_end = dst_pos + count;
455       const uint32_t *src_pos = src;
456       while (dst_pos < dst_end) {
457         *dst_pos = ReadSwapInt32(src_pos);
458         ++dst_pos;
459         ++src_pos;
460       }
461     } else {
462       memcpy(void_dst, src, src_size);
463     }
464     // Return a non-nullptr pointer to the converted data as an indicator of
465     // success
466     return void_dst;
467   }
468   return nullptr;
469 }
470 
471 // Extract a single uint64_t from the data and update the offset pointed to by
472 // "offset_ptr".
473 //
474 // RETURNS the uint64_t that was extracted, or zero on failure.
475 uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
476   uint64_t val = 0;
477   const uint8_t *data =
478       static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
479   if (data) {
480     if (m_byte_order != endian::InlHostByteOrder()) {
481       val = ReadSwapInt64(data);
482     } else {
483       memcpy(&val, data, 8);
484     }
485   }
486   return val;
487 }
488 
489 // GetU64
490 //
491 // Get multiple consecutive 64 bit values. Return true if the entire read
492 // succeeds and increment the offset pointed to by offset_ptr, else return
493 // false and leave the offset pointed to by offset_ptr unchanged.
494 void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
495                             uint32_t count) const {
496   const size_t src_size = sizeof(uint64_t) * count;
497   const uint64_t *src =
498       static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
499   if (src) {
500     if (m_byte_order != endian::InlHostByteOrder()) {
501       uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
502       uint64_t *dst_end = dst_pos + count;
503       const uint64_t *src_pos = src;
504       while (dst_pos < dst_end) {
505         *dst_pos = ReadSwapInt64(src_pos);
506         ++dst_pos;
507         ++src_pos;
508       }
509     } else {
510       memcpy(void_dst, src, src_size);
511     }
512     // Return a non-nullptr pointer to the converted data as an indicator of
513     // success
514     return void_dst;
515   }
516   return nullptr;
517 }
518 
519 uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
520                                   size_t byte_size) const {
521   lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
522   return GetMaxU64(offset_ptr, byte_size);
523 }
524 
525 uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
526                                   size_t byte_size) const {
527   lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
528   switch (byte_size) {
529   case 1:
530     return GetU8(offset_ptr);
531   case 2:
532     return GetU16(offset_ptr);
533   case 4:
534     return GetU32(offset_ptr);
535   case 8:
536     return GetU64(offset_ptr);
537   default: {
538     // General case.
539     const uint8_t *data =
540         static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
541     if (data == nullptr)
542       return 0;
543     return ReadMaxInt64(data, byte_size, m_byte_order);
544   }
545   }
546   return 0;
547 }
548 
549 uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
550                                             size_t byte_size) const {
551   switch (byte_size) {
552   case 1:
553     return GetU8_unchecked(offset_ptr);
554   case 2:
555     return GetU16_unchecked(offset_ptr);
556   case 4:
557     return GetU32_unchecked(offset_ptr);
558   case 8:
559     return GetU64_unchecked(offset_ptr);
560   default: {
561     uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
562     *offset_ptr += byte_size;
563     return res;
564   }
565   }
566   return 0;
567 }
568 
569 int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
570   uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
571   return llvm::SignExtend64(u64, 8 * byte_size);
572 }
573 
574 uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
575                                           uint32_t bitfield_bit_size,
576                                           uint32_t bitfield_bit_offset) const {
577   assert(bitfield_bit_size <= 64);
578   uint64_t uval64 = GetMaxU64(offset_ptr, size);
579 
580   if (bitfield_bit_size == 0)
581     return uval64;
582 
583   int32_t lsbcount = bitfield_bit_offset;
584   if (m_byte_order == eByteOrderBig)
585     lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
586 
587   if (lsbcount > 0)
588     uval64 >>= lsbcount;
589 
590   uint64_t bitfield_mask =
591       (bitfield_bit_size == 64
592            ? std::numeric_limits<uint64_t>::max()
593            : ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
594   if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
595     return uval64;
596 
597   uval64 &= bitfield_mask;
598 
599   return uval64;
600 }
601 
602 int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
603                                          uint32_t bitfield_bit_size,
604                                          uint32_t bitfield_bit_offset) const {
605   assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
606   assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
607   int64_t sval64 = GetMaxS64(offset_ptr, size);
608   if (bitfield_bit_size == 0)
609     return sval64;
610   int32_t lsbcount = bitfield_bit_offset;
611   if (m_byte_order == eByteOrderBig)
612     lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
613   if (lsbcount > 0)
614     sval64 >>= lsbcount;
615   uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
616   sval64 &= bitfield_mask;
617   // sign extend if needed
618   if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
619     sval64 |= ~bitfield_mask;
620   return sval64;
621 }
622 
623 float DataExtractor::GetFloat(offset_t *offset_ptr) const {
624   return Get<float>(offset_ptr, 0.0f);
625 }
626 
627 double DataExtractor::GetDouble(offset_t *offset_ptr) const {
628   return Get<double>(offset_ptr, 0.0);
629 }
630 
631 long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
632   long double val = 0.0;
633 #if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) ||          \
634     defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
635   *offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
636                                      endian::InlHostByteOrder());
637 #else
638   *offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
639                                      sizeof(val), endian::InlHostByteOrder());
640 #endif
641   return val;
642 }
643 
644 // Extract a single address from the data and update the offset pointed to by
645 // "offset_ptr". The size of the extracted address comes from the
646 // "this->m_addr_size" member variable and should be set correctly prior to
647 // extracting any address values.
