1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
17 
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
20 #include <cassert>
21 #include <climits>
22 #include <cstring>
23 #include <utility>
24 
25 namespace llvm {
26 class FoldingSetNodeID;
27 class StringRef;
28 class hash_code;
29 class raw_ostream;
30 
31 template <typename T> class SmallVectorImpl;
32 template <typename T> class ArrayRef;
33 template <typename T> class Optional;
34 template <typename T, typename Enable> struct DenseMapInfo;
35 
36 class APInt;
37 
38 inline APInt operator-(APInt);
39 
40 //===----------------------------------------------------------------------===//
41 //                              APInt Class
42 //===----------------------------------------------------------------------===//
43 
44 /// Class for arbitrary precision integers.
45 ///
46 /// APInt is a functional replacement for common case unsigned integer type like
47 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
50 /// and methods to manipulate integer values of any bit-width. It supports both
51 /// the typical integer arithmetic and comparison operations as well as bitwise
52 /// manipulation.
53 ///
54 /// The class has several invariants worth noting:
55 ///   * All bit, byte, and word positions are zero-based.
56 ///   * Once the bit width is set, it doesn't change except by the Truncate,
57 ///     SignExtend, or ZeroExtend operations.
58 ///   * All binary operators must be on APInt instances of the same bit width.
59 ///     Attempting to use these operators on instances with different bit
60 ///     widths will yield an assertion.
61 ///   * The value is stored canonically as an unsigned value. For operations
62 ///     where it makes a difference, there are both signed and unsigned variants
63 ///     of the operation. For example, sdiv and udiv. However, because the bit
64 ///     widths must be the same, operations such as Mul and Add produce the same
65 ///     results regardless of whether the values are interpreted as signed or
66 ///     not.
67 ///   * In general, the class tries to follow the style of computation that LLVM
68 ///     uses in its IR. This simplifies its use for LLVM.
69 ///   * APInt supports zero-bit-width values, but operations that require bits
70 ///     are not defined on it (e.g. you cannot ask for the sign of a zero-bit
71 ///     integer).  This means that operations like zero extension and logical
72 ///     shifts are defined, but sign extension and ashr is not.  Zero bit values
73 ///     compare and hash equal to themselves, and countLeadingZeros returns 0.
74 ///
75 class LLVM_NODISCARD APInt {
76 public:
77   typedef uint64_t WordType;
78 
79   /// This enum is used to hold the constants we needed for APInt.
80   enum : unsigned {
81     /// Byte size of a word.
82     APINT_WORD_SIZE = sizeof(WordType),
83     /// Bits in a word.
84     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
85   };
86 
87   enum class Rounding {
88     DOWN,
89     TOWARD_ZERO,
90     UP,
91   };
92 
93   static constexpr WordType WORDTYPE_MAX = ~WordType(0);
94 
95   /// \name Constructors
96   /// @{
97 
98   /// Create a new APInt of numBits width, initialized as val.
99   ///
100   /// If isSigned is true then val is treated as if it were a signed value
101   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
102   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
103   /// the range of val are zero filled).
104   ///
105   /// \param numBits the bit width of the constructed APInt
106   /// \param val the initial value of the APInt
107   /// \param isSigned how to treat signedness of val
108   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
109       : BitWidth(numBits) {
110     if (isSingleWord()) {
111       U.VAL = val;
112       clearUnusedBits();
113     } else {
114       initSlowCase(val, isSigned);
115     }
116   }
117 
118   /// Construct an APInt of numBits width, initialized as bigVal[].
119   ///
120   /// Note that bigVal.size() can be smaller or larger than the corresponding
121   /// bit width but any extraneous bits will be dropped.
122   ///
123   /// \param numBits the bit width of the constructed APInt
124   /// \param bigVal a sequence of words to form the initial value of the APInt
125   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
126 
127   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
128   /// deprecated because this constructor is prone to ambiguity with the
129   /// APInt(unsigned, uint64_t, bool) constructor.
130   ///
131   /// If this overload is ever deleted, care should be taken to prevent calls
132   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
133   /// constructor.
134   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
135 
136   /// Construct an APInt from a string representation.
137   ///
138   /// This constructor interprets the string \p str in the given radix. The
139   /// interpretation stops when the first character that is not suitable for the
140   /// radix is encountered, or the end of the string. Acceptable radix values
141   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
142   /// string to require more bits than numBits.
143   ///
144   /// \param numBits the bit width of the constructed APInt
145   /// \param str the string to be interpreted
146   /// \param radix the radix to use for the conversion
147   APInt(unsigned numBits, StringRef str, uint8_t radix);
148 
149   /// Default constructor that creates an APInt with a 1-bit zero value.
150   explicit APInt() : BitWidth(1) { U.VAL = 0; }
151 
152   /// Copy Constructor.
153   APInt(const APInt &that) : BitWidth(that.BitWidth) {
154     if (isSingleWord())
155       U.VAL = that.U.VAL;
156     else
157       initSlowCase(that);
158   }
159 
160   /// Move Constructor.
161   APInt(APInt &&that) : BitWidth(that.BitWidth) {
162     memcpy(&U, &that.U, sizeof(U));
163     that.BitWidth = 0;
164   }
165 
166   /// Destructor.
167   ~APInt() {
168     if (needsCleanup())
169       delete[] U.pVal;
170   }
171 
172   /// @}
173   /// \name Value Generators
174   /// @{
175 
176   /// Get the '0' value for the specified bit-width.
177   static APInt getZero(unsigned numBits) { return APInt(numBits, 0); }
178 
179   /// NOTE: This is soft-deprecated.  Please use `getZero()` instead.
180   static APInt getNullValue(unsigned numBits) { return getZero(numBits); }
181 
182   /// Return an APInt zero bits wide.
183   static APInt getZeroWidth() { return getZero(0); }
184 
185   /// Gets maximum unsigned value of APInt for specific bit width.
186   static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); }
187 
188   /// Gets maximum signed value of APInt for a specific bit width.
189   static APInt getSignedMaxValue(unsigned numBits) {
190     APInt API = getAllOnes(numBits);
191     API.clearBit(numBits - 1);
192     return API;
193   }
194 
195   /// Gets minimum unsigned value of APInt for a specific bit width.
196   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
197 
198   /// Gets minimum signed value of APInt for a specific bit width.
199   static APInt getSignedMinValue(unsigned numBits) {
200     APInt API(numBits, 0);
201     API.setBit(numBits - 1);
202     return API;
203   }
204 
205   /// Get the SignMask for a specific bit width.
206   ///
207   /// This is just a wrapper function of getSignedMinValue(), and it helps code
208   /// readability when we want to get a SignMask.
209   static APInt getSignMask(unsigned BitWidth) {
210     return getSignedMinValue(BitWidth);
211   }
212 
213   /// Return an APInt of a specified width with all bits set.
214   static APInt getAllOnes(unsigned numBits) {
215     return APInt(numBits, WORDTYPE_MAX, true);
216   }
217 
218   /// NOTE: This is soft-deprecated.  Please use `getAllOnes()` instead.
219   static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); }
220 
221   /// Return an APInt with exactly one bit set in the result.
222   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
223     APInt Res(numBits, 0);
224     Res.setBit(BitNo);
225     return Res;
226   }
227 
228   /// Get a value with a block of bits set.
229   ///
230   /// Constructs an APInt value that has a contiguous range of bits set. The
231   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
232   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
233   /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
234   /// \p hiBit.
235   ///
236   /// \param numBits the intended bit width of the result
237   /// \param loBit the index of the lowest bit set.
238   /// \param hiBit the index of the highest bit set.
239   ///
240   /// \returns An APInt value with the requested bits set.
241   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
242     APInt Res(numBits, 0);
243     Res.setBits(loBit, hiBit);
244     return Res;
245   }
246 
247   /// Wrap version of getBitsSet.
248   /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
249   /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
250   /// with parameters (32, 28, 4), you would get 0xF000000F.
251   /// If \p hiBit is equal to \p loBit, you would get a result with all bits
252   /// set.
253   static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
254                                   unsigned hiBit) {
255     APInt Res(numBits, 0);
256     Res.setBitsWithWrap(loBit, hiBit);
257     return Res;
258   }
259 
260   /// Constructs an APInt value that has a contiguous range of bits set. The
261   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
262   /// bits will be zero. For example, with parameters(32, 12) you would get
263   /// 0xFFFFF000.
264   ///
265   /// \param numBits the intended bit width of the result
266   /// \param loBit the index of the lowest bit to set.
267   ///
268   /// \returns An APInt value with the requested bits set.
269   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
270     APInt Res(numBits, 0);
271     Res.setBitsFrom(loBit);
272     return Res;
273   }
274 
275   /// Constructs an APInt value that has the top hiBitsSet bits set.
276   ///
277   /// \param numBits the bitwidth of the result
278   /// \param hiBitsSet the number of high-order bits set in the result.
279   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
280     APInt Res(numBits, 0);
281     Res.setHighBits(hiBitsSet);
282     return Res;
283   }
284 
285   /// Constructs an APInt value that has the bottom loBitsSet bits set.
286   ///
287   /// \param numBits the bitwidth of the result
288   /// \param loBitsSet the number of low-order bits set in the result.
289   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
290     APInt Res(numBits, 0);
291     Res.setLowBits(loBitsSet);
292     return Res;
293   }
294 
295   /// Return a value containing V broadcasted over NewLen bits.
296   static APInt getSplat(unsigned NewLen, const APInt &V);
297 
298   /// @}
299   /// \name Value Tests
300   /// @{
301 
302   /// Determine if this APInt just has one word to store value.
303   ///
304   /// \returns true if the number of bits <= 64, false otherwise.
305   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
306 
307   /// Determine sign of this APInt.
308   ///
309   /// This tests the high bit of this APInt to determine if it is set.
310   ///
311   /// \returns true if this APInt is negative, false otherwise
312   bool isNegative() const { return (*this)[BitWidth - 1]; }
313 
314   /// Determine if this APInt Value is non-negative (>= 0)
315   ///
316   /// This tests the high bit of the APInt to determine if it is unset.
317   bool isNonNegative() const { return !isNegative(); }
318 
319   /// Determine if sign bit of this APInt is set.
320   ///
321   /// This tests the high bit of this APInt to determine if it is set.
322   ///
323   /// \returns true if this APInt has its sign bit set, false otherwise.
324   bool isSignBitSet() const { return (*this)[BitWidth - 1]; }
325 
326   /// Determine if sign bit of this APInt is clear.
327   ///
328   /// This tests the high bit of this APInt to determine if it is clear.
329   ///
330   /// \returns true if this APInt has its sign bit clear, false otherwise.
331   bool isSignBitClear() const { return !isSignBitSet(); }
332 
333   /// Determine if this APInt Value is positive.
334   ///
335   /// This tests if the value of this APInt is positive (> 0). Note
336   /// that 0 is not a positive value.
337   ///
338   /// \returns true if this APInt is positive.
339   bool isStrictlyPositive() const { return isNonNegative() && !isZero(); }
340 
341   /// Determine if this APInt Value is non-positive (<= 0).
342   ///
343   /// \returns true if this APInt is non-positive.
344   bool isNonPositive() const { return !isStrictlyPositive(); }
345 
346   /// Determine if all bits are set.  This is true for zero-width values.
347   bool isAllOnes() const {
348     if (BitWidth == 0)
349       return true;
350     if (isSingleWord())
351       return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
352     return countTrailingOnesSlowCase() == BitWidth;
353   }
354 
355   /// NOTE: This is soft-deprecated.  Please use `isAllOnes()` instead.
356   bool isAllOnesValue() const { return isAllOnes(); }
357 
358   /// Determine if this value is zero, i.e. all bits are clear.
359   bool isZero() const {
360     if (isSingleWord())
361       return U.VAL == 0;
362     return countLeadingZerosSlowCase() == BitWidth;
363   }
364 
365   /// NOTE: This is soft-deprecated.  Please use `isZero()` instead.
366   bool isNullValue() const { return isZero(); }
367 
368   /// Determine if this is a value of 1.
369   ///
370   /// This checks to see if the value of this APInt is one.
371   bool isOne() const {
372     if (isSingleWord())
373       return U.VAL == 1;
374     return countLeadingZerosSlowCase() == BitWidth - 1;
375   }
376 
377   /// NOTE: This is soft-deprecated.  Please use `isOne()` instead.
378   bool isOneValue() const { return isOne(); }
379 
380   /// Determine if this is the largest unsigned value.
381   ///
382   /// This checks to see if the value of this APInt is the maximum unsigned
383   /// value for the APInt's bit width.
384   bool isMaxValue() const { return isAllOnes(); }
385 
386   /// Determine if this is the largest signed value.
387   ///
388   /// This checks to see if the value of this APInt is the maximum signed
389   /// value for the APInt's bit width.
390   bool isMaxSignedValue() const {
391     if (isSingleWord()) {
392       assert(BitWidth && "zero width values not allowed");
393       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
394     }
395     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
396   }
397 
398   /// Determine if this is the smallest unsigned value.
399   ///
400   /// This checks to see if the value of this APInt is the minimum unsigned
401   /// value for the APInt's bit width.
402   bool isMinValue() const { return isZero(); }
403 
404   /// Determine if this is the smallest signed value.
405   ///
406   /// This checks to see if the value of this APInt is the minimum signed
407   /// value for the APInt's bit width.
408   bool isMinSignedValue() const {
409     if (isSingleWord()) {
410       assert(BitWidth && "zero width values not allowed");
411       return U.VAL == (WordType(1) << (BitWidth - 1));
412     }
413     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
414   }
415 
416   /// Check if this APInt has an N-bits unsigned integer value.
417   bool isIntN(unsigned N) const { return getActiveBits() <= N; }
418 
419   /// Check if this APInt has an N-bits signed integer value.
420   bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; }
421 
422   /// Check if this APInt's value is a power of two greater than zero.
423   ///
424   /// \returns true if the argument APInt value is a power of two > 0.
425   bool isPowerOf2() const {
426     if (isSingleWord()) {
427       assert(BitWidth && "zero width values not allowed");
428       return isPowerOf2_64(U.VAL);
429     }
430     return countPopulationSlowCase() == 1;
431   }
432 
433   /// Check if this APInt's negated value is a power of two greater than zero.
434   bool isNegatedPowerOf2() const {
435     assert(BitWidth && "zero width values not allowed");
436     if (isNonNegative())
437       return false;
438     // NegatedPowerOf2 - shifted mask in the top bits.
439     unsigned LO = countLeadingOnes();
440     unsigned TZ = countTrailingZeros();
441     return (LO + TZ) == BitWidth;
442   }
443 
444   /// Check if the APInt's value is returned by getSignMask.
445   ///
446   /// \returns true if this is the value returned by getSignMask.
447   bool isSignMask() const { return isMinSignedValue(); }
448 
449   /// Convert APInt to a boolean value.
450   ///
451   /// This converts the APInt to a boolean value as a test against zero.
452   bool getBoolValue() const { return !isZero(); }
453 
454   /// If this value is smaller than the specified limit, return it, otherwise
455   /// return the limit value.  This causes the value to saturate to the limit.
456   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
457     return ugt(Limit) ? Limit : getZExtValue();
458   }
459 
460   /// Check if the APInt consists of a repeated bit pattern.
461   ///
462   /// e.g. 0x01010101 satisfies isSplat(8).
463   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
464   /// width without remainder.
465   bool isSplat(unsigned SplatSizeInBits) const;
466 
467   /// \returns true if this APInt value is a sequence of \param numBits ones
468   /// starting at the least significant bit with the remainder zero.
469   bool isMask(unsigned numBits) const {
470     assert(numBits != 0 && "numBits must be non-zero");
471     assert(numBits <= BitWidth && "numBits out of range");
472     if (isSingleWord())
473       return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
474     unsigned Ones = countTrailingOnesSlowCase();
475     return (numBits == Ones) &&
476            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
477   }
478 
479   /// \returns true if this APInt is a non-empty sequence of ones starting at
480   /// the least significant bit with the remainder zero.
481   /// Ex. isMask(0x0000FFFFU) == true.
482   bool isMask() const {
483     if (isSingleWord())
484       return isMask_64(U.VAL);
485     unsigned Ones = countTrailingOnesSlowCase();
486     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
487   }
488 
489   /// Return true if this APInt value contains a sequence of ones with
490   /// the remainder zero.
491   bool isShiftedMask() const {
492     if (isSingleWord())
493       return isShiftedMask_64(U.VAL);
494     unsigned Ones = countPopulationSlowCase();
495     unsigned LeadZ = countLeadingZerosSlowCase();
496     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
497   }
498 
499   /// Compute an APInt containing numBits highbits from this APInt.
500   ///
501   /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
502   /// bits and right shift to the least significant bit.
503   ///
504   /// \returns the high "numBits" bits of this APInt.
505   APInt getHiBits(unsigned numBits) const;
506 
507   /// Compute an APInt containing numBits lowbits from this APInt.
508   ///
509   /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
510   /// bits.
511   ///
512   /// \returns the low "numBits" bits of this APInt.
513   APInt getLoBits(unsigned numBits) const;
514 
515   /// Determine if two APInts have the same value, after zero-extending
516   /// one of them (if needed!) to ensure that the bit-widths match.
517   static bool isSameValue(const APInt &I1, const APInt &I2) {
518     if (I1.getBitWidth() == I2.getBitWidth())
519       return I1 == I2;
520 
521     if (I1.getBitWidth() > I2.getBitWidth())
522       return I1 == I2.zext(I1.getBitWidth());
523 
524     return I1.zext(I2.getBitWidth()) == I2;
525   }
526 
527   /// Overload to compute a hash_code for an APInt value.
528   friend hash_code hash_value(const APInt &Arg);
529 
530   /// This function returns a pointer to the internal storage of the APInt.
531   /// This is useful for writing out the APInt in binary form without any
532   /// conversions.
533   const uint64_t *getRawData() const {
534     if (isSingleWord())
535       return &U.VAL;
536     return &U.pVal[0];
537   }
538 
539   /// @}
540   /// \name Unary Operators
541   /// @{
542 
543   /// Postfix increment operator.  Increment *this by 1.
544   ///
545   /// \returns a new APInt value representing the original value of *this.
546   APInt operator++(int) {
547     APInt API(*this);
548     ++(*this);
549     return API;
550   }
551 
552   /// Prefix increment operator.
553   ///
554   /// \returns *this incremented by one
555   APInt &operator++();
556 
557   /// Postfix decrement operator. Decrement *this by 1.
558   ///
559   /// \returns a new APInt value representing the original value of *this.
560   APInt operator--(int) {
561     APInt API(*this);
562     --(*this);
563     return API;
564   }
565 
566   /// Prefix decrement operator.
567   ///
568   /// \returns *this decremented by one.
569   APInt &operator--();
570 
571   /// Logical negation operation on this APInt returns true if zero, like normal
572   /// integers.
573   bool operator!() const { return isZero(); }
574 
575   /// @}
576   /// \name Assignment Operators
577   /// @{
578 
579   /// Copy assignment operator.
580   ///
581   /// \returns *this after assignment of RHS.
582   APInt &operator=(const APInt &RHS) {
583     // The common case (both source or dest being inline) doesn't require
584     // allocation or deallocation.
585     if (isSingleWord() && RHS.isSingleWord()) {
586       U.VAL = RHS.U.VAL;
587       BitWidth = RHS.BitWidth;
588       return *this;
589     }
590 
591     assignSlowCase(RHS);
592     return *this;
593   }
594 
595   /// Move assignment operator.
596   APInt &operator=(APInt &&that) {
597 #ifdef EXPENSIVE_CHECKS
598     // Some std::shuffle implementations still do self-assignment.
599     if (this == &that)
600       return *this;
601 #endif
602     assert(this != &that && "Self-move not supported");
603     if (!isSingleWord())
604       delete[] U.pVal;
605 
606     // Use memcpy so that type based alias analysis sees both VAL and pVal
607     // as modified.
608     memcpy(&U, &that.U, sizeof(U));
609 
610     BitWidth = that.BitWidth;
611     that.BitWidth = 0;
612     return *this;
613   }
614 
615   /// Assignment operator.
616   ///
617   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
618   /// the bit width, the excess bits are truncated. If the bit width is larger
619   /// than 64, the value is zero filled in the unspecified high order bits.
620   ///
621   /// \returns *this after assignment of RHS value.
622   APInt &operator=(uint64_t RHS) {
623     if (isSingleWord()) {
624       U.VAL = RHS;
625       return clearUnusedBits();
626     }
627     U.pVal[0] = RHS;
628     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
629     return *this;
630   }
631 
632   /// Bitwise AND assignment operator.
633   ///
634   /// Performs a bitwise AND operation on this APInt and RHS. The result is
635   /// assigned to *this.
636   ///
637   /// \returns *this after ANDing with RHS.
638   APInt &operator&=(const APInt &RHS) {
639     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
640     if (isSingleWord())
641       U.VAL &= RHS.U.VAL;
642     else
643       andAssignSlowCase(RHS);
644     return *this;
645   }
646 
647   /// Bitwise AND assignment operator.
648   ///
649   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
650   /// logically zero-extended or truncated to match the bit-width of
651   /// the LHS.
652   APInt &operator&=(uint64_t RHS) {
653     if (isSingleWord()) {
654       U.VAL &= RHS;
655       return *this;
656     }
657     U.pVal[0] &= RHS;
658     memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
659     return *this;
660   }
661 
662   /// Bitwise OR assignment operator.
663   ///
664   /// Performs a bitwise OR operation on this APInt and RHS. The result is
665   /// assigned *this;
666   ///
667   /// \returns *this after ORing with RHS.
668   APInt &operator|=(const APInt &RHS) {
669     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
670     if (isSingleWord())
671       U.VAL |= RHS.U.VAL;
672     else
673       orAssignSlowCase(RHS);
674     return *this;
675   }
676 
677   /// Bitwise OR assignment operator.
678   ///
679   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
680   /// logically zero-extended or truncated to match the bit-width of
681   /// the LHS.
682   APInt &operator|=(uint64_t RHS) {
683     if (isSingleWord()) {
684       U.VAL |= RHS;
685       return clearUnusedBits();
686     }
687     U.pVal[0] |= RHS;
688     return *this;
689   }
690 
691   /// Bitwise XOR assignment operator.
692   ///
693   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
694   /// assigned to *this.
695   ///
696   /// \returns *this after XORing with RHS.
697   APInt &operator^=(const APInt &RHS) {
698     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
699     if (isSingleWord())
700       U.VAL ^= RHS.U.VAL;
701     else
702       xorAssignSlowCase(RHS);
703     return *this;
704   }
705 
706   /// Bitwise XOR assignment operator.
707   ///
708   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
709   /// logically zero-extended or truncated to match the bit-width of
710   /// the LHS.
711   APInt &operator^=(uint64_t RHS) {
712     if (isSingleWord()) {
713       U.VAL ^= RHS;
714       return clearUnusedBits();
715     }
716     U.pVal[0] ^= RHS;
717     return *this;
718   }
719 
720   /// Multiplication assignment operator.
721   ///
722   /// Multiplies this APInt by RHS and assigns the result to *this.
723   ///
724   /// \returns *this
725   APInt &operator*=(const APInt &RHS);
726   APInt &operator*=(uint64_t RHS);
727 
728   /// Addition assignment operator.
729   ///
730   /// Adds RHS to *this and assigns the result to *this.
731   ///
732   /// \returns *this
733   APInt &operator+=(const APInt &RHS);
734   APInt &operator+=(uint64_t RHS);
735 
736   /// Subtraction assignment operator.
737   ///
738   /// Subtracts RHS from *this and assigns the result to *this.
739   ///
740   /// \returns *this
741   APInt &operator-=(const APInt &RHS);
742   APInt &operator-=(uint64_t RHS);
743 
744   /// Left-shift assignment function.
745   ///
746   /// Shifts *this left by shiftAmt and assigns the result to *this.
747   ///
748   /// \returns *this after shifting left by ShiftAmt
749   APInt &operator<<=(unsigned ShiftAmt) {
750     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
751     if (isSingleWord()) {
752       if (ShiftAmt == BitWidth)
753         U.VAL = 0;
754       else
755         U.VAL <<= ShiftAmt;
756       return clearUnusedBits();
757     }
758     shlSlowCase(ShiftAmt);
759     return *this;
760   }
761 
762   /// Left-shift assignment function.
763   ///
764   /// Shifts *this left by shiftAmt and assigns the result to *this.
765   ///
766   /// \returns *this after shifting left by ShiftAmt
767   APInt &operator<<=(const APInt &ShiftAmt);
768 
769   /// @}
770   /// \name Binary Operators
771   /// @{
772 
773   /// Multiplication operator.
774   ///
775   /// Multiplies this APInt by RHS and returns the result.
776   APInt operator*(const APInt &RHS) const;
777 
778   /// Left logical shift operator.
779   ///
780   /// Shifts this APInt left by \p Bits and returns the result.
781   APInt operator<<(unsigned Bits) const { return shl(Bits); }
782 
783   /// Left logical shift operator.
784   ///
785   /// Shifts this APInt left by \p Bits and returns the result.
786   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
787 
788   /// Arithmetic right-shift function.
789   ///
790   /// Arithmetic right-shift this APInt by shiftAmt.
791   APInt ashr(unsigned ShiftAmt) const {
792     APInt R(*this);
793     R.ashrInPlace(ShiftAmt);
794     return R;
795   }
796 
797   /// Arithmetic right-shift this APInt by ShiftAmt in place.
798   void ashrInPlace(unsigned ShiftAmt) {
799     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
800     if (isSingleWord()) {
801       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
802       if (ShiftAmt == BitWidth)
803         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
804       else
805         U.VAL = SExtVAL >> ShiftAmt;
806       clearUnusedBits();
807       return;
808     }
809     ashrSlowCase(ShiftAmt);
810   }
811 
812   /// Logical right-shift function.
813   ///
814   /// Logical right-shift this APInt by shiftAmt.
815   APInt lshr(unsigned shiftAmt) const {
816     APInt R(*this);
817     R.lshrInPlace(shiftAmt);
818     return R;
819   }
820 
821   /// Logical right-shift this APInt by ShiftAmt in place.
822   void lshrInPlace(unsigned ShiftAmt) {
823     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
824     if (isSingleWord()) {
825       if (ShiftAmt == BitWidth)
826         U.VAL = 0;
827       else
828         U.VAL >>= ShiftAmt;
829       return;
830     }
831     lshrSlowCase(ShiftAmt);
832   }
833 
834   /// Left-shift function.
835   ///
836   /// Left-shift this APInt by shiftAmt.
837   APInt shl(unsigned shiftAmt) const {
838     APInt R(*this);
839     R <<= shiftAmt;
840     return R;
841   }
842 
843   /// Rotate left by rotateAmt.
844   APInt rotl(unsigned rotateAmt) const;
845 
846   /// Rotate right by rotateAmt.
847   APInt rotr(unsigned rotateAmt) const;
848 
849   /// Arithmetic right-shift function.
850   ///
851   /// Arithmetic right-shift this APInt by shiftAmt.
852   APInt ashr(const APInt &ShiftAmt) const {
853     APInt R(*this);
854     R.ashrInPlace(ShiftAmt);
855     return R;
856   }
857 
858   /// Arithmetic right-shift this APInt by shiftAmt in place.
859   void ashrInPlace(const APInt &shiftAmt);
860 
861   /// Logical right-shift function.
862   ///
863   /// Logical right-shift this APInt by shiftAmt.
864   APInt lshr(const APInt &ShiftAmt) const {
865     APInt R(*this);
866     R.lshrInPlace(ShiftAmt);
867     return R;
868   }
869 
870   /// Logical right-shift this APInt by ShiftAmt in place.
871   void lshrInPlace(const APInt &ShiftAmt);
872 
873   /// Left-shift function.
874   ///
875   /// Left-shift this APInt by shiftAmt.
876   APInt shl(const APInt &ShiftAmt) const {
877     APInt R(*this);
878     R <<= ShiftAmt;
879     return R;
880   }
881 
882   /// Rotate left by rotateAmt.
883   APInt rotl(const APInt &rotateAmt) const;
884 
885   /// Rotate right by rotateAmt.
886   APInt rotr(const APInt &rotateAmt) const;
887 
888   /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
889   /// equivalent to:
890   ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
891   APInt concat(const APInt &NewLSB) const {
892     /// If the result will be small, then both the merged values are small.
893     unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
894     if (NewWidth <= APINT_BITS_PER_WORD)
895       return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
896     return concatSlowCase(NewLSB);
897   }
898 
899   /// Unsigned division operation.
900   ///
901   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
902   /// RHS are treated as unsigned quantities for purposes of this division.
903   ///
904   /// \returns a new APInt value containing the division result, rounded towards
905   /// zero.
906   APInt udiv(const APInt &RHS) const;
907   APInt udiv(uint64_t RHS) const;
908 
909   /// Signed division function for APInt.
910   ///
911   /// Signed divide this APInt by APInt RHS.
912   ///
913   /// The result is rounded towards zero.
914   APInt sdiv(const APInt &RHS) const;
915   APInt sdiv(int64_t RHS) const;
916 
917   /// Unsigned remainder operation.
918   ///
919   /// Perform an unsigned remainder operation on this APInt with RHS being the
920   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
921   /// of this operation. Note that this is a true remainder operation and not a
922   /// modulo operation because the sign follows the sign of the dividend which
923   /// is *this.
924   ///
925   /// \returns a new APInt value containing the remainder result
926   APInt urem(const APInt &RHS) const;
927   uint64_t urem(uint64_t RHS) const;
928 
929   /// Function for signed remainder operation.
930   ///
931   /// Signed remainder operation on APInt.
932   APInt srem(const APInt &RHS) const;
933   int64_t srem(int64_t RHS) const;
934 
935   /// Dual division/remainder interface.
936   ///
937   /// Sometimes it is convenient to divide two APInt values and obtain both the
938   /// quotient and remainder. This function does both operations in the same
939   /// computation making it a little more efficient. The pair of input arguments
940   /// may overlap with the pair of output arguments. It is safe to call
941   /// udivrem(X, Y, X, Y), for example.
942   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
943                       APInt &Remainder);
944   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
945                       uint64_t &Remainder);
946 
947   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
948                       APInt &Remainder);
949   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
950                       int64_t &Remainder);
951 
952   // Operations that return overflow indicators.
953   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
954   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
955   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
956   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
957   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
958   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
959   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
960   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
961   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
962 
963   // Operations that saturate
964   APInt sadd_sat(const APInt &RHS) const;
965   APInt uadd_sat(const APInt &RHS) const;
966   APInt ssub_sat(const APInt &RHS) const;
967   APInt usub_sat(const APInt &RHS) const;
968   APInt smul_sat(const APInt &RHS) const;
969   APInt umul_sat(const APInt &RHS) const;
970   APInt sshl_sat(const APInt &RHS) const;
971   APInt ushl_sat(const APInt &RHS) const;
972 
973   /// Array-indexing support.
974   ///
975   /// \returns the bit value at bitPosition
976   bool operator[](unsigned bitPosition) const {
977     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
978     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
979   }
980 
981   /// @}
982   /// \name Comparison Operators
983   /// @{
984 
985   /// Equality operator.
986   ///
987   /// Compares this APInt with RHS for the validity of the equality
988   /// relationship.
989   bool operator==(const APInt &RHS) const {
990     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
991     if (isSingleWord())
992       return U.VAL == RHS.U.VAL;
993     return equalSlowCase(RHS);
994   }
995 
996   /// Equality operator.
997   ///
998   /// Compares this APInt with a uint64_t for the validity of the equality
999   /// relationship.
1000   ///
1001   /// \returns true if *this == Val
1002   bool operator==(uint64_t Val) const {
1003     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1004   }
1005 
1006   /// Equality comparison.
1007   ///
1008   /// Compares this APInt with RHS for the validity of the equality
1009   /// relationship.
1010   ///
1011   /// \returns true if *this == Val
1012   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1013 
1014   /// Inequality operator.
1015   ///
1016   /// Compares this APInt with RHS for the validity of the inequality
1017   /// relationship.
1018   ///
1019   /// \returns true if *this != Val
1020   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1021 
1022   /// Inequality operator.
1023   ///
1024   /// Compares this APInt with a uint64_t for the validity of the inequality
1025   /// relationship.
1026   ///
1027   /// \returns true if *this != Val
1028   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1029 
1030   /// Inequality comparison
1031   ///
1032   /// Compares this APInt with RHS for the validity of the inequality
1033   /// relationship.
1034   ///
1035   /// \returns true if *this != Val
1036   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1037 
1038   /// Unsigned less than comparison
1039   ///
1040   /// Regards both *this and RHS as unsigned quantities and compares them for
1041   /// the validity of the less-than relationship.
1042   ///
1043   /// \returns true if *this < RHS when both are considered unsigned.
1044   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1045 
1046   /// Unsigned less than comparison
1047   ///
1048   /// Regards both *this as an unsigned quantity and compares it with RHS for
1049   /// the validity of the less-than relationship.
1050   ///
1051   /// \returns true if *this < RHS when considered unsigned.
1052   bool ult(uint64_t RHS) const {
1053     // Only need to check active bits if not a single word.
1054     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1055   }
1056 
1057   /// Signed less than comparison
1058   ///
1059   /// Regards both *this and RHS as signed quantities and compares them for
1060   /// validity of the less-than relationship.
1061   ///
1062   /// \returns true if *this < RHS when both are considered signed.
1063   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1064 
1065   /// Signed less than comparison
1066   ///
1067   /// Regards both *this as a signed quantity and compares it with RHS for
1068   /// the validity of the less-than relationship.
1069   ///
1070   /// \returns true if *this < RHS when considered signed.
1071   bool slt(int64_t RHS) const {
1072     return (!isSingleWord() && getSignificantBits() > 64)
1073                ? isNegative()
1074                : getSExtValue() < RHS;
1075   }
1076 
1077   /// Unsigned less or equal comparison
1078   ///
1079   /// Regards both *this and RHS as unsigned quantities and compares them for
1080   /// validity of the less-or-equal relationship.
1081   ///
1082   /// \returns true if *this <= RHS when both are considered unsigned.
1083   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1084 
1085   /// Unsigned less or equal comparison
1086   ///
1087   /// Regards both *this as an unsigned quantity and compares it with RHS for
1088   /// the validity of the less-or-equal relationship.
1089   ///
1090   /// \returns true if *this <= RHS when considered unsigned.
1091   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1092 
1093   /// Signed less or equal comparison
1094   ///
1095   /// Regards both *this and RHS as signed quantities and compares them for
1096   /// validity of the less-or-equal relationship.
1097   ///
1098   /// \returns true if *this <= RHS when both are considered signed.
1099   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1100 
1101   /// Signed less or equal comparison
1102   ///
1103   /// Regards both *this as a signed quantity and compares it with RHS for the
1104   /// validity of the less-or-equal relationship.
1105   ///
1106   /// \returns true if *this <= RHS when considered signed.
1107   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1108 
1109   /// Unsigned greater than comparison
1110   ///
1111   /// Regards both *this and RHS as unsigned quantities and compares them for
1112   /// the validity of the greater-than relationship.
1113   ///
1114   /// \returns true if *this > RHS when both are considered unsigned.
1115   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1116 
1117   /// Unsigned greater than comparison
1118   ///
1119   /// Regards both *this as an unsigned quantity and compares it with RHS for
1120   /// the validity of the greater-than relationship.
1121   ///
1122   /// \returns true if *this > RHS when considered unsigned.
1123   bool ugt(uint64_t RHS) const {
1124     // Only need to check active bits if not a single word.
1125     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1126   }
1127 
1128   /// Signed greater than comparison
1129   ///
1130   /// Regards both *this and RHS as signed quantities and compares them for the
1131   /// validity of the greater-than relationship.
1132   ///
1133   /// \returns true if *this > RHS when both are considered signed.
1134   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1135 
1136   /// Signed greater than comparison
1137   ///
1138   /// Regards both *this as a signed quantity and compares it with RHS for
1139   /// the validity of the greater-than relationship.
1140   ///
1141   /// \returns true if *this > RHS when considered signed.
1142   bool sgt(int64_t RHS) const {
1143     return (!isSingleWord() && getSignificantBits() > 64)
1144                ? !isNegative()
1145                : getSExtValue() > RHS;
1146   }
1147 
1148   /// Unsigned greater or equal comparison
1149   ///
1150   /// Regards both *this and RHS as unsigned quantities and compares them for
1151   /// validity of the greater-or-equal relationship.
1152   ///
1153   /// \returns true if *this >= RHS when both are considered unsigned.
1154   bool uge(const APInt &RHS) const { return !ult(RHS); }
1155 
1156   /// Unsigned greater or equal comparison
1157   ///
1158   /// Regards both *this as an unsigned quantity and compares it with RHS for
1159   /// the validity of the greater-or-equal relationship.
1160   ///
1161   /// \returns true if *this >= RHS when considered unsigned.
1162   bool uge(uint64_t RHS) const { return !ult(RHS); }
1163 
1164   /// Signed greater or equal comparison
1165   ///
1166   /// Regards both *this and RHS as signed quantities and compares them for
1167   /// validity of the greater-or-equal relationship.
1168   ///
1169   /// \returns true if *this >= RHS when both are considered signed.
1170   bool sge(const APInt &RHS) const { return !slt(RHS); }
1171 
1172   /// Signed greater or equal comparison
1173   ///
1174   /// Regards both *this as a signed quantity and compares it with RHS for
1175   /// the validity of the greater-or-equal relationship.
1176   ///
1177   /// \returns true if *this >= RHS when considered signed.
1178   bool sge(int64_t RHS) const { return !slt(RHS); }
1179 
1180   /// This operation tests if there are any pairs of corresponding bits
1181   /// between this APInt and RHS that are both set.
1182   bool intersects(const APInt &RHS) const {
1183     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1184     if (isSingleWord())
1185       return (U.VAL & RHS.U.VAL) != 0;
1186     return intersectsSlowCase(RHS);
1187   }
1188 
1189   /// This operation checks that all bits set in this APInt are also set in RHS.
1190   bool isSubsetOf(const APInt &RHS) const {
1191     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1192     if (isSingleWord())
1193       return (U.VAL & ~RHS.U.VAL) == 0;
1194     return isSubsetOfSlowCase(RHS);
1195   }
1196 
1197   /// @}
1198   /// \name Resizing Operators
1199   /// @{
1200 
1201   /// Truncate to new width.
1202   ///
1203   /// Truncate the APInt to a specified width. It is an error to specify a width
1204   /// that is greater than or equal to the current width.
1205   APInt trunc(unsigned width) const;
1206 
1207   /// Truncate to new width with unsigned saturation.
1208   ///
1209   /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1210   /// the new bitwidth, then return truncated APInt. Else, return max value.
1211   APInt truncUSat(unsigned width) const;
1212 
1213   /// Truncate to new width with signed saturation.
1214   ///
1215   /// If this APInt, treated as signed integer, can be losslessly truncated to
1216   /// the new bitwidth, then return truncated APInt. Else, return either
1217   /// signed min value if the APInt was negative, or signed max value.
1218   APInt truncSSat(unsigned width) const;
1219 
1220   /// Sign extend to a new width.
1221   ///
1222   /// This operation sign extends the APInt to a new width. If the high order
1223   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1224   /// It is an error to specify a width that is less than or equal to the
1225   /// current width.
1226   APInt sext(unsigned width) const;
1227 
1228   /// Zero extend to a new width.
1229   ///
1230   /// This operation zero extends the APInt to a new width. The high order bits
1231   /// are filled with 0 bits.  It is an error to specify a width that is less
1232   /// than or equal to the current width.
1233   APInt zext(unsigned width) const;
1234 
1235   /// Sign extend or truncate to width
1236   ///
1237   /// Make this APInt have the bit width given by \p width. The value is sign
1238   /// extended, truncated, or left alone to make it that width.
1239   APInt sextOrTrunc(unsigned width) const;
1240 
1241   /// Zero extend or truncate to width
1242   ///
1243   /// Make this APInt have the bit width given by \p width. The value is zero
1244   /// extended, truncated, or left alone to make it that width.
1245   APInt zextOrTrunc(unsigned width) const;
1246 
1247   /// Truncate to width
1248   ///
1249   /// Make this APInt have the bit width given by \p width. The value is
1250   /// truncated or left alone to make it that width.
1251   APInt truncOrSelf(unsigned width) const;
1252 
1253   /// Sign extend or truncate to width
1254   ///
1255   /// Make this APInt have the bit width given by \p width. The value is sign
1256   /// extended, or left alone to make it that width.
1257   APInt sextOrSelf(unsigned width) const;
1258 
1259   /// Zero extend or truncate to width
1260   ///
1261   /// Make this APInt have the bit width given by \p width. The value is zero
1262   /// extended, or left alone to make it that width.
1263   APInt zextOrSelf(unsigned width) const;
1264 
1265   /// @}
1266   /// \name Bit Manipulation Operators
1267   /// @{
1268 
1269   /// Set every bit to 1.
1270   void setAllBits() {
1271     if (isSingleWord())
1272       U.VAL = WORDTYPE_MAX;
1273     else
1274       // Set all the bits in all the words.
1275       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1276     // Clear the unused ones
1277     clearUnusedBits();
1278   }
1279 
1280   /// Set the given bit to 1 whose position is given as "bitPosition".
1281   void setBit(unsigned BitPosition) {
1282     assert(BitPosition < BitWidth && "BitPosition out of range");
1283     WordType Mask = maskBit(BitPosition);
1284     if (isSingleWord())
1285       U.VAL |= Mask;
1286     else
1287       U.pVal[whichWord(BitPosition)] |= Mask;
1288   }
1289 
1290   /// Set the sign bit to 1.
1291   void setSignBit() { setBit(BitWidth - 1); }
1292 
1293   /// Set a given bit to a given value.
1294   void setBitVal(unsigned BitPosition, bool BitValue) {
1295     if (BitValue)
1296       setBit(BitPosition);
1297     else
1298       clearBit(BitPosition);
1299   }
1300 
1301   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1302   /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1303   /// setBits when \p loBit < \p hiBit.
1304   /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1305   void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1306     assert(hiBit <= BitWidth && "hiBit out of range");
1307     assert(loBit <= BitWidth && "loBit out of range");
1308     if (loBit < hiBit) {
1309       setBits(loBit, hiBit);
1310       return;
1311     }
1312     setLowBits(hiBit);
1313     setHighBits(BitWidth - loBit);
1314   }
1315 
1316   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1317   /// This function handles case when \p loBit <= \p hiBit.
1318   void setBits(unsigned loBit, unsigned hiBit) {
1319     assert(hiBit <= BitWidth && "hiBit out of range");
1320     assert(loBit <= BitWidth && "loBit out of range");
1321     assert(loBit <= hiBit && "loBit greater than hiBit");
1322     if (loBit == hiBit)
1323       return;
1324     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1325       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1326       mask <<= loBit;
1327       if (isSingleWord())
1328         U.VAL |= mask;
1329       else
1330         U.pVal[0] |= mask;
1331     } else {
1332       setBitsSlowCase(loBit, hiBit);
1333     }
1334   }
1335 
1336   /// Set the top bits starting from loBit.
1337   void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); }
1338 
1339   /// Set the bottom loBits bits.
1340   void setLowBits(unsigned loBits) { return setBits(0, loBits); }
1341 
1342   /// Set the top hiBits bits.
1343   void setHighBits(unsigned hiBits) {
1344     return setBits(BitWidth - hiBits, BitWidth);
1345   }
1346 
1347   /// Set every bit to 0.
1348   void clearAllBits() {
1349     if (isSingleWord())
1350       U.VAL = 0;
1351     else
1352       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1353   }
1354 
1355   /// Set a given bit to 0.
1356   ///
1357   /// Set the given bit to 0 whose position is given as "bitPosition".
1358   void clearBit(unsigned BitPosition) {
1359     assert(BitPosition < BitWidth && "BitPosition out of range");
1360     WordType Mask = ~maskBit(BitPosition);
1361     if (isSingleWord())
1362       U.VAL &= Mask;
1363     else
1364       U.pVal[whichWord(BitPosition)] &= Mask;
1365   }
1366 
1367   /// Set bottom loBits bits to 0.
1368   void clearLowBits(unsigned loBits) {
1369     assert(loBits <= BitWidth && "More bits than bitwidth");
1370     APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1371     *this &= Keep;
1372   }
1373 
1374   /// Set the sign bit to 0.
1375   void clearSignBit() { clearBit(BitWidth - 1); }
1376 
1377   /// Toggle every bit to its opposite value.
1378   void flipAllBits() {
1379     if (isSingleWord()) {
1380       U.VAL ^= WORDTYPE_MAX;
1381       clearUnusedBits();
1382     } else {
1383       flipAllBitsSlowCase();
1384     }
1385   }
1386 
1387   /// Toggles a given bit to its opposite value.
1388   ///
1389   /// Toggle a given bit to its opposite value whose position is given
1390   /// as "bitPosition".
1391   void flipBit(unsigned bitPosition);
1392 
1393   /// Negate this APInt in place.
1394   void negate() {
1395     flipAllBits();
1396     ++(*this);
1397   }
1398 
1399   /// Insert the bits from a smaller APInt starting at bitPosition.
1400   void insertBits(const APInt &SubBits, unsigned bitPosition);
1401   void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1402 
1403   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1404   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1405   uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1406 
1407   /// @}
1408   /// \name Value Characterization Functions
1409   /// @{
1410 
1411   /// Return the number of bits in the APInt.
1412   unsigned getBitWidth() const { return BitWidth; }
1413 
1414   /// Get the number of words.
1415   ///
1416   /// Here one word's bitwidth equals to that of uint64_t.
1417   ///
1418   /// \returns the number of words to hold the integer value of this APInt.
1419   unsigned getNumWords() const { return getNumWords(BitWidth); }
1420 
1421   /// Get the number of words.
1422   ///
1423   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1424   ///
1425   /// \returns the number of words to hold the integer value with a given bit
1426   /// width.
1427   static unsigned getNumWords(unsigned BitWidth) {
1428     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1429   }
1430 
1431   /// Compute the number of active bits in the value
1432   ///
1433   /// This function returns the number of active bits which is defined as the
1434   /// bit width minus the number of leading zeros. This is used in several
1435   /// computations to see how "wide" the value is.
1436   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1437 
1438   /// Compute the number of active words in the value of this APInt.
1439   ///
1440   /// This is used in conjunction with getActiveData to extract the raw value of
1441   /// the APInt.
1442   unsigned getActiveWords() const {
1443     unsigned numActiveBits = getActiveBits();
1444     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1445   }
1446 
1447   /// Get the minimum bit size for this signed APInt
1448   ///
1449   /// Computes the minimum bit width for this APInt while considering it to be a
1450   /// signed (and probably negative) value. If the value is not negative, this
1451   /// function returns the same value as getActiveBits()+1. Otherwise, it
1452   /// returns the smallest bit width that will retain the negative value. For
1453   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1454   /// for -1, this function will always return 1.
1455   unsigned getSignificantBits() const {
1456     return BitWidth - getNumSignBits() + 1;
1457   }
1458 
1459   /// NOTE: This is soft-deprecated.  Please use `getSignificantBits()` instead.
1460   unsigned getMinSignedBits() const { return getSignificantBits(); }
1461 
1462   /// Get zero extended value
1463   ///
1464   /// This method attempts to return the value of this APInt as a zero extended
1465   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1466   /// uint64_t. Otherwise an assertion will result.
1467   uint64_t getZExtValue() const {
1468     if (isSingleWord())
1469       return U.VAL;
1470     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1471     return U.pVal[0];
1472   }
1473 
1474   /// Get sign extended value
1475   ///
1476   /// This method attempts to return the value of this APInt as a sign extended
1477   /// int64_t. The bit width must be <= 64 or the value must fit within an
1478   /// int64_t. Otherwise an assertion will result.
1479   int64_t getSExtValue() const {
1480     if (isSingleWord())
1481       return SignExtend64(U.VAL, BitWidth);
1482     assert(getSignificantBits() <= 64 && "Too many bits for int64_t");
1483     return int64_t(U.pVal[0]);
1484   }
1485 
1486   /// Get bits required for string value.
1487   ///
1488   /// This method determines how many bits are required to hold the APInt
1489   /// equivalent of the string given by \p str.
1490   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1491 
1492   /// The APInt version of the countLeadingZeros functions in
1493   ///   MathExtras.h.
1494   ///
1495   /// It counts the number of zeros from the most significant bit to the first
1496   /// one bit.
1497   ///
1498   /// \returns BitWidth if the value is zero, otherwise returns the number of
1499   ///   zeros from the most significant bit to the first one bits.
1500   unsigned countLeadingZeros() const {
1501     if (isSingleWord()) {
1502       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1503       return llvm::countLeadingZeros(U.VAL) - unusedBits;
1504     }
1505     return countLeadingZerosSlowCase();
1506   }
1507 
1508   /// Count the number of leading one bits.
1509   ///
1510   /// This function is an APInt version of the countLeadingOnes
1511   /// functions in MathExtras.h. It counts the number of ones from the most
1512   /// significant bit to the first zero bit.
1513   ///
1514   /// \returns 0 if the high order bit is not set, otherwise returns the number
1515   /// of 1 bits from the most significant to the least
1516   unsigned countLeadingOnes() const {
1517     if (isSingleWord()) {
1518       if (LLVM_UNLIKELY(BitWidth == 0))
1519         return 0;
1520       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1521     }
1522     return countLeadingOnesSlowCase();
1523   }
1524 
1525   /// Computes the number of leading bits of this APInt that are equal to its
1526   /// sign bit.
1527   unsigned getNumSignBits() const {
1528     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1529   }
1530 
1531   /// Count the number of trailing zero bits.
1532   ///
1533   /// This function is an APInt version of the countTrailingZeros
1534   /// functions in MathExtras.h. It counts the number of zeros from the least
1535   /// significant bit to the first set bit.
1536   ///
1537   /// \returns BitWidth if the value is zero, otherwise returns the number of
1538   /// zeros from the least significant bit to the first one bit.
1539   unsigned countTrailingZeros() const {
1540     if (isSingleWord()) {
1541       unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1542       return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1543     }
1544     return countTrailingZerosSlowCase();
1545   }
1546 
1547   /// Count the number of trailing one bits.
1548   ///
1549   /// This function is an APInt version of the countTrailingOnes
1550   /// functions in MathExtras.h. It counts the number of ones from the least
1551   /// significant bit to the first zero bit.
1552   ///
1553   /// \returns BitWidth if the value is all ones, otherwise returns the number
1554   /// of ones from the least significant bit to the first zero bit.
1555   unsigned countTrailingOnes() const {
1556     if (isSingleWord())
1557       return llvm::countTrailingOnes(U.VAL);
1558     return countTrailingOnesSlowCase();
1559   }
1560 
1561   /// Count the number of bits set.
1562   ///
1563   /// This function is an APInt version of the countPopulation functions
1564   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1565   ///
1566   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1567   unsigned countPopulation() const {
1568     if (isSingleWord())
1569       return llvm::countPopulation(U.VAL);
1570     return countPopulationSlowCase();
1571   }
1572 
1573   /// @}
1574   /// \name Conversion Functions
1575   /// @{
1576   void print(raw_ostream &OS, bool isSigned) const;
1577 
1578   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1579   /// SmallString.
1580   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1581                 bool formatAsCLiteral = false) const;
1582 
1583   /// Considers the APInt to be unsigned and converts it into a string in the
1584   /// radix given. The radix can be 2, 8, 10 16, or 36.
1585   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1586     toString(Str, Radix, false, false);
1587   }
1588 
1589   /// Considers the APInt to be signed and converts it into a string in the
1590   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1591   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1592     toString(Str, Radix, true, false);
1593   }
1594 
1595   /// \returns a byte-swapped representation of this APInt Value.
1596   APInt byteSwap() const;
1597 
1598   /// \returns the value with the bit representation reversed of this APInt
1599   /// Value.
1600   APInt reverseBits() const;
1601 
1602   /// Converts this APInt to a double value.
1603   double roundToDouble(bool isSigned) const;
1604 
1605   /// Converts this unsigned APInt to a double value.
1606   double roundToDouble() const { return roundToDouble(false); }
1607 
1608   /// Converts this signed APInt to a double value.
1609   double signedRoundToDouble() const { return roundToDouble(true); }
1610 
1611   /// Converts APInt bits to a double
1612   ///
1613   /// The conversion does not do a translation from integer to double, it just
1614   /// re-interprets the bits as a double. Note that it is valid to do this on
1615   /// any bit width. Exactly 64 bits will be translated.
1616   double bitsToDouble() const { return BitsToDouble(getWord(0)); }
1617 
1618   /// Converts APInt bits to a float
1619   ///
1620   /// The conversion does not do a translation from integer to float, it just
1621   /// re-interprets the bits as a float. Note that it is valid to do this on
1622   /// any bit width. Exactly 32 bits will be translated.
1623   float bitsToFloat() const {
1624     return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1625   }
1626 
1627   /// Converts a double to APInt bits.
1628   ///
1629   /// The conversion does not do a translation from double to integer, it just
1630   /// re-interprets the bits of the double.
1631   static APInt doubleToBits(double V) {
1632     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1633   }
1634 
1635   /// Converts a float to APInt bits.
1636   ///
1637   /// The conversion does not do a translation from float to integer, it just
1638   /// re-interprets the bits of the float.
1639   static APInt floatToBits(float V) {
1640     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1641   }
1642 
1643   /// @}
1644   /// \name Mathematics Operations
1645   /// @{
1646 
1647   /// \returns the floor log base 2 of this APInt.
1648   unsigned logBase2() const { return getActiveBits() - 1; }
1649 
1650   /// \returns the ceil log base 2 of this APInt.
1651   unsigned ceilLogBase2() const {
1652     APInt temp(*this);
1653     --temp;
1654     return temp.getActiveBits();
1655   }
1656 
1657   /// \returns the nearest log base 2 of this APInt. Ties round up.
1658   ///
1659   /// NOTE: When we have a BitWidth of 1, we define:
1660   ///
1661   ///   log2(0) = UINT32_MAX
1662   ///   log2(1) = 0
1663   ///
1664   /// to get around any mathematical concerns resulting from
1665   /// referencing 2 in a space where 2 does no exist.
1666   unsigned nearestLogBase2() const;
1667 
1668   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1669   /// otherwise
1670   int32_t exactLogBase2() const {
1671     if (!isPowerOf2())
1672       return -1;
1673     return logBase2();
1674   }
1675 
1676   /// Compute the square root.
1677   APInt sqrt() const;
1678 
1679   /// Get the absolute value.  If *this is < 0 then return -(*this), otherwise
1680   /// *this.  Note that the "most negative" signed number (e.g. -128 for 8 bit
1681   /// wide APInt) is unchanged due to how negation works.
1682   APInt abs() const {
1683     if (isNegative())
1684       return -(*this);
1685     return *this;
1686   }
1687 
1688   /// \returns the multiplicative inverse for a given modulo.
1689   APInt multiplicativeInverse(const APInt &modulo) const;
1690 
1691   /// @}
1692   /// \name Building-block Operations for APInt and APFloat
1693   /// @{
1694 
1695   // These building block operations operate on a representation of arbitrary
1696   // precision, two's-complement, bignum integer values. They should be
1697   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1698   // generally a pointer to the base of an array of integer parts, representing
1699   // an unsigned bignum, and a count of how many parts there are.
1700 
1701   /// Sets the least significant part of a bignum to the input value, and zeroes
1702   /// out higher parts.
1703   static void tcSet(WordType *, WordType, unsigned);
1704 
1705   /// Assign one bignum to another.
1706   static void tcAssign(WordType *, const WordType *, unsigned);
1707 
1708   /// Returns true if a bignum is zero, false otherwise.
1709   static bool tcIsZero(const WordType *, unsigned);
1710 
1711   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1712   static int tcExtractBit(const WordType *, unsigned bit);
1713 
1714   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1715   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1716   /// significant bit of DST.  All high bits above srcBITS in DST are
1717   /// zero-filled.
1718   static void tcExtract(WordType *, unsigned dstCount, const WordType *,
1719                         unsigned srcBits, unsigned srcLSB);
1720 
1721   /// Set the given bit of a bignum.  Zero-based.
1722   static void tcSetBit(WordType *, unsigned bit);
1723 
1724   /// Clear the given bit of a bignum.  Zero-based.
1725   static void tcClearBit(WordType *, unsigned bit);
1726 
1727   /// Returns the bit number of the least or most significant set bit of a
1728   /// number.  If the input number has no bits set -1U is returned.
1729   static unsigned tcLSB(const WordType *, unsigned n);
1730   static unsigned tcMSB(const WordType *parts, unsigned n);
1731 
1732   /// Negate a bignum in-place.
1733   static void tcNegate(WordType *, unsigned);
1734 
1735   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1736   static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned);
1737   /// DST += RHS.  Returns the carry flag.
1738   static WordType tcAddPart(WordType *, WordType, unsigned);
1739 
1740   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1741   static WordType tcSubtract(WordType *, const WordType *, WordType carry,
1742                              unsigned);
1743   /// DST -= RHS.  Returns the carry flag.
1744   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1745 
1746   /// DST += SRC * MULTIPLIER + PART   if add is true
1747   /// DST  = SRC * MULTIPLIER + PART   if add is false
1748   ///
1749   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1750   /// start at the same point, i.e. DST == SRC.
1751   ///
1752   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1753   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1754   /// result, and if all of the omitted higher parts were zero return zero,
1755   /// otherwise overflow occurred and return one.
1756   static int tcMultiplyPart(WordType *dst, const WordType *src,
1757                             WordType multiplier, WordType carry,
1758                             unsigned srcParts, unsigned dstParts, bool add);
1759 
1760   /// DST = LHS * RHS, where DST has the same width as the operands and is
1761   /// filled with the least significant parts of the result.  Returns one if
1762   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1763   /// operands.
1764   static int tcMultiply(WordType *, const WordType *, const WordType *,
1765                         unsigned);
1766 
1767   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1768   /// operands. No overflow occurs. DST must be disjoint from both operands.
1769   static void tcFullMultiply(WordType *, const WordType *, const WordType *,
1770                              unsigned, unsigned);
1771 
1772   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1773   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1774   /// REMAINDER to the remainder, return zero.  i.e.
1775   ///
1776   ///  OLD_LHS = RHS * LHS + REMAINDER
1777   ///
1778   /// SCRATCH is a bignum of the same size as the operands and result for use by
1779   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1780   /// REMAINDER and SCRATCH must be distinct.
1781   static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder,
1782                       WordType *scratch, unsigned parts);
1783 
1784   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1785   /// restrictions on Count.
1786   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1787 
1788   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1789   /// restrictions on Count.
1790   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1791 
1792   /// Comparison (unsigned) of two bignums.
1793   static int tcCompare(const WordType *, const WordType *, unsigned);
1794 
1795   /// Increment a bignum in-place.  Return the carry flag.
1796   static WordType tcIncrement(WordType *dst, unsigned parts) {
1797     return tcAddPart(dst, 1, parts);
1798   }
1799 
1800   /// Decrement a bignum in-place.  Return the borrow flag.
1801   static WordType tcDecrement(WordType *dst, unsigned parts) {
1802     return tcSubtractPart(dst, 1, parts);
1803   }
1804 
1805   /// Used to insert APInt objects, or objects that contain APInt objects, into
1806   ///  FoldingSets.
1807   void Profile(FoldingSetNodeID &id) const;
1808 
1809   /// debug method
1810   void dump() const;
1811 
1812   /// Returns whether this instance allocated memory.
1813   bool needsCleanup() const { return !isSingleWord(); }
1814 
1815 private:
1816   /// This union is used to store the integer value. When the
1817   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1818   union {
1819     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
1820     uint64_t *pVal; ///< Used to store the >64 bits integer value.
1821   } U;
1822 
1823   unsigned BitWidth; ///< The number of bits in this APInt.
1824 
1825   friend struct DenseMapInfo<APInt, void>;
1826   friend class APSInt;
1827 
1828   /// This constructor is used only internally for speed of construction of
1829   /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1830   /// is not public.
1831   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; }
1832 
1833   /// Determine which word a bit is in.
1834   ///
1835   /// \returns the word position for the specified bit position.
1836   static unsigned whichWord(unsigned bitPosition) {
1837     return bitPosition / APINT_BITS_PER_WORD;
1838   }
1839 
1840   /// Determine which bit in a word the specified bit position is in.
1841   static unsigned whichBit(unsigned bitPosition) {
1842     return bitPosition % APINT_BITS_PER_WORD;
1843   }
1844 
1845   /// Get a single bit mask.
1846   ///
1847   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1848   /// This method generates and returns a uint64_t (word) mask for a single
1849   /// bit at a specific bit position. This is used to mask the bit in the
1850   /// corresponding word.
1851   static uint64_t maskBit(unsigned bitPosition) {
1852     return 1ULL << whichBit(bitPosition);
1853   }
1854 
1855   /// Clear unused high order bits
1856   ///
1857   /// This method is used internally to clear the top "N" bits in the high order
1858   /// word that are not used by the APInt. This is needed after the most
1859   /// significant word is assigned a value to ensure that those bits are
1860   /// zero'd out.
1861   APInt &clearUnusedBits() {
1862     // Compute how many bits are used in the final word.
1863     unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1864 
1865     // Mask out the high bits.
1866     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1867     if (LLVM_UNLIKELY(BitWidth == 0))
1868       mask = 0;
1869 
1870     if (isSingleWord())
1871       U.VAL &= mask;
1872     else
1873       U.pVal[getNumWords() - 1] &= mask;
1874     return *this;
1875   }
1876 
1877   /// Get the word corresponding to a bit position
1878   /// \returns the corresponding word for the specified bit position.
1879   uint64_t getWord(unsigned bitPosition) const {
1880     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
1881   }
1882 
1883   /// Utility method to change the bit width of this APInt to new bit width,
1884   /// allocating and/or deallocating as necessary. There is no guarantee on the
1885   /// value of any bits upon return. Caller should populate the bits after.
1886   void reallocate(unsigned NewBitWidth);
1887 
1888   /// Convert a char array into an APInt
1889   ///
1890   /// \param radix 2, 8, 10, 16, or 36
1891   /// Converts a string into a number.  The string must be non-empty
1892   /// and well-formed as a number of the given base. The bit-width
1893   /// must be sufficient to hold the result.
1894   ///
1895   /// This is used by the constructors that take string arguments.
1896   ///
1897   /// StringRef::getAsInteger is superficially similar but (1) does
1898   /// not assume that the string is well-formed and (2) grows the
1899   /// result to hold the input.
1900   void fromString(unsigned numBits, StringRef str, uint8_t radix);
1901 
1902   /// An internal division function for dividing APInts.
1903   ///
1904   /// This is used by the toString method to divide by the radix. It simply
1905   /// provides a more convenient form of divide for internal use since KnuthDiv
1906   /// has specific constraints on its inputs. If those constraints are not met
1907   /// then it provides a simpler form of divide.
1908   static void divide(const WordType *LHS, unsigned lhsWords,
1909                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
1910                      WordType *Remainder);
1911 
1912   /// out-of-line slow case for inline constructor
1913   void initSlowCase(uint64_t val, bool isSigned);
1914 
1915   /// shared code between two array constructors
1916   void initFromArray(ArrayRef<uint64_t> array);
1917 
1918   /// out-of-line slow case for inline copy constructor
1919   void initSlowCase(const APInt &that);
1920 
1921   /// out-of-line slow case for shl
1922   void shlSlowCase(unsigned ShiftAmt);
1923 
1924   /// out-of-line slow case for lshr.
1925   void lshrSlowCase(unsigned ShiftAmt);
1926 
1927   /// out-of-line slow case for ashr.
1928   void ashrSlowCase(unsigned ShiftAmt);
1929 
1930   /// out-of-line slow case for operator=
1931   void assignSlowCase(const APInt &RHS);
1932 
1933   /// out-of-line slow case for operator==
1934   bool equalSlowCase(const APInt &RHS) const LLVM_READONLY;
1935 
1936   /// out-of-line slow case for countLeadingZeros
1937   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
1938 
1939   /// out-of-line slow case for countLeadingOnes.
1940   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
1941 
1942   /// out-of-line slow case for countTrailingZeros.
1943   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
1944 
1945   /// out-of-line slow case for countTrailingOnes
1946   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
1947 
1948   /// out-of-line slow case for countPopulation
1949   unsigned countPopulationSlowCase() const LLVM_READONLY;
1950 
1951   /// out-of-line slow case for intersects.
1952   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
1953 
1954   /// out-of-line slow case for isSubsetOf.
1955   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
1956 
1957   /// out-of-line slow case for setBits.
1958   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
1959 
1960   /// out-of-line slow case for flipAllBits.
1961   void flipAllBitsSlowCase();
1962 
1963   /// out-of-line slow case for concat.
1964   APInt concatSlowCase(const APInt &NewLSB) const;
1965 
1966   /// out-of-line slow case for operator&=.
1967   void andAssignSlowCase(const APInt &RHS);
1968 
1969   /// out-of-line slow case for operator|=.
1970   void orAssignSlowCase(const APInt &RHS);
1971 
1972   /// out-of-line slow case for operator^=.
1973   void xorAssignSlowCase(const APInt &RHS);
1974 
1975   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
1976   /// to, or greater than RHS.
1977   int compare(const APInt &RHS) const LLVM_READONLY;
1978 
1979   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
1980   /// to, or greater than RHS.
1981   int compareSigned(const APInt &RHS) const LLVM_READONLY;
1982 
1983   /// @}
1984 };
1985 
1986 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1987 
1988 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1989 
1990 /// Unary bitwise complement operator.
1991 ///
1992 /// \returns an APInt that is the bitwise complement of \p v.
1993 inline APInt operator~(APInt v) {
1994   v.flipAllBits();
1995   return v;
1996 }
1997 
1998 inline APInt operