1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17 
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <optional>
24 #include <utility>
25 
26 namespace llvm {
27 class FoldingSetNodeID;
28 class StringRef;
29 class hash_code;
30 class raw_ostream;
31 struct Align;
32 
33 template <typename T> class SmallVectorImpl;
34 template <typename T> class ArrayRef;
35 template <typename T, typename Enable> struct DenseMapInfo;
36 
37 class APInt;
38 
39 inline APInt operator-(APInt);
40 
41 //===----------------------------------------------------------------------===//
42 //                              APInt Class
43 //===----------------------------------------------------------------------===//
44 
45 /// Class for arbitrary precision integers.
46 ///
47 /// APInt is a functional replacement for common case unsigned integer type like
48 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
49 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
50 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
51 /// and methods to manipulate integer values of any bit-width. It supports both
52 /// the typical integer arithmetic and comparison operations as well as bitwise
53 /// manipulation.
54 ///
55 /// The class has several invariants worth noting:
56 ///   * All bit, byte, and word positions are zero-based.
57 ///   * Once the bit width is set, it doesn't change except by the Truncate,
58 ///     SignExtend, or ZeroExtend operations.
59 ///   * All binary operators must be on APInt instances of the same bit width.
60 ///     Attempting to use these operators on instances with different bit
61 ///     widths will yield an assertion.
62 ///   * The value is stored canonically as an unsigned value. For operations
63 ///     where it makes a difference, there are both signed and unsigned variants
64 ///     of the operation. For example, sdiv and udiv. However, because the bit
65 ///     widths must be the same, operations such as Mul and Add produce the same
66 ///     results regardless of whether the values are interpreted as signed or
67 ///     not.
68 ///   * In general, the class tries to follow the style of computation that LLVM
69 ///     uses in its IR. This simplifies its use for LLVM.
70 ///   * APInt supports zero-bit-width values, but operations that require bits
71 ///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
72 ///     integer).  This means that operations like zero extension and logical
73 ///     shifts are defined, but sign extension and ashr is not.  Zero bit values
74 ///     compare and hash equal to themselves, and countLeadingZeros returns 0.
75 ///
76 class [[nodiscard]] APInt {
77 public:
78   typedef uint64_t WordType;
79 
80   /// This enum is used to hold the constants we needed for APInt.
81   enum : unsigned {
82     /// Byte size of a word.
83     APINT_WORD_SIZE = sizeof(WordType),
84     /// Bits in a word.
85     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
86   };
87 
88   enum class Rounding {
89     DOWN,
90     TOWARD_ZERO,
91     UP,
92   };
93 
94   static constexpr WordType WORDTYPE_MAX = ~WordType(0);
95 
96   /// \name Constructors
97   /// @{
98 
99   /// Create a new APInt of numBits width, initialized as val.
100   ///
101   /// If isSigned is true then val is treated as if it were a signed value
102   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
103   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
104   /// the range of val are zero filled).
105   ///
106   /// \param numBits the bit width of the constructed APInt
107   /// \param val the initial value of the APInt
108   /// \param isSigned how to treat signedness of val
109   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
110       : BitWidth(numBits) {
111     if (isSingleWord()) {
112       U.VAL = val;
113       clearUnusedBits();
114     } else {
115       initSlowCase(val, isSigned);
116     }
117   }
118 
119   /// Construct an APInt of numBits width, initialized as bigVal[].
120   ///
121   /// Note that bigVal.size() can be smaller or larger than the corresponding
122   /// bit width but any extraneous bits will be dropped.
123   ///
124   /// \param numBits the bit width of the constructed APInt
125   /// \param bigVal a sequence of words to form the initial value of the APInt
126   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
127 
128   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
129   /// deprecated because this constructor is prone to ambiguity with the
130   /// APInt(unsigned, uint64_t, bool) constructor.
131   ///
132   /// If this overload is ever deleted, care should be taken to prevent calls
133   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
134   /// constructor.
135   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
136 
137   /// Construct an APInt from a string representation.
138   ///
139   /// This constructor interprets the string \p str in the given radix. The
140   /// interpretation stops when the first character that is not suitable for the
141   /// radix is encountered, or the end of the string. Acceptable radix values
142   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
143   /// string to require more bits than numBits.
144   ///
145   /// \param numBits the bit width of the constructed APInt
146   /// \param str the string to be interpreted
147   /// \param radix the radix to use for the conversion
148   APInt(unsigned numBits, StringRef str, uint8_t radix);
149 
150   /// Default constructor that creates an APInt with a 1-bit zero value.
151   explicit APInt() { U.VAL = 0; }
152 
153   /// Copy Constructor.
154   APInt(const APInt &that) : BitWidth(that.BitWidth) {
155     if (isSingleWord())
156       U.VAL = that.U.VAL;
157     else
158       initSlowCase(that);
159   }
160 
161   /// Move Constructor.
162   APInt(APInt &&that) : BitWidth(that.BitWidth) {
163     memcpy(&U, &that.U, sizeof(U));
164     that.BitWidth = 0;
165   }
166 
167   /// Destructor.
168   ~APInt() {
169     if (needsCleanup())
170       delete[] U.pVal;
171   }
172 
173   /// @}
174   /// \name Value Generators
175   /// @{
176 
177   /// Get the '0' value for the specified bit-width.
178   static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
179 
180   /// Return an APInt zero bits wide.
181   static APInt getZeroWidth() { return getZero(0); }
182 
183   /// Gets maximum unsigned value of APInt for specific bit width.
184   static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
185 
186   /// Gets maximum signed value of APInt for a specific bit width.
187   static APInt getSignedMaxValue(unsigned numBits) {
188     APInt API = getAllOnes(numBits);
189     API.clearBit(numBits - 1);
190     return API;
191   }
192 
193   /// Gets minimum unsigned value of APInt for a specific bit width.
194   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
195 
196   /// Gets minimum signed value of APInt for a specific bit width.
197   static APInt getSignedMinValue(unsigned numBits) {
198     APInt API(numBits, 0);
199     API.setBit(numBits - 1);
200     return API;
201   }
202 
203   /// Get the SignMask for a specific bit width.
204   ///
205   /// This is just a wrapper function of getSignedMinValue(), and it helps code
206   /// readability when we want to get a SignMask.
207   static APInt getSignMask(unsigned BitWidth) {
208     return getSignedMinValue(BitWidth);
209   }
210 
211   /// Return an APInt of a specified width with all bits set.
212   static APInt getAllOnes(unsigned numBits) {
213     return APInt(numBits, WORDTYPE_MAX, true);
214   }
215 
216   /// Return an APInt with exactly one bit set in the result.
217   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
218     APInt Res(numBits, 0);
219     Res.setBit(BitNo);
220     return Res;
221   }
222 
223   /// Get a value with a block of bits set.
224   ///
225   /// Constructs an APInt value that has a contiguous range of bits set. The
226   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
227   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
228   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
229   /// \p hiBit.
230   ///
231   /// \param numBits the intended bit width of the result
232   /// \param loBit the index of the lowest bit set.
233   /// \param hiBit the index of the highest bit set.
234   ///
235   /// \returns An APInt value with the requested bits set.
236   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
237     APInt Res(numBits, 0);
238     Res.setBits(loBit, hiBit);
239     return Res;
240   }
241 
242   /// Wrap version of getBitsSet.
243   /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
244   /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
245   /// with parameters (32, 28, 4), you would get 0xF000000F.
246   /// If \p hiBit is equal to \p loBit, you would get a result with all bits
247   /// set.
248   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
249                                   unsigned hiBit) {
250     APInt Res(numBits, 0);
251     Res.setBitsWithWrap(loBit, hiBit);
252     return Res;
253   }
254 
255   /// Constructs an APInt value that has a contiguous range of bits set. The
256   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
257   /// bits will be zero. For example, with parameters(32, 12) you would get
258   /// 0xFFFFF000.
259   ///
260   /// \param numBits the intended bit width of the result
261   /// \param loBit the index of the lowest bit to set.
262   ///
263   /// \returns An APInt value with the requested bits set.
264   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
265     APInt Res(numBits, 0);
266     Res.setBitsFrom(loBit);
267     return Res;
268   }
269 
270   /// Constructs an APInt value that has the top hiBitsSet bits set.
271   ///
272   /// \param numBits the bitwidth of the result
273   /// \param hiBitsSet the number of high-order bits set in the result.
274   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
275     APInt Res(numBits, 0);
276     Res.setHighBits(hiBitsSet);
277     return Res;
278   }
279 
280   /// Constructs an APInt value that has the bottom loBitsSet bits set.
281   ///
282   /// \param numBits the bitwidth of the result
283   /// \param loBitsSet the number of low-order bits set in the result.
284   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
285     APInt Res(numBits, 0);
286     Res.setLowBits(loBitsSet);
287     return Res;
288   }
289 
290   /// Return a value containing V broadcasted over NewLen bits.
291   static APInt getSplat(unsigned NewLen, const APInt &V);
292 
293   /// @}
294   /// \name Value Tests
295   /// @{
296 
297   /// Determine if this APInt just has one word to store value.
298   ///
299   /// \returns true if the number of bits <= 64, false otherwise.
300   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
301 
302   /// Determine sign of this APInt.
303   ///
304   /// This tests the high bit of this APInt to determine if it is set.
305   ///
306   /// \returns true if this APInt is negative, false otherwise
307   bool isNegative() const { return (*this)[BitWidth - 1]; }
308 
309   /// Determine if this APInt Value is non-negative (>= 0)
310   ///
311   /// This tests the high bit of the APInt to determine if it is unset.
312   bool isNonNegative() const { return !isNegative(); }
313 
314   /// Determine if sign bit of this APInt is set.
315   ///
316   /// This tests the high bit of this APInt to determine if it is set.
317   ///
318   /// \returns true if this APInt has its sign bit set, false otherwise.
319   bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
320 
321   /// Determine if sign bit of this APInt is clear.
322   ///
323   /// This tests the high bit of this APInt to determine if it is clear.
324   ///
325   /// \returns true if this APInt has its sign bit clear, false otherwise.
326   bool isSignBitClear() const { return !isSignBitSet(); }
327 
328   /// Determine if this APInt Value is positive.
329   ///
330   /// This tests if the value of this APInt is positive (> 0). Note
331   /// that 0 is not a positive value.
332   ///
333   /// \returns true if this APInt is positive.
334   bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
335 
336   /// Determine if this APInt Value is non-positive (<= 0).
337   ///
338   /// \returns true if this APInt is non-positive.
339   bool isNonPositive() const { return !isStrictlyPositive(); }
340 
341   /// Determine if this APInt Value only has the specified bit set.
342   ///
343   /// \returns true if this APInt only has the specified bit set.
344   bool isOneBitSet(unsigned BitNo) const {
345     return (*this)[BitNo] && popcount() == 1;
346   }
347 
348   /// Determine if all bits are set.  This is true for zero-width values.
349   bool isAllOnes() const {
350     if (BitWidth == 0)
351       return true;
352     if (isSingleWord())
353       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
354     return countTrailingOnesSlowCase() == BitWidth;
355   }
356 
357   /// Determine if this value is zero, i.e. all bits are clear.
358   bool isZero() const {
359     if (isSingleWord())
360       return U.VAL == 0;
361     return countLeadingZerosSlowCase() == BitWidth;
362   }
363 
364   /// Determine if this is a value of 1.
365   ///
366   /// This checks to see if the value of this APInt is one.
367   bool isOne() const {
368     if (isSingleWord())
369       return U.VAL == 1;
370     return countLeadingZerosSlowCase() == BitWidth - 1;
371   }
372 
373   /// Determine if this is the largest unsigned value.
374   ///
375   /// This checks to see if the value of this APInt is the maximum unsigned
376   /// value for the APInt's bit width.
377   bool isMaxValue() const { return isAllOnes(); }
378 
379   /// Determine if this is the largest signed value.
380   ///
381   /// This checks to see if the value of this APInt is the maximum signed
382   /// value for the APInt's bit width.
383   bool isMaxSignedValue() const {
384     if (isSingleWord()) {
385       assert(BitWidth && "zero width values not allowed");
386       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
387     }
388     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
389   }
390 
391   /// Determine if this is the smallest unsigned value.
392   ///
393   /// This checks to see if the value of this APInt is the minimum unsigned
394   /// value for the APInt's bit width.
395   bool isMinValue() const { return isZero(); }
396 
397   /// Determine if this is the smallest signed value.
398   ///
399   /// This checks to see if the value of this APInt is the minimum signed
400   /// value for the APInt's bit width.
401   bool isMinSignedValue() const {
402     if (isSingleWord()) {
403       assert(BitWidth && "zero width values not allowed");
404       return U.VAL == (WordType(1) << (BitWidth - 1));
405     }
406     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
407   }
408 
409   /// Check if this APInt has an N-bits unsigned integer value.
410   bool isIntN(unsigned N) const { return getActiveBits() <= N; }
411 
412   /// Check if this APInt has an N-bits signed integer value.
413   bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
414 
415   /// Check if this APInt's value is a power of two greater than zero.
416   ///
417   /// \returns true if the argument APInt value is a power of two > 0.
418   bool isPowerOf2() const {
419     if (isSingleWord()) {
420       assert(BitWidth && "zero width values not allowed");
421       return isPowerOf2_64(U.VAL);
422     }
423     return countPopulationSlowCase() == 1;
424   }
425 
426   /// Check if this APInt's negated value is a power of two greater than zero.
427   bool isNegatedPowerOf2() const {
428     assert(BitWidth && "zero width values not allowed");
429     if (isNonNegative())
430       return false;
431     // NegatedPowerOf2 - shifted mask in the top bits.
432     unsigned LO = countl_one();
433     unsigned TZ = countr_zero();
434     return (LO + TZ) == BitWidth;
435   }
436 
437   /// Checks if this APInt -interpreted as an address- is aligned to the
438   /// provided value.
439   bool isAligned(Align A) const;
440 
441   /// Check if the APInt's value is returned by getSignMask.
442   ///
443   /// \returns true if this is the value returned by getSignMask.
444   bool isSignMask() const { return isMinSignedValue(); }
445 
446   /// Convert APInt to a boolean value.
447   ///
448   /// This converts the APInt to a boolean value as a test against zero.
449   bool getBoolValue() const { return !isZero(); }
450 
451   /// If this value is smaller than the specified limit, return it, otherwise
452   /// return the limit value.  This causes the value to saturate to the limit.
453   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
454     return ugt(Limit) ? Limit : getZExtValue();
455   }
456 
457   /// Check if the APInt consists of a repeated bit pattern.
458   ///
459   /// e.g. 0x01010101 satisfies isSplat(8).
460   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
461   /// width without remainder.
462   bool isSplat(unsigned SplatSizeInBits) const;
463 
464   /// \returns true if this APInt value is a sequence of \param numBits ones
465   /// starting at the least significant bit with the remainder zero.
466   bool isMask(unsigned numBits) const {
467     assert(numBits != 0 && "numBits must be non-zero");
468     assert(numBits <= BitWidth && "numBits out of range");
469     if (isSingleWord())
470       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
471     unsigned Ones = countTrailingOnesSlowCase();
472     return (numBits == Ones) &&
473            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
474   }
475 
476   /// \returns true if this APInt is a non-empty sequence of ones starting at
477   /// the least significant bit with the remainder zero.
478   /// Ex. isMask(0x0000FFFFU) == true.
479   bool isMask() const {
480     if (isSingleWord())
481       return isMask_64(U.VAL);
482     unsigned Ones = countTrailingOnesSlowCase();
483     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
484   }
485 
486   /// Return true if this APInt value contains a non-empty sequence of ones with
487   /// the remainder zero.
488   bool isShiftedMask() const {
489     if (isSingleWord())
490       return isShiftedMask_64(U.VAL);
491     unsigned Ones = countPopulationSlowCase();
492     unsigned LeadZ = countLeadingZerosSlowCase();
493     return (Ones + LeadZ + countr_zero()) == BitWidth;
494   }
495 
496   /// Return true if this APInt value contains a non-empty sequence of ones with
497   /// the remainder zero. If true, \p MaskIdx will specify the index of the
498   /// lowest set bit and \p MaskLen is updated to specify the length of the
499   /// mask, else neither are updated.
500   bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const {
501     if (isSingleWord())
502       return isShiftedMask_64(U.VAL, MaskIdx, MaskLen);
503     unsigned Ones = countPopulationSlowCase();
504     unsigned LeadZ = countLeadingZerosSlowCase();
505     unsigned TrailZ = countTrailingZerosSlowCase();
506     if ((Ones + LeadZ + TrailZ) != BitWidth)
507       return false;
508     MaskLen = Ones;
509     MaskIdx = TrailZ;
510     return true;
511   }
512 
513   /// Compute an APInt containing numBits highbits from this APInt.
514   ///
515   /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
516   /// bits and right shift to the least significant bit.
517   ///
518   /// \returns the high "numBits" bits of this APInt.
519   APInt getHiBits(unsigned numBits) const;
520 
521   /// Compute an APInt containing numBits lowbits from this APInt.
522   ///
523   /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
524   /// bits.
525   ///
526   /// \returns the low "numBits" bits of this APInt.
527   APInt getLoBits(unsigned numBits) const;
528 
529   /// Determine if two APInts have the same value, after zero-extending
530   /// one of them (if needed!) to ensure that the bit-widths match.
531   static bool isSameValue(const APInt &I1, const APInt &I2) {
532     if (I1.getBitWidth() == I2.getBitWidth())
533       return I1 == I2;
534 
535     if (I1.getBitWidth() > I2.getBitWidth())
536       return I1 == I2.zext(I1.getBitWidth());
537 
538     return I1.zext(I2.getBitWidth()) == I2;
539   }
540 
541   /// Overload to compute a hash_code for an APInt value.
542   friend hash_code hash_value(const APInt &Arg);
543 
544   /// This function returns a pointer to the internal storage of the APInt.
545   /// This is useful for writing out the APInt in binary form without any
546   /// conversions.
547   const uint64_t *getRawData() const {
548     if (isSingleWord())
549       return &U.VAL;
550     return &U.pVal[0];
551   }
552 
553   /// @}
554   /// \name Unary Operators
555   /// @{
556 
557   /// Postfix increment operator.  Increment *this by 1.
558   ///
559   /// \returns a new APInt value representing the original value of *this.
560   APInt operator++(int) {
561     APInt API(*this);
562     ++(*this);
563     return API;
564   }
565 
566   /// Prefix increment operator.
567   ///
568   /// \returns *this incremented by one
569   APInt &operator++();
570 
571   /// Postfix decrement operator. Decrement *this by 1.
572   ///
573   /// \returns a new APInt value representing the original value of *this.
574   APInt operator--(int) {
575     APInt API(*this);
576     --(*this);
577     return API;
578   }
579 
580   /// Prefix decrement operator.
581   ///
582   /// \returns *this decremented by one.
583   APInt &operator--();
584 
585   /// Logical negation operation on this APInt returns true if zero, like normal
586   /// integers.
587   bool operator!() const { return isZero(); }
588 
589   /// @}
590   /// \name Assignment Operators
591   /// @{
592 
593   /// Copy assignment operator.
594   ///
595   /// \returns *this after assignment of RHS.
596   APInt &operator=(const APInt &RHS) {
597     // The common case (both source or dest being inline) doesn't require
598     // allocation or deallocation.
599     if (isSingleWord() && RHS.isSingleWord()) {
600       U.VAL = RHS.U.VAL;
601       BitWidth = RHS.BitWidth;
602       return *this;
603     }
604 
605     assignSlowCase(RHS);
606     return *this;
607   }
608 
609   /// Move assignment operator.
610   APInt &operator=(APInt &&that) {
611 #ifdef EXPENSIVE_CHECKS
612     // Some std::shuffle implementations still do self-assignment.
613     if (this == &that)
614       return *this;
615 #endif
616     assert(this != &that && "Self-move not supported");
617     if (!isSingleWord())
618       delete[] U.pVal;
619 
620     // Use memcpy so that type based alias analysis sees both VAL and pVal
621     // as modified.
622     memcpy(&U, &that.U, sizeof(U));
623 
624     BitWidth = that.BitWidth;
625     that.BitWidth = 0;
626     return *this;
627   }
628 
629   /// Assignment operator.
630   ///
631   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
632   /// the bit width, the excess bits are truncated. If the bit width is larger
633   /// than 64, the value is zero filled in the unspecified high order bits.
634   ///
635   /// \returns *this after assignment of RHS value.
636   APInt &operator=(uint64_t RHS) {
637     if (isSingleWord()) {
638       U.VAL = RHS;
639       return clearUnusedBits();
640     }
641     U.pVal[0] = RHS;
642     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
643     return *this;
644   }
645 
646   /// Bitwise AND assignment operator.
647   ///
648   /// Performs a bitwise AND operation on this APInt and RHS. The result is
649   /// assigned to *this.
650   ///
651   /// \returns *this after ANDing with RHS.
652   APInt &operator&=(const APInt &RHS) {
653     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
654     if (isSingleWord())
655       U.VAL &= RHS.U.VAL;
656     else
657       andAssignSlowCase(RHS);
658     return *this;
659   }
660 
661   /// Bitwise AND assignment operator.
662   ///
663   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
664   /// logically zero-extended or truncated to match the bit-width of
665   /// the LHS.
666   APInt &operator&=(uint64_t RHS) {
667     if (isSingleWord()) {
668       U.VAL &= RHS;
669       return *this;
670     }
671     U.pVal[0] &= RHS;
672     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
673     return *this;
674   }
675 
676   /// Bitwise OR assignment operator.
677   ///
678   /// Performs a bitwise OR operation on this APInt and RHS. The result is
679   /// assigned *this;
680   ///
681   /// \returns *this after ORing with RHS.
682   APInt &operator|=(const APInt &RHS) {
683     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
684     if (isSingleWord())
685       U.VAL |= RHS.U.VAL;
686     else
687       orAssignSlowCase(RHS);
688     return *this;
689   }
690 
691   /// Bitwise OR assignment operator.
692   ///
693   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
694   /// logically zero-extended or truncated to match the bit-width of
695   /// the LHS.
696   APInt &operator|=(uint64_t RHS) {
697     if (isSingleWord()) {
698       U.VAL |= RHS;
699       return clearUnusedBits();
700     }
701     U.pVal[0] |= RHS;
702     return *this;
703   }
704 
705   /// Bitwise XOR assignment operator.
706   ///
707   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
708   /// assigned to *this.
709   ///
710   /// \returns *this after XORing with RHS.
711   APInt &operator^=(const APInt &RHS) {
712     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
713     if (isSingleWord())
714       U.VAL ^= RHS.U.VAL;
715     else
716       xorAssignSlowCase(RHS);
717     return *this;
718   }
719 
720   /// Bitwise XOR assignment operator.
721   ///
722   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
723   /// logically zero-extended or truncated to match the bit-width of
724   /// the LHS.
725   APInt &operator^=(uint64_t RHS) {
726     if (isSingleWord()) {
727       U.VAL ^= RHS;
728       return clearUnusedBits();
729     }
730     U.pVal[0] ^= RHS;
731     return *this;
732   }
733 
734   /// Multiplication assignment operator.
735   ///
736   /// Multiplies this APInt by RHS and assigns the result to *this.
737   ///
738   /// \returns *this
739   APInt &operator*=(const APInt &RHS);
740   APInt &operator*=(uint64_t RHS);
741 
742   /// Addition assignment operator.
743   ///
744   /// Adds RHS to *this and assigns the result to *this.
745   ///
746   /// \returns *this
747   APInt &operator+=(const APInt &RHS);
748   APInt &operator+=(uint64_t RHS);
749 
750   /// Subtraction assignment operator.
751   ///
752   /// Subtracts RHS from *this and assigns the result to *this.
753   ///
754   /// \returns *this
755   APInt &operator-=(const APInt &RHS);
756   APInt &operator-=(uint64_t RHS);
757 
758   /// Left-shift assignment function.
759   ///
760   /// Shifts *this left by shiftAmt and assigns the result to *this.
761   ///
762   /// \returns *this after shifting left by ShiftAmt
763   APInt &operator<<=(unsigned ShiftAmt) {
764     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
765     if (isSingleWord()) {
766       if (ShiftAmt == BitWidth)
767         U.VAL = 0;
768       else
769         U.VAL <<= ShiftAmt;
770       return clearUnusedBits();
771     }
772     shlSlowCase(ShiftAmt);
773     return *this;
774   }
775 
776   /// Left-shift assignment function.
777   ///
778   /// Shifts *this left by shiftAmt and assigns the result to *this.
779   ///
780   /// \returns *this after shifting left by ShiftAmt
781   APInt &operator<<=(const APInt &ShiftAmt);
782 
783   /// @}
784   /// \name Binary Operators
785   /// @{
786 
787   /// Multiplication operator.
788   ///
789   /// Multiplies this APInt by RHS and returns the result.
790   APInt operator*(const APInt &RHS) const;
791 
792   /// Left logical shift operator.
793   ///
794   /// Shifts this APInt left by \p Bits and returns the result.
795   APInt operator<<(unsigned Bits) const { return shl(Bits); }
796 
797   /// Left logical shift operator.
798   ///
799   /// Shifts this APInt left by \p Bits and returns the result.
800   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
801 
802   /// Arithmetic right-shift function.
803   ///
804   /// Arithmetic right-shift this APInt by shiftAmt.
805   APInt ashr(unsigned ShiftAmt) const {
806     APInt R(*this);
807     R.ashrInPlace(ShiftAmt);
808     return R;
809   }
810 
811   /// Arithmetic right-shift this APInt by ShiftAmt in place.
812   void ashrInPlace(unsigned ShiftAmt) {
813     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
814     if (isSingleWord()) {
815       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
816       if (ShiftAmt == BitWidth)
817         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
818       else
819         U.VAL = SExtVAL >> ShiftAmt;
820       clearUnusedBits();
821       return;
822     }
823     ashrSlowCase(ShiftAmt);
824   }
825 
826   /// Logical right-shift function.
827   ///
828   /// Logical right-shift this APInt by shiftAmt.
829   APInt lshr(unsigned shiftAmt) const {
830     APInt R(*this);
831     R.lshrInPlace(shiftAmt);
832     return R;
833   }
834 
835   /// Logical right-shift this APInt by ShiftAmt in place.
836   void lshrInPlace(unsigned ShiftAmt) {
837     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
838     if (isSingleWord()) {
839       if (ShiftAmt == BitWidth)
840         U.VAL = 0;
841       else
842         U.VAL >>= ShiftAmt;
843       return;
844     }
845     lshrSlowCase(ShiftAmt);
846   }
847 
848   /// Left-shift function.
849   ///
850   /// Left-shift this APInt by shiftAmt.
851   APInt shl(unsigned shiftAmt) const {
852     APInt R(*this);
853     R <<= shiftAmt;
854     return R;
855   }
856 
857   /// relative logical shift right
858   APInt relativeLShr(int RelativeShift) const {
859     return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
860   }
861 
862   /// relative logical shift left
863   APInt relativeLShl(int RelativeShift) const {
864     return relativeLShr(-RelativeShift);
865   }
866 
867   /// relative arithmetic shift right
868   APInt relativeAShr(int RelativeShift) const {
869     return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
870   }
871 
872   /// relative arithmetic shift left
873   APInt relativeAShl(int RelativeShift) const {
874     return relativeAShr(-RelativeShift);
875   }
876 
877   /// Rotate left by rotateAmt.
878   APInt rotl(unsigned rotateAmt) const;
879 
880   /// Rotate right by rotateAmt.
881   APInt rotr(unsigned rotateAmt) const;
882 
883   /// Arithmetic right-shift function.
884   ///
885   /// Arithmetic right-shift this APInt by shiftAmt.
886   APInt ashr(const APInt &ShiftAmt) const {
887     APInt R(*this);
888     R.ashrInPlace(ShiftAmt);
889     return R;
890   }
891 
892   /// Arithmetic right-shift this APInt by shiftAmt in place.
893   void ashrInPlace(const APInt &shiftAmt);
894 
895   /// Logical right-shift function.
896   ///
897   /// Logical right-shift this APInt by shiftAmt.
898   APInt lshr(const APInt &ShiftAmt) const {
899     APInt R(*this);
900     R.lshrInPlace(ShiftAmt);
901     return R;
902   }
903 
904   /// Logical right-shift this APInt by ShiftAmt in place.
905   void lshrInPlace(const APInt &ShiftAmt);
906 
907   /// Left-shift function.
908   ///
909   /// Left-shift this APInt by shiftAmt.
910   APInt shl(const APInt &ShiftAmt) const {
911     APInt R(*this);
912     R <<= ShiftAmt;
913     return R;
914   }
915 
916   /// Rotate left by rotateAmt.
917   APInt rotl(const APInt &rotateAmt) const;
918 
919   /// Rotate right by rotateAmt.
920   APInt rotr(const APInt &rotateAmt) const;
921 
922   /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
923   /// equivalent to:
924   ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
925   APInt concat(const APInt &NewLSB) const {
926     /// If the result will be small, then both the merged values are small.
927     unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
928     if (NewWidth <= APINT_BITS_PER_WORD)
929       return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
930     return concatSlowCase(NewLSB);
931   }
932 
933   /// Unsigned division operation.
934   ///
935   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
936   /// RHS are treated as unsigned quantities for purposes of this division.
937   ///
938   /// \returns a new APInt value containing the division result, rounded towards
939   /// zero.
940   APInt udiv(const APInt &RHS) const;
941   APInt udiv(uint64_t RHS) const;
942 
943   /// Signed division function for APInt.
944   ///
945   /// Signed divide this APInt by APInt RHS.
946   ///
947   /// The result is rounded towards zero.
948   APInt sdiv(const APInt &RHS) const;
949   APInt sdiv(int64_t RHS) const;
950 
951   /// Unsigned remainder operation.
952   ///
953   /// Perform an unsigned remainder operation on this APInt with RHS being the
954   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
955   /// of this operation.
956   ///
957   /// \returns a new APInt value containing the remainder result
958   APInt urem(const APInt &RHS) const;
959   uint64_t urem(uint64_t RHS) const;
960 
961   /// Function for signed remainder operation.
962   ///
963   /// Signed remainder operation on APInt.
964   ///
965   /// Note that this is a true remainder operation and not a modulo operation
966   /// because the sign follows the sign of the dividend which is *this.
967   APInt srem(const APInt &RHS) const;
968   int64_t srem(int64_t RHS) const;
969 
970   /// Dual division/remainder interface.
971   ///
972   /// Sometimes it is convenient to divide two APInt values and obtain both the
973   /// quotient and remainder. This function does both operations in the same
974   /// computation making it a little more efficient. The pair of input arguments
975   /// may overlap with the pair of output arguments. It is safe to call
976   /// udivrem(X, Y, X, Y), for example.
977   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
978                       APInt &Remainder);
979   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
980                       uint64_t &Remainder);
981 
982   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
983                       APInt &Remainder);
984   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
985                       int64_t &Remainder);
986 
987   // Operations that return overflow indicators.
988   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
989   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
990   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
991   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
992   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
993   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
994   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
995   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
996   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
997   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
998   APInt ushl_ov(unsigned Amt, bool &Overflow) const;
999 
1000   // Operations that saturate
1001   APInt sadd_sat(const APInt &RHS) const;
1002   APInt uadd_sat(const APInt &RHS) const;
1003   APInt ssub_sat(const APInt &RHS) const;
1004   APInt usub_sat(const APInt &RHS) const;
1005   APInt smul_sat(const APInt &RHS) const;
1006   APInt umul_sat(const APInt &RHS) const;
1007   APInt sshl_sat(const APInt &RHS) const;
1008   APInt sshl_sat(unsigned RHS) const;
1009   APInt ushl_sat(const APInt &RHS) const;
1010   APInt ushl_sat(unsigned RHS) const;
1011 
1012   /// Array-indexing support.
1013   ///
1014   /// \returns the bit value at bitPosition
1015   bool operator[](unsigned bitPosition) const {
1016     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1017     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1018   }
1019 
1020   /// @}
1021   /// \name Comparison Operators
1022   /// @{
1023 
1024   /// Equality operator.
1025   ///
1026   /// Compares this APInt with RHS for the validity of the equality
1027   /// relationship.
1028   bool operator==(const APInt &RHS) const {
1029     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1030     if (isSingleWord())
1031       return U.VAL == RHS.U.VAL;
1032     return equalSlowCase(RHS);
1033   }
1034 
1035   /// Equality operator.
1036   ///
1037   /// Compares this APInt with a uint64_t for the validity of the equality
1038   /// relationship.
1039   ///
1040   /// \returns true if *this == Val
1041   bool operator==(uint64_t Val) const {
1042     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1043   }
1044 
1045   /// Equality comparison.
1046   ///
1047   /// Compares this APInt with RHS for the validity of the equality
1048   /// relationship.
1049   ///
1050   /// \returns true if *this == Val
1051   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1052 
1053   /// Inequality operator.
1054   ///
1055   /// Compares this APInt with RHS for the validity of the inequality
1056   /// relationship.
1057   ///
1058   /// \returns true if *this != Val
1059   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1060 
1061   /// Inequality operator.
1062   ///
1063   /// Compares this APInt with a uint64_t for the validity of the inequality
1064   /// relationship.
1065   ///
1066   /// \returns true if *this != Val
1067   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1068 
1069   /// Inequality comparison
1070   ///
1071   /// Compares this APInt with RHS for the validity of the inequality
1072   /// relationship.
1073   ///
1074   /// \returns true if *this != Val
1075   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1076 
1077   /// Unsigned less than comparison
1078   ///
1079   /// Regards both *this and RHS as unsigned quantities and compares them for
1080   /// the validity of the less-than relationship.
1081   ///
1082   /// \returns true if *this < RHS when both are considered unsigned.
1083   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1084 
1085   /// Unsigned less than comparison
1086   ///
1087   /// Regards both *this as an unsigned quantity and compares it with RHS for
1088   /// the validity of the less-than relationship.
1089   ///
1090   /// \returns true if *this < RHS when considered unsigned.
1091   bool ult(uint64_t RHS) const {
1092     // Only need to check active bits if not a single word.
1093     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1094   }
1095 
1096   /// Signed less than comparison
1097   ///
1098   /// Regards both *this and RHS as signed quantities and compares them for
1099   /// validity of the less-than relationship.
1100   ///
1101   /// \returns true if *this < RHS when both are considered signed.
1102   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1103 
1104   /// Signed less than comparison
1105   ///
1106   /// Regards both *this as a signed quantity and compares it with RHS for
1107   /// the validity of the less-than relationship.
1108   ///
1109   /// \returns true if *this < RHS when considered signed.
1110   bool slt(int64_t RHS) const {
1111     return (!isSingleWord() && getSignificantBits() > 64)
1112                ? isNegative()
1113                : getSExtValue() < RHS;
1114   }
1115 
1116   /// Unsigned less or equal comparison
1117   ///
1118   /// Regards both *this and RHS as unsigned quantities and compares them for
1119   /// validity of the less-or-equal relationship.
1120   ///
1121   /// \returns true if *this <= RHS when both are considered unsigned.
1122   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1123 
1124   /// Unsigned less or equal comparison
1125   ///
1126   /// Regards both *this as an unsigned quantity and compares it with RHS for
1127   /// the validity of the less-or-equal relationship.
1128   ///
1129   /// \returns true if *this <= RHS when considered unsigned.
1130   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1131 
1132   /// Signed less or equal comparison
1133   ///
1134   /// Regards both *this and RHS as signed quantities and compares them for
1135   /// validity of the less-or-equal relationship.
1136   ///
1137   /// \returns true if *this <= RHS when both are considered signed.
1138   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1139 
1140   /// Signed less or equal comparison
1141   ///
1142   /// Regards both *this as a signed quantity and compares it with RHS for the
1143   /// validity of the less-or-equal relationship.
1144   ///
1145   /// \returns true if *this <= RHS when considered signed.
1146   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1147 
1148   /// Unsigned greater than comparison
1149   ///
1150   /// Regards both *this and RHS as unsigned quantities and compares them for
1151   /// the validity of the greater-than relationship.
1152   ///
1153   /// \returns true if *this > RHS when both are considered unsigned.
1154   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1155 
1156   /// Unsigned greater than comparison
1157   ///
1158   /// Regards both *this as an unsigned quantity and compares it with RHS for
1159   /// the validity of the greater-than relationship.
1160   ///
1161   /// \returns true if *this > RHS when considered unsigned.
1162   bool ugt(uint64_t RHS) const {
1163     // Only need to check active bits if not a single word.
1164     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1165   }
1166 
1167   /// Signed greater than comparison
1168   ///
1169   /// Regards both *this and RHS as signed quantities and compares them for the
1170   /// validity of the greater-than relationship.
1171   ///
1172   /// \returns true if *this > RHS when both are considered signed.
1173   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1174 
1175   /// Signed greater than comparison
1176   ///
1177   /// Regards both *this as a signed quantity and compares it with RHS for
1178   /// the validity of the greater-than relationship.
1179   ///
1180   /// \returns true if *this > RHS when considered signed.
1181   bool sgt(int64_t RHS) const {
1182     return (!isSingleWord() && getSignificantBits() > 64)
1183                ? !isNegative()
1184                : getSExtValue() > RHS;
1185   }
1186 
1187   /// Unsigned greater or equal comparison
1188   ///
1189   /// Regards both *this and RHS as unsigned quantities and compares them for
1190   /// validity of the greater-or-equal relationship.
1191   ///
1192   /// \returns true if *this >= RHS when both are considered unsigned.
1193   bool uge(const APInt &RHS) const { return !ult(RHS); }
1194 
1195   /// Unsigned greater or equal comparison
1196   ///
1197   /// Regards both *this as an unsigned quantity and compares it with RHS for
1198   /// the validity of the greater-or-equal relationship.
1199   ///
1200   /// \returns true if *this >= RHS when considered unsigned.
1201   bool uge(uint64_t RHS) const { return !ult(RHS); }
1202 
1203   /// Signed greater or equal comparison
1204   ///
1205   /// Regards both *this and RHS as signed quantities and compares them for
1206   /// validity of the greater-or-equal relationship.
1207   ///
1208   /// \returns true if *this >= RHS when both are considered signed.
1209   bool sge(const APInt &RHS) const { return !slt(RHS); }
1210 
1211   /// Signed greater or equal comparison
1212   ///
1213   /// Regards both *this as a signed quantity and compares it with RHS for
1214   /// the validity of the greater-or-equal relationship.
1215   ///
1216   /// \returns true if *this >= RHS when considered signed.
1217   bool sge(int64_t RHS) const { return !slt(RHS); }
1218 
1219   /// This operation tests if there are any pairs of corresponding bits
1220   /// between this APInt and RHS that are both set.
1221   bool intersects(const APInt &RHS) const {
1222     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1223     if (isSingleWord())
1224       return (U.VAL & RHS.U.VAL) != 0;
1225     return intersectsSlowCase(RHS);
1226   }
1227 
1228   /// This operation checks that all bits set in this APInt are also set in RHS.
1229   bool isSubsetOf(const APInt &RHS) const {
1230     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1231     if (isSingleWord())
1232       return (U.VAL & ~RHS.U.VAL) == 0;
1233     return isSubsetOfSlowCase(RHS);
1234   }
1235 
1236   /// @}
1237   /// \name Resizing Operators
1238   /// @{
1239 
1240   /// Truncate to new width.
1241   ///
1242   /// Truncate the APInt to a specified width. It is an error to specify a width
1243   /// that is greater than the current width.
1244   APInt trunc(unsigned width) const;
1245 
1246   /// Truncate to new width with unsigned saturation.
1247   ///
1248   /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1249   /// the new bitwidth, then return truncated APInt. Else, return max value.
1250   APInt truncUSat(unsigned width) const;
1251 
1252   /// Truncate to new width with signed saturation.
1253   ///
1254   /// If this APInt, treated as signed integer, can be losslessly truncated to
1255   /// the new bitwidth, then return truncated APInt. Else, return either
1256   /// signed min value if the APInt was negative, or signed max value.
1257   APInt truncSSat(unsigned width) const;
1258 
1259   /// Sign extend to a new width.
1260   ///
1261   /// This operation sign extends the APInt to a new width. If the high order
1262   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1263   /// It is an error to specify a width that is less than the
1264   /// current width.
1265   APInt sext(unsigned width) const;
1266 
1267   /// Zero extend to a new width.
1268   ///
1269   /// This operation zero extends the APInt to a new width. The high order bits
1270   /// are filled with 0 bits.  It is an error to specify a width that is less
1271   /// than the current width.
1272   APInt zext(unsigned width) const;
1273 
1274   /// Sign extend or truncate to width
1275   ///
1276   /// Make this APInt have the bit width given by \p width. The value is sign
1277   /// extended, truncated, or left alone to make it that width.
1278   APInt sextOrTrunc(unsigned width) const;
1279 
1280   /// Zero extend or truncate to width
1281   ///
1282   /// Make this APInt have the bit width given by \p width. The value is zero
1283   /// extended, truncated, or left alone to make it that width.
1284   APInt zextOrTrunc(unsigned width) const;
1285 
1286   /// @}
1287   /// \name Bit Manipulation Operators
1288   /// @{
1289 
1290   /// Set every bit to 1.
1291   void setAllBits() {
1292     if (isSingleWord())
1293       U.VAL = WORDTYPE_MAX;
1294     else
1295       // Set all the bits in all the words.
1296       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1297     // Clear the unused ones
1298     clearUnusedBits();
1299   }
1300 
1301   /// Set the given bit to 1 whose position is given as "bitPosition".
1302   void setBit(unsigned BitPosition) {
1303     assert(BitPosition < BitWidth && "BitPosition out of range");
1304     WordType Mask = maskBit(BitPosition);
1305     if (isSingleWord())
1306       U.VAL |= Mask;
1307     else
1308       U.pVal[whichWord(BitPosition)] |= Mask;
1309   }
1310 
1311   /// Set the sign bit to 1.
1312   void setSignBit() { setBit(BitWidth - 1); }
1313 
1314   /// Set a given bit to a given value.
1315   void setBitVal(unsigned BitPosition, bool BitValue) {
1316     if (BitValue)
1317       setBit(BitPosition);
1318     else
1319       clearBit(BitPosition);
1320   }
1321 
1322   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1323   /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1324   /// setBits when \p loBit < \p hiBit.
1325   /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1326   void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1327     assert(hiBit <= BitWidth && "hiBit out of range");
1328     assert(loBit <= BitWidth && "loBit out of range");
1329     if (loBit < hiBit) {
1330       setBits(loBit, hiBit);
1331       return;
1332     }
1333     setLowBits(hiBit);
1334     setHighBits(BitWidth - loBit);
1335   }
1336 
1337   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1338   /// This function handles case when \p loBit <= \p hiBit.
1339   void setBits(unsigned loBit, unsigned hiBit) {
1340     assert(hiBit <= BitWidth && "hiBit out of range");
1341     assert(loBit <= BitWidth && "loBit out of range");
1342     assert(loBit <= hiBit && "loBit greater than hiBit");
1343     if (loBit == hiBit)
1344       return;
1345     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1346       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1347       mask <<= loBit;
1348       if (isSingleWord())
1349         U.VAL |= mask;
1350       else
1351         U.pVal[0] |= mask;
1352     } else {
1353       setBitsSlowCase(loBit, hiBit);
1354     }
1355   }
1356 
1357   /// Set the top bits starting from loBit.
1358   void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1359 
1360   /// Set the bottom loBits bits.
1361   void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1362 
1363   /// Set the top hiBits bits.
1364   void setHighBits(unsigned hiBits) {
1365     return setBits(BitWidth - hiBits, BitWidth);
1366   }
1367 
1368   /// Set every bit to 0.
1369   void clearAllBits() {
1370     if (isSingleWord())
1371       U.VAL = 0;
1372     else
1373       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1374   }
1375 
1376   /// Set a given bit to 0.
1377   ///
1378   /// Set the given bit to 0 whose position is given as "bitPosition".
1379   void clearBit(unsigned BitPosition) {
1380     assert(BitPosition < BitWidth && "BitPosition out of range");
1381     WordType Mask = ~maskBit(BitPosition);
1382     if (isSingleWord())
1383       U.VAL &= Mask;
1384     else
1385       U.pVal[whichWord(BitPosition)] &= Mask;
1386   }
1387 
1388   /// Set bottom loBits bits to 0.
1389   void clearLowBits(unsigned loBits) {
1390     assert(loBits <= BitWidth && "More bits than bitwidth");
1391     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1392     *this &= Keep;
1393   }
1394 
1395   /// Set the sign bit to 0.
1396   void clearSignBit() { clearBit(BitWidth - 1); }
1397 
1398   /// Toggle every bit to its opposite value.
1399   void flipAllBits() {
1400     if (isSingleWord()) {
1401       U.VAL ^= WORDTYPE_MAX;
1402       clearUnusedBits();
1403     } else {
1404       flipAllBitsSlowCase();
1405     }
1406   }
1407 
1408   /// Toggles a given bit to its opposite value.
1409   ///
1410   /// Toggle a given bit to its opposite value whose position is given
1411   /// as "bitPosition".
1412   void flipBit(unsigned bitPosition);
1413 
1414   /// Negate this APInt in place.
1415   void negate() {
1416     flipAllBits();
1417     ++(*this);
1418   }
1419 
1420   /// Insert the bits from a smaller APInt starting at bitPosition.
1421   void insertBits(const APInt &SubBits, unsigned bitPosition);
1422   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1423 
1424   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1425   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1426   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1427 
1428   /// @}
1429   /// \name Value Characterization Functions
1430   /// @{
1431 
1432   /// Return the number of bits in the APInt.
1433   unsigned getBitWidth() const { return BitWidth; }
1434 
1435   /// Get the number of words.
1436   ///
1437   /// Here one word's bitwidth equals to that of uint64_t.
1438   ///
1439   /// \returns the number of words to hold the integer value of this APInt.
1440   unsigned getNumWords() const { return getNumWords(BitWidth); }
1441 
1442   /// Get the number of words.
1443   ///
1444   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1445   ///
1446   /// \returns the number of words to hold the integer value with a given bit
1447   /// width.
1448   static unsigned getNumWords(unsigned BitWidth) {
1449     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1450   }
1451 
1452   /// Compute the number of active bits in the value
1453   ///
1454   /// This function returns the number of active bits which is defined as the
1455   /// bit width minus the number of leading zeros. This is used in several
1456   /// computations to see how "wide" the value is.
1457   unsigned getActiveBits() const { return BitWidth - countl_zero(); }
1458 
1459   /// Compute the number of active words in the value of this APInt.
1460   ///
1461   /// This is used in conjunction with getActiveData to extract the raw value of
1462   /// the APInt.
1463   unsigned getActiveWords() const {
1464     unsigned numActiveBits = getActiveBits();
1465     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1466   }
1467 
1468   /// Get the minimum bit size for this signed APInt
1469   ///
1470   /// Computes the minimum bit width for this APInt while considering it to be a
1471   /// signed (and probably negative) value. If the value is not negative, this
1472   /// function returns the same value as getActiveBits()+1. Otherwise, it
1473   /// returns the smallest bit width that will retain the negative value. For
1474   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1475   /// for -1, this function will always return 1.
1476   unsigned getSignificantBits() const {
1477     return BitWidth - getNumSignBits() + 1;
1478   }
1479 
1480   /// Get zero extended value
1481   ///
1482   /// This method attempts to return the value of this APInt as a zero extended
1483   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1484   /// uint64_t. Otherwise an assertion will result.
1485   uint64_t getZExtValue() const {
1486     if (isSingleWord())
1487       return U.VAL;
1488     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1489     return U.pVal[0];
1490   }
1491 
1492   /// Get zero extended value if possible
1493   ///
1494   /// This method attempts to return the value of this APInt as a zero extended
1495   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1496   /// uint64_t. Otherwise no value is returned.
1497   std::optional<uint64_t> tryZExtValue() const {
1498     return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1499                                    : std::nullopt;
1500   };
1501 
1502   /// Get sign extended value
1503   ///
1504   /// This method attempts to return the value of this APInt as a sign extended
1505   /// int64_t. The bit width must be <= 64 or the value must fit within an
1506   /// int64_t. Otherwise an assertion will result.
1507   int64_t getSExtValue() const {
1508     if (isSingleWord())
1509       return SignExtend64(U.VAL, BitWidth);
1510     assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1511     return int64_t(U.pVal[0]);
1512   }
1513 
1514   /// Get sign extended value if possible
1515   ///
1516   /// This method attempts to return the value of this APInt as a sign extended
1517   /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1518   /// int64_t. Otherwise no value is returned.
1519   std::optional<int64_t> trySExtValue() const {
1520     return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1521                                         : std::nullopt;
1522   };
1523 
1524   /// Get bits required for string value.
1525   ///
1526   /// This method determines how many bits are required to hold the APInt
1527   /// equivalent of the string given by \p str.
1528   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1529 
1530   /// Get the bits that are sufficient to represent the string value. This may
1531   /// over estimate the amount of bits required, but it does not require
1532   /// parsing the value in the string.
1533   static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix);
1534 
1535   /// The APInt version of std::countl_zero.
1536   ///
1537   /// It counts the number of zeros from the most significant bit to the first
1538   /// one bit.
1539   ///
1540   /// \returns BitWidth if the value is zero, otherwise returns the number of
1541   ///   zeros from the most significant bit to the first one bits.
1542   unsigned countl_zero() const {
1543     if (isSingleWord()) {
1544       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1545       return llvm::countl_zero(U.VAL) - unusedBits;
1546     }
1547     return countLeadingZerosSlowCase();
1548   }
1549 
1550   unsigned countLeadingZeros() const { return countl_zero(); }
1551 
1552   /// Count the number of leading one bits.
1553   ///
1554   /// This function is an APInt version of std::countl_one. It counts the number
1555   /// of ones from the most significant bit to the first zero bit.
1556   ///
1557   /// \returns 0 if the high order bit is not set, otherwise returns the number
1558   /// of 1 bits from the most significant to the least
1559   unsigned countl_one() const {
1560     if (isSingleWord()) {
1561       if (LLVM_UNLIKELY(BitWidth == 0))
1562         return 0;
1563       return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1564     }
1565     return countLeadingOnesSlowCase();
1566   }
1567 
1568   unsigned countLeadingOnes() const { return countl_one(); }
1569 
1570   /// Computes the number of leading bits of this APInt that are equal to its
1571   /// sign bit.
1572   unsigned getNumSignBits() const {
1573     return isNegative() ? countl_one() : countl_zero();
1574   }
1575 
1576   /// Count the number of trailing zero bits.
1577   ///
1578   /// This function is an APInt version of std::countr_zero. It counts the
1579   /// number of zeros from the least significant bit to the first set bit.
1580   ///
1581   /// \returns BitWidth if the value is zero, otherwise returns the number of
1582   /// zeros from the least significant bit to the first one bit.
1583   unsigned countr_zero() const {
1584     if (isSingleWord()) {
1585       unsigned TrailingZeros = llvm::countr_zero(U.VAL);
1586       return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1587     }
1588     return countTrailingZerosSlowCase();
1589   }
1590 
1591   unsigned countTrailingZeros() const { return countr_zero(); }
1592 
1593   /// Count the number of trailing one bits.
1594   ///
1595   /// This function is an APInt version of std::countr_one. It counts the number
1596   /// of ones from the least significant bit to the first zero bit.
1597   ///
1598   /// \returns BitWidth if the value is all ones, otherwise returns the number
1599   /// of ones from the least significant bit to the first zero bit.
1600   unsigned countr_one() const {
1601     if (isSingleWord())
1602       return llvm::countr_one(U.VAL);
1603     return countTrailingOnesSlowCase();
1604   }
1605 
1606   unsigned countTrailingOnes() const { return countr_one(); }
1607 
1608   /// Count the number of bits set.
1609   ///
1610   /// This function is an APInt version of std::popcount. It counts the number
1611   /// of 1 bits in the APInt value.
1612   ///
1613   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1614   unsigned popcount() const {
1615     if (isSingleWord())
1616       return llvm::popcount(U.VAL);
1617     return countPopulationSlowCase();
1618   }
1619 
1620   /// @}
1621   /// \name Conversion Functions
1622   /// @{
1623   void print(raw_ostream &OS, bool isSigned) const;
1624 
1625   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1626   /// SmallString. If Radix > 10, UpperCase determine the case of letter
1627   /// digits.
1628   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1629                 bool formatAsCLiteral = false, bool UpperCase = true) const;
1630 
1631   /// Considers the APInt to be unsigned and converts it into a string in the
1632   /// radix given. The radix can be 2, 8, 10 16, or 36.
1633   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1634     toString(Str, Radix, false, false);
1635   }
1636 
1637   /// Considers the APInt to be signed and converts it into a string in the
1638   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1639   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1640     toString(Str, Radix, true, false);
1641   }
1642 
1643   /// \returns a byte-swapped representation of this APInt Value.
1644   APInt byteSwap() const;
1645 
1646   /// \returns the value with the bit representation reversed of this APInt
1647   /// Value.
1648   APInt reverseBits() const;
1649 
1650   /// Converts this APInt to a double value.
1651   double roundToDouble(bool isSigned) const;
1652 
1653   /// Converts this unsigned APInt to a double value.
1654   double roundToDouble() const { return roundToDouble(false); }
1655 
1656   /// Converts this signed APInt to a double value.
1657   double signedRoundToDouble() const { return roundToDouble(true); }
1658 
1659   /// Converts APInt bits to a double
1660   ///
1661   /// The conversion does not do a translation from integer to double, it just
1662   /// re-interprets the bits as a double. Note that it is valid to do this on
1663   /// any bit width. Exactly 64 bits will be translated.
1664   double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); }
1665 
1666   /// Converts APInt bits to a float
1667   ///
1668   /// The conversion does not do a translation from integer to float, it just
1669   /// re-interprets the bits as a float. Note that it is valid to do this on
1670   /// any bit width. Exactly 32 bits will be translated.
1671   float bitsToFloat() const {
1672     return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1673   }
1674 
1675   /// Converts a double to APInt bits.
1676   ///
1677   /// The conversion does not do a translation from double to integer, it just
1678   /// re-interprets the bits of the double.
1679   static APInt doubleToBits(double V) {
1680     return APInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1681   }
1682 
1683   /// Converts a float to APInt bits.
1684   ///
1685   /// The conversion does not do a translation from float to integer, it just
1686   /// re-interprets the bits of the float.
1687   static APInt floatToBits(float V) {
1688     return APInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1689   }
1690 
1691   /// @}
1692   /// \name Mathematics Operations
1693   /// @{
1694 
1695   /// \returns the floor log base 2 of this APInt.
1696   unsigned logBase2() const { return getActiveBits() - 1; }
1697 
1698   /// \returns the ceil log base 2 of this APInt.
1699   unsigned ceilLogBase2() const {
1700     APInt temp(*this);
1701     --temp;
1702     return temp.getActiveBits();
1703   }
1704 
1705   /// \returns the nearest log base 2 of this APInt. Ties round up.
1706   ///
1707   /// NOTE: When we have a BitWidth of 1, we define:
1708   ///
1709   ///   log2(0) = UINT32_MAX
1710   ///   log2(1) = 0
1711   ///
1712   /// to get around any mathematical concerns resulting from
1713   /// referencing 2 in a space where 2 does no exist.
1714   unsigned nearestLogBase2() const;
1715 
1716   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1717   /// otherwise
1718   int32_t exactLogBase2() const {
1719     if (!isPowerOf2())
1720       return -1;
1721     return logBase2();
1722   }
1723 
1724   /// Compute the square root.
1725   APInt sqrt() const;
1726 
1727   /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1728   /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1729   /// wide APInt) is unchanged due to how negation works.
1730   APInt abs() const {
1731     if (isNegative())
1732       return -(*this);
1733     return *this;
1734   }
1735 
1736   /// \returns the multiplicative inverse for a given modulo.
1737   APInt multiplicativeInverse(const APInt &modulo) const;
1738 
1739   /// @}
1740   /// \name Building-block Operations for APInt and APFloat
1741   /// @{
1742 
1743   // These building block operations operate on a representation of arbitrary
1744   // precision, two's-complement, bignum integer values. They should be
1745   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1746   // generally a pointer to the base of an array of integer parts, representing
1747   // an unsigned bignum, and a count of how many parts there are.
1748 
1749   /// Sets the least significant part of a bignum to the input value, and zeroes
1750   /// out higher parts.
1751   static void tcSet(WordType *, WordType, unsigned);
1752 
1753   /// Assign one bignum to another.
1754   static void tcAssign(WordType *, const WordType *, unsigned);
1755 
1756   /// Returns true if a bignum is zero, false otherwise.
1757   static bool tcIsZero(const WordType *, unsigned);
1758 
1759   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1760   static int tcExtractBit(const WordType *, unsigned bit);
1761 
1762   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1763   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1764   /// significant bit of DST.  All high bits above srcBITS in DST are
1765   /// zero-filled.
1766   static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1767                         unsigned srcBits, unsigned srcLSB);
1768 
1769   /// Set the given bit of a bignum.  Zero-based.
1770   static void tcSetBit(WordType *, unsigned bit);
1771 
1772   /// Clear the given bit of a bignum.  Zero-based.
1773   static void tcClearBit(WordType *, unsigned bit);
1774 
1775   /// Returns the bit number of the least or most significant set bit of a
1776   /// number.  If the input number has no bits set -1U is returned.
1777   static unsigned tcLSB(const WordType *, unsigned n);
1778   static unsigned tcMSB(const WordType *parts, unsigned n);
1779 
1780   /// Negate a bignum in-place.
1781   static void tcNegate(WordType *, unsigned);
1782 
1783   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1784   static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1785   /// DST += RHS.  Returns the carry flag.
1786   static WordType tcAddPart(WordType *, WordType, unsigned);
1787 
1788   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1789   static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1790                              unsigned);
1791   /// DST -= RHS.  Returns the carry flag.
1792   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1793 
1794   /// DST += SRC * MULTIPLIER + PART   if add is true
1795   /// DST  = SRC * MULTIPLIER + PART   if add is false
1796   ///
1797   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1798   /// start at the same point, i.e. DST == SRC.
1799   ///
1800   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1801   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1802   /// result, and if all of the omitted higher parts were zero return zero,
1803   /// otherwise overflow occurred and return one.
1804   static int tcMultiplyPart(WordType *dst, const WordType *src,
1805                             WordType multiplier, WordType carry,
1806                             unsigned srcParts, unsigned dstParts, bool add);
1807 
1808   /// DST = LHS * RHS, where DST has the same width as the operands and is
1809   /// filled with the least significant parts of the result.  Returns one if
1810   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1811   /// operands.
1812   static int tcMultiply(WordType *, const WordType *, const WordType *,
1813                         unsigned);
1814 
1815   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1816   /// operands. No overflow occurs. DST must be disjoint from both operands.
1817   static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1818                              unsigned, unsigned);
1819 
1820   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1821   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1822   /// REMAINDER to the remainder, return zero.  i.e.
1823   ///
1824   ///  OLD_LHS = RHS * LHS + REMAINDER
1825   ///
1826   /// SCRATCH is a bignum of the same size as the operands and result for use by
1827   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1828   /// REMAINDER and SCRATCH must be distinct.
1829   static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1830                       WordType *scratch, unsigned parts);
1831 
1832   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1833   /// restrictions on Count.
1834   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1835 
1836   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1837   /// restrictions on Count.
1838   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1839 
1840   /// Comparison (unsigned) of two bignums.
1841   static int tcCompare(const WordType *, const WordType *, unsigned);
1842 
1843   /// Increment a bignum in-place.  Return the carry flag.
1844   static WordType tcIncrement(WordType *dst, unsigned parts) {
1845     return tcAddPart(dst, 1, parts);
1846   }
1847 
1848   /// Decrement a bignum in-place.  Return the borrow flag.
1849   static WordType tcDecrement(WordType *dst, unsigned parts) {
1850     return tcSubtractPart(dst, 1, parts);
1851   }
1852 
1853   /// Used to insert APInt objects, or objects that contain APInt objects, into
1854   ///  FoldingSets.
1855   void Profile(FoldingSetNodeID &id) const;
1856 
1857   /// debug method
1858   void dump() const;
1859 
1860   /// Returns whether this instance allocated memory.
1861   bool needsCleanup() const { return !isSingleWord(); }
1862 
1863 private:
1864   /// This union is used to store the integer value. When the
1865   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1866   union {
1867     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1868     uint64_t *pVal; ///< Used to store the >64 bits integer value.
1869   } U;
1870 
1871   unsigned BitWidth = 1; ///< The number of bits in this APInt.
1872 
1873   friend struct DenseMapInfo<APInt, void>;
1874   friend class APSInt;
1875 
1876   /// This constructor is used only internally for speed of construction of
1877   /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1878   /// is not public.
1879   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1880 
1881   /// Determine which word a bit is in.
1882   ///
1883   /// \returns the word position for the specified bit position.
1884   static unsigned whichWord(unsigned bitPosition) {
1885     return bitPosition / APINT_BITS_PER_WORD;
1886   }
1887 
1888   /// Determine which bit in a word the specified bit position is in.
1889   static unsigned whichBit(unsigned bitPosition) {
1890     return bitPosition % APINT_BITS_PER_WORD;
1891   }
1892 
1893   /// Get a single bit mask.
1894   ///
1895   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1896   /// This method generates and returns a uint64_t (word) mask for a single
1897   /// bit at a specific bit position. This is used to mask the bit in the
1898   /// corresponding word.
1899   static uint64_t maskBit(unsigned bitPosition) {
1900     return 1ULL << whichBit(bitPosition);
1901   }
1902 
1903   /// Clear unused high order bits
1904   ///
1905   /// This method is used internally to clear the top "N" bits in the high order
1906   /// word that are not used by the APInt. This is needed after the most
1907   /// significant word is assigned a value to ensure that those bits are
1908   /// zero'd out.
1909   APInt &clearUnusedBits() {
1910     // Compute how many bits are used in the final word.
1911     unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1912 
1913     // Mask out the high bits.
1914     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1915     if (LLVM_UNLIKELY(BitWidth == 0))
1916       mask = 0;
1917 
1918     if (isSingleWord())
1919       U.VAL &= mask;
1920     else
1921       U.pVal[getNumWords() - 1] &= mask;
1922     return *this;
1923   }
1924 
1925   /// Get the word corresponding to a bit position
1926   /// \returns the corresponding word for the specified bit position.
1927   uint64_t getWord(unsigned bitPosition) const {
1928     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1929   }
1930 
1931   /// Utility method to change the bit width of this APInt to new bit width,
1932   /// allocating and/or deallocating as necessary. There is no guarantee on the
1933   /// value of any bits upon return. Caller should populate the bits after.
1934   void reallocate(unsigned NewBitWidth);
1935 
1936   /// Convert a char array into an APInt
1937   ///
1938   /// \param radix 2, 8, 10, 16, or 36
1939   /// Converts a string into a number.  The string must be non-empty
1940   /// and well-formed as a number of the given base. The bit-width
1941   /// must be sufficient to hold the result.
1942   ///
1943   /// This is used by the constructors that take string arguments.
1944   ///
1945   /// StringRef::getAsInteger is superficially similar but (1) does
1946   /// not assume that the string is well-formed and (2) grows the
1947   /// result to hold the input.
1948   void fromString(unsigned numBits, StringRef str, uint8_t radix);
1949 
1950   /// An internal division function for dividing APInts.
1951   ///
1952   /// This is used by the toString method to divide by the radix. It simply
1953   /// provides a more convenient form of divide for internal use since KnuthDiv
1954   /// has specific constraints on its inputs. If those constraints are not met
1955   /// then it provides a simpler form of divide.
1956   static void divide(const WordType *LHS, unsigned lhsWords,
1957                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1958                      WordType *Remainder);
1959 
1960   /// out-of-line slow case for inline constructor
1961   void initSlowCase(uint64_t val, bool isSigned);
1962 
1963   /// shared code between two array constructors
1964   void initFromArray(ArrayRef<uint64_t> array);
1965 
1966   /// out-of-line slow case for inline copy constructor
1967   void initSlowCase(const APInt &that);
1968 
1969   /// out-of-line slow case for shl
1970   void shlSlowCase(unsigned ShiftAmt);
1971 
1972   /// out-of-line slow case for lshr.
1973   void lshrSlowCase(unsigned ShiftAmt);
1974 
1975   /// out-of-line slow case for ashr.
1976   void ashrSlowCase(unsigned ShiftAmt);
1977 
1978   /// out-of-line slow case for operator=
1979   void assignSlowCase(const APInt &RHS);
1980 
1981   /// out-of-line slow case for operator==
1982   bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1983 
1984   /// out-of-line slow case for countLeadingZeros
1985   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1986 
1987   /// out-of-line slow case for countLeadingOnes.
1988   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1989 
1990   /// out-of-line slow case for countTrailingZeros.
1991   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1992 
1993   /// out-of-line slow case for countTrailingOnes
1994   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1995 
1996   /// out-of-line slow case for countPopulation
1997   unsigned countPopulationSlowCase() const LLVM_READONLY;
1998 
1999   /// out-of-line slow case for intersects.
2000   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
2001 
2002   /// out-of-line slow case for isSubsetOf.
2003   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
2004 
2005   /// out-of-line slow case for setBits.
2006   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
2007 
2008   /// out-of-line slow case for flipAllBits.
2009   void flipAllBitsSlowCase();
2010 
2011   /// out-of-line slow case for concat.
2012   APInt concatSlowCase(const APInt &NewLSB) const;
2013 
2014   /// out-of-line slow case for operator&=.
2015   void andAssignSlowCase(const APInt &RHS);
2016 
2017   /// out-of-line slow case for operator|=.
2018   void orAssignSlowCase(const APInt &RHS);
2019 
2020   /// out-of-line slow case for operator^=.
2021   void xorAssignSlowCase(const APInt &RHS);
2022 
2023   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2024   /// to, or greater than RHS.
2025   int compare(const APInt &RHS) const LLVM_READONLY;
2026 
2027   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2028   /// to, or greater than RHS.
2029   int compareSigned(const APInt &RHS) const LLVM_READONLY;
2030 
2031   /// @}
2032 };
2033 
2034 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2035 
2036 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2037 
2038 /// Unary bitwise complement operator.
2039 ///
2040 /// \returns an APInt that is the bitwise complement of \p v.
2041 inline APInt operator~(APInt v) {
2042   v.flipAllBits();
2043   return v;
2044 }
2045 
2046 inline APInt operator&(APInt a, const APInt &b) {
2047   a &= b;
2048   return a;
2049 }
2050 
2051 inline APInt operator&(const APInt &a, APInt &&b) {
2052   b &= a;
2053   return std::move(b);
2054 }
2055 
2056 inline APInt operator&(APInt a, uint64_t RHS) {
2057   a &= RHS;
2058   return a;
2059 }
2060 
2061 inline APInt operator&(uint64_t LHS, APInt b) {
2062   b &= LHS;
2063   return b;
2064 }
2065 
2066 inline APInt operator|(APInt a, const APInt &b) {
2067   a |= b;
2068   return a;
2069 }
2070 
2071 inline APInt operator|(const APInt &a, APInt &&b) {
2072   b |= a;
2073   return std::move(b);
2074 }
2075 
2076 inline APInt operator|(APInt a, uint64_t RHS) {
2077   a |= RHS;
2078   return a;
2079 }
2080 
2081 inline APInt operator|(uint64_t LHS, APInt b) {
2082   b |= LHS;
2083   return b;
2084 }
2085 
2086 inline APInt operator^(APInt a, const APInt &b) {
2087   a ^= b;
2088   return a;
2089 }
2090 
2091 inline APInt operator^(const APInt &a, APInt &&b) {
2092   b ^= a;
2093   return std::move(b);
2094 }
2095 
2096 inline APInt operator^(APInt a, uint64_t RHS) {
2097   a ^= RHS;
2098   return a;
2099 }
2100 
2101 inline APInt operator^(uint64_t LHS, APInt b) {
2102   b ^= LHS;
2103   return b;
2104 }
2105 
2106 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2107   I.print(OS, true);
2108   return OS;
2109 }
2110 
2111 inline APInt operator-(APInt v) {
2112   v.negate();
2113   return v;
2114 }
2115 
2116 inline APInt operator+(APInt a, const APInt &b) {
2117   a += b;
2118   return a;
2119 }
2120 
2121 inline APInt operator+(const APInt &a, APInt &&b) {
2122   b += a;
2123   return std::move(b);
2124 }
2125 
2126 inline APInt operator+(APInt a, uint64_t RHS) {
2127   a += RHS;
2128   return a;
2129 }
2130 
2131 inline APInt operator+(uint64_t LHS, APInt b) {
2132   b += LHS;
2133   return b;
2134 }
2135 
2136 inline APInt operator-(APInt a, const APInt &b) {
2137   a -= b;
2138   return a;
2139 }
2140 
2141 inline APInt operator-(const APInt &a, APInt &&b) {
2142   b.negate();
2143   b += a;
2144   return std::move(b);
2145 }
2146 
2147 inline APInt operator-(APInt a, uint64_t RHS) {
2148   a -= RHS;
2149   return a;
2150 }
2151 
2152 inline APInt operator-(uint64_t LHS, APInt b) {
2153   b.negate();
2154   b += LHS;
2155   return b;
2156 }
2157 
2158 inline APInt operator*(APInt a, uint64_t RHS) {
2159   a *= RHS;
2160   return a;
2161 }
2162 
2163 inline APInt operator*(uint64_t LHS, APInt b) {
2164   b *= LHS;
2165   return b;
2166 }
2167 
2168 namespace APIntOps {
2169 
2170 /// Determine the smaller of two APInts considered to be signed.
2171 inline const APInt &smin(const APInt &A, const APInt &B) {
2172   return A.slt(B) ? A : B;
2173 }
2174 
2175 /// Determine the larger of two APInts considered to be signed.
2176 inline const APInt &smax(const APInt &A, const APInt &B) {
2177   return A.sgt(B) ? A : B;
2178 }
2179 
2180 /// Determine the smaller of two APInts considered to be unsigned.
2181 inline const APInt &umin(const APInt &A, const APInt &B) {
2182   return A.ult(B) ? A : B;
2183 }
2184 
2185 /// Determine the larger of two APInts considered to be unsigned.
2186 inline const APInt &umax(const APInt &A, const APInt &B) {
2187   return A.ugt(B) ? A : B;
2188 }
2189 
2190 /// Compute GCD of two unsigned APInt values.
2191 ///
2192 /// This function returns the greatest common divisor of the two APInt values
2193 /// using Stein's algorithm.
2194 ///
2195 /// \returns the greatest common divisor of A and B.
2196 APInt GreatestCommonDivisor(APInt A, APInt B);
2197 
2198 /// Converts the given APInt to a double value.
2199 ///
2200 /// Treats the APInt as an unsigned value for conversion purposes.
2201 inline double RoundAPIntToDouble(const APInt &APIVal) {
2202   return APIVal.roundToDouble();
2203 }
2204 
2205 /// Converts the given APInt to a double value.
2206 ///
2207 /// Treats the APInt as a signed value for conversion purposes.
2208 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2209   return APIVal.signedRoundToDouble();
2210 }
2211 
2212 /// Converts the given APInt to a float value.
2213 inline float RoundAPIntToFloat(const APInt &APIVal) {
2214   return float(RoundAPIntToDouble(APIVal));
2215 }
2216 
2217 /// Converts the given APInt to a float value.
2218 ///
2219 /// Treats the APInt as a signed value for conversion purposes.
2220 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2221   return float(APIVal.signedRoundToDouble());
2222 }
2223 
2224 /// Converts the given double value into a APInt.
2225 ///
2226 /// This function convert a double value to an APInt value.
2227 APInt RoundDoubleToAPInt(double Double, unsigned width);
2228 
2229 /// Converts a float value into a APInt.
2230 ///
2231 /// Converts a float value into an APInt value.
2232 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2233   return RoundDoubleToAPInt(double(Float), width);
2234 }
2235 
2236 /// Return A unsign-divided by B, rounded by the given rounding mode.
2237 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2238 
2239 /// Return A sign-divided by B, rounded by the given rounding mode.
2240 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2241 
2242 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2243 /// (e.g. 32 for i32).
2244 /// This function finds the smallest number n, such that
2245 /// (a) n >= 0 and q(n) = 0, or
2246 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2247 ///     integers, belong to two different intervals [Rk, Rk+R),
2248 ///     where R = 2^BW, and k is an integer.
2249 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2250 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2251 /// subtraction (treated as addition of negated numbers) would always
2252 /// count as an overflow, but here we want to allow values to decrease
2253 /// and increase as long as they are within the same interval.
2254 /// Specifically, adding of two negative numbers should not cause an
2255 /// overflow (as long as the magnitude does not exceed the bit width).
2256 /// On the other hand, given a positive number, adding a negative
2257 /// number to it can give a negative result, which would cause the
2258 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2259 /// treated as a special case of an overflow.
2260 ///
2261 /// This function returns std::nullopt if after finding k that minimizes the
2262 /// positive solution to q(n) = kR, both solutions are contained between
2263 /// two consecutive integers.
2264 ///
2265 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2266 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2267 /// virtue of *signed* overflow. This function will *not* find such an n,
2268 /// however it may find a value of n satisfying the inequalities due to
2269 /// an *unsigned* overflow (if the values are treated as unsigned).
2270 /// To find a solution for a signed overflow, treat it as a problem of
2271 /// finding an unsigned overflow with a range with of BW-1.
2272 ///
2273 /// The returned value may have a different bit width from the input
2274 /// coefficients.
2275 std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2276                                                 unsigned RangeWidth);
2277 
2278 /// Compare two values, and if they are different, return the position of the
2279 /// most significant bit that is different in the values.
2280 std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2281                                                        const APInt &B);
2282 
2283 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2284 /// by \param A to \param NewBitWidth bits.
2285 ///
2286 /// MatchAnyBits: (Default)
2287 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2288 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2289 ///
2290 /// MatchAllBits:
2291 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2292 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2293 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2294 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2295                    bool MatchAllBits = false);
2296 } // namespace APIntOps
2297 
2298 // See friend declaration above. This additional declaration is required in
2299 // order to compile LLVM with IBM xlC compiler.
2300 hash_code hash_value(const APInt &Arg);
2301 
2302 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2303 /// with the integer held in IntVal.
2304 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2305 
2306 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2307 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2308 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2309 
2310 /// Provide DenseMapInfo for APInt.
2311 template <> struct DenseMapInfo<APInt, void> {
2312   static inline APInt getEmptyKey() {
2313     APInt V(nullptr, 0);
2314     V.U.VAL = ~0ULL;
2315     return V;
2316   }
2317 
2318   static inline APInt getTombstoneKey() {
2319     APInt V(nullptr, 0);
2320     V.U.VAL = ~1ULL;
2321     return V;
2322   }
2323 
2324   static unsigned getHashValue(const APInt &Key);
2325 
2326   static bool isEqual(const APInt &LHS, const APInt &RHS) {
2327     return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2328   }
2329 };
2330 
2331 } // namespace llvm
2332 
2333 #endif
2334