648 //
649 // RETURNS the address that was extracted, or zero on failure.
650 uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
651   assert(m_addr_size >= 1 && m_addr_size <= 8);
652   return GetMaxU64(offset_ptr, m_addr_size);
653 }
654 
655 uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
656   assert(m_addr_size >= 1 && m_addr_size <= 8);
657   return GetMaxU64_unchecked(offset_ptr, m_addr_size);
658 }
659 
660 size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
661                                    ByteOrder dst_byte_order, void *dst) const {
662   const uint8_t *src = PeekData(offset, length);
663   if (src) {
664     if (dst_byte_order != GetByteOrder()) {
665       // Validate that only a word- or register-sized dst is byte swapped
666       assert(length == 1 || length == 2 || length == 4 || length == 8 ||
667              length == 10 || length == 16 || length == 32);
668 
669       for (uint32_t i = 0; i < length; ++i)
670         (static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
671     } else
672       ::memcpy(dst, src, length);
673     return length;
674   }
675   return 0;
676 }
677 
678 // Extract data as it exists in target memory
679 lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
680                                        void *dst) const {
681   const uint8_t *src = PeekData(offset, length);
682   if (src) {
683     ::memcpy(dst, src, length);
684     return length;
685   }
686   return 0;
687 }
688 
689 // Extract data and swap if needed when doing the copy
690 lldb::offset_t
691 DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
692                                    void *dst_void_ptr, offset_t dst_len,
693                                    ByteOrder dst_byte_order) const {
694   // Validate the source info
695   if (!ValidOffsetForDataOfSize(src_offset, src_len))
696     assert(ValidOffsetForDataOfSize(src_offset, src_len));
697   assert(src_len > 0);
698   assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
699 
700   // Validate the destination info
701   assert(dst_void_ptr != nullptr);
702   assert(dst_len > 0);
703   assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
704 
705   // Validate that only a word- or register-sized dst is byte swapped
706   assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
707          dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
708          dst_len == 32);
709 
710   // Must have valid byte orders set in this object and for destination
711   if (!(dst_byte_order == eByteOrderBig ||
712         dst_byte_order == eByteOrderLittle) ||
713       !(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
714     return 0;
715 
716   uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
717   const uint8_t *src = PeekData(src_offset, src_len);
718   if (src) {
719     if (dst_len >= src_len) {
720       // We are copying the entire value from src into dst. Calculate how many,
721       // if any, zeroes we need for the most significant bytes if "dst_len" is
722       // greater than "src_len"...
723       const size_t num_zeroes = dst_len - src_len;
724       if (dst_byte_order == eByteOrderBig) {
725         // Big endian, so we lead with zeroes...
726         if (num_zeroes > 0)
727           ::memset(dst, 0, num_zeroes);
728         // Then either copy or swap the rest
729         if (m_byte_order == eByteOrderBig) {
730           ::memcpy(dst + num_zeroes, src, src_len);
731         } else {
732           for (uint32_t i = 0; i < src_len; ++i)
733             dst[i + num_zeroes] = src[src_len - 1 - i];
734         }
735       } else {
736         // Little endian destination, so we lead the value bytes
737         if (m_byte_order == eByteOrderBig) {
738           for (uint32_t i = 0; i < src_len; ++i)
739             dst[i] = src[src_len - 1 - i];
740         } else {
741           ::memcpy(dst, src, src_len);
742         }
743         // And zero the rest...
744         if (num_zeroes > 0)
745           ::memset(dst + src_len, 0, num_zeroes);
746       }
747       return src_len;
748     } else {
749       // We are only copying some of the value from src into dst..
750 
751       if (dst_byte_order == eByteOrderBig) {
752         // Big endian dst
753         if (m_byte_order == eByteOrderBig) {
754           // Big endian dst, with big endian src
755           ::memcpy(dst, src + (src_len - dst_len), dst_len);
756         } else {
757           // Big endian dst, with little endian src
758           for (uint32_t i = 0; i < dst_len; ++i)
759             dst[i] = src[dst_len - 1 - i];
760         }
761       } else {
762         // Little endian dst
763         if (m_byte_order == eByteOrderBig) {
764           // Little endian dst, with big endian src
765           for (uint32_t i = 0; i < dst_len; ++i)
766             dst[i] = src[src_len - 1 - i];
767         } else {
768           // Little endian dst, with big endian src
769           ::memcpy(dst, src, dst_len);
770         }
771       }
772       return dst_len;
773     }
774   }
775   return 0;
776 }
777 
778 // Extracts a variable length NULL terminated C string from the data at the
779 // offset pointed to by "offset_ptr".  The "offset_ptr" will be updated with
780 // the offset of the byte that follows the NULL terminator byte.
781 //
782 // If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
783 // non-zero and there aren't enough available bytes, nullptr will be returned
784 // and "offset_ptr" will not be updated.
785 const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
786   const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
787   // Already at the end of the data.
788   if (!start)
789     return nullptr;
790 
791   const char *end = reinterpret_cast<const char *>(m_end);
792 
793   // Check all bytes for a null terminator that terminates a C string.
794   const char *terminator_or_end = std::find(start, end, '\0');
795 
796   // We didn't find a null terminator, so return nullptr to indicate that there
797   // is no valid C string at that offset.
798   if (terminator_or_end == end)
799     return nullptr;
800 
801   // Update offset_ptr for the caller to point to the data behind the
802   // terminator (which is 1 byte long).
803   *offset_ptr += (terminator_or_end - start + 1UL);
804   return start;
805 }
806 
807 // Extracts a NULL terminated C string from the fixed length field of length
808 // "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
809 // updated with the offset of the byte that follows the fixed length field.
810 //
811 // If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
812 // plus the length of the field is out of bounds, or if the field does not
813 // contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
814 // will not be updated.
815 const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
816   const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
817   if (cstr != nullptr) {
818     if (memchr(cstr, '\0', len) == nullptr) {
819       return nullptr;
820     }
821     *offset_ptr += len;
822     return cstr;
823   }
824   return nullptr;
825 }
826 
827 // Peeks at a string in the contained data. No verification is done to make
828 // sure the entire string lies within the bounds of this object's data, only
829 // "offset" is verified to be a valid offset.
830 //
831 // Returns a valid C string pointer if "offset" is a valid offset in this
832 // object's data, else nullptr is returned.
833 const char *DataExtractor::PeekCStr(offset_t offset) const {
834   return reinterpret_cast<const char *>(PeekData(offset, 1));
835 }
836 
837 // Extracts an unsigned LEB128 number from this object's data starting at the
838 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
839 // will be updated with the offset of the byte following the last extracted
840 // byte.
841 //
842 // Returned the extracted integer value.
843 uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
844   const uint8_t *src = PeekData(*offset_ptr, 1);
845   if (src == nullptr)
846     return 0;
847 
848   unsigned byte_count = 0;
849   uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
850   *offset_ptr += byte_count;
851   return result;
852 }
853 
854 // Extracts an signed LEB128 number from this object's data starting at the
855 // offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
856 // will be updated with the offset of the byte following the last extracted
857 // byte.
858 //
859 // Returned the extracted integer value.
860 int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
861   const uint8_t *src = PeekData(*offset_ptr, 1);
862   if (src == nullptr)
863     return 0;
864 
865   unsigned byte_count = 0;
866   int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
867   *offset_ptr += byte_count;
868   return result;
869 }
870 
871 // Skips a ULEB128 number (signed or unsigned) from this object's data starting
872 // at the offset pointed to by "offset_ptr". The offset pointed to by
873 // "offset_ptr" will be updated with the offset of the byte following the last
874 // extracted byte.
875 //
876 // Returns the number of bytes consumed during the extraction.
877 uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
878   uint32_t bytes_consumed = 0;
879   const uint8_t *src = PeekData(*offset_ptr, 1);
880   if (src == nullptr)
881     return 0;
882 
883   const uint8_t *end = m_end;
884 
885   if (src < end) {
886     const uint8_t *src_pos = src;
887     while ((src_pos < end) && (*src_pos++ & 0x80))
888       ++bytes_consumed;
889     *offset_ptr += src_pos - src;
890   }
891   return bytes_consumed;
892 }
893 
894 // Dumps bytes from this object's data to the stream "s" starting
895 // "start_offset" bytes into this data, and ending with the byte before
896 // "end_offset". "base_addr" will be added to the offset into the dumped data
897 // when showing the offset into the data in the output information.
898 // "num_per_line" objects of type "type" will be dumped with the option to
899 // override the format for each object with "type_format". "type_format" is a
900 // printf style formatting string. If "type_format" is nullptr, then an
901 // appropriate format string will be used for the supplied "type". If the
902 // stream "s" is nullptr, then the output will be send to Log().
903 lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
904                                        offset_t length, uint64_t base_addr,
905                                        uint32_t num_per_line,
906                                        DataExtractor::Type type) const {
907   if (log == nullptr)
908     return start_offset;
909 
910   offset_t offset;
911   offset_t end_offset;
912   uint32_t count;
913   StreamString sstr;
914   for (offset = start_offset, end_offset = offset + length, count = 0;
915        ValidOffset(offset) && offset < end_offset; ++count) {
916     if ((count % num_per_line) == 0) {
917       // Print out any previous string
918       if (sstr.GetSize() > 0) {
919         log->PutString(sstr.GetString());
920         sstr.Clear();
921       }
922       // Reset string offset and fill the current line string with address:
923       if (base_addr != LLDB_INVALID_ADDRESS)
924         sstr.Printf("0x%8.8" PRIx64 ":",
925                     static_cast<uint64_t>(base_addr + (offset - start_offset)));
926     }
927 
928     switch (type) {
929     case TypeUInt8:
930       sstr.Printf(" %2.2x", GetU8(&offset));
931       break;
932     case TypeChar: {
933       char ch = GetU8(&offset);
934       sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
935     } break;
936     case TypeUInt16:
937       sstr.Printf(" %4.4x", GetU16(&offset));
938       break;
939     case TypeUInt32:
940       sstr.Printf(" %8.8x", GetU32(&offset));
941       break;
942     case TypeUInt64:
943       sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
944       break;
945     case TypePointer:
946       sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
947       break;
948     case TypeULEB128:
949       sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
950       break;
951     case TypeSLEB128:
952       sstr.Printf(" %" PRId64, GetSLEB128(&offset));
953       break;
954     }
955   }
956 
957   if (!sstr.Empty())
958     log->PutString(sstr.GetString());
959 
960   return offset; // Return the offset at which we ended up
961 }
962 
963 size_t DataExtractor::Copy(DataExtractor &dest_data) const {
964   if (m_data_sp) {
965     // we can pass along the SP to the data
966     dest_data.SetData(m_data_sp);
967   } else {
968     const uint8_t *base_ptr = m_start;
969     size_t data_size = GetByteSize();
970     dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
971   }
972   return GetByteSize();
973 }
974 
975 bool DataExtractor::Append(DataExtractor &rhs) {
976   if (rhs.GetByteOrder() != GetByteOrder())
977     return false;
978 
979   if (rhs.GetByteSize() == 0)
980     return true;
981 
982   if (GetByteSize() == 0)
983     return (rhs.Copy(*this) > 0);
984 
985   size_t bytes = GetByteSize() + rhs.GetByteSize();
986 
987   DataBufferHeap *buffer_heap_ptr = nullptr;
988   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
989 
990   if (!buffer_sp || buffer_heap_ptr == nullptr)
991     return false;
992 
993   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
994 
995   memcpy(bytes_ptr, GetDataStart(), GetByteSize());
996   memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
997 
998   SetData(buffer_sp);
999 
1000   return true;
1001 }
1002 
1003 bool DataExtractor::Append(void *buf, offset_t length) {
1004   if (buf == nullptr)
1005     return false;
1006 
1007   if (length == 0)
1008     return true;
1009 
1010   size_t bytes = GetByteSize() + length;
1011 
1012   DataBufferHeap *buffer_heap_ptr = nullptr;
1013   DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1014 
1015   if (!buffer_sp || buffer_heap_ptr == nullptr)
1016     return false;
1017 
1018   uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1019 
1020   if (GetByteSize() > 0)
1021     memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1022 
1023   memcpy(bytes_ptr + GetByteSize(), buf, length);
1024 
1025   SetData(buffer_sp);
1026 
1027   return true;
1028 }
1029 
1030 void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1031                              uint64_t max_data) {
1032   if (max_data == 0)
1033     max_data = GetByteSize();
1034   else
1035     max_data = std::min(max_data, GetByteSize());
1036 
1037   llvm::MD5 md5;
1038 
1039   const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1040   md5.update(data);
1041 
1042   llvm::MD5::MD5Result result;
1043   md5.final(result);
1044 
1045   dest.clear();
1046   dest.append(result.begin(), result.end());
1047 }
1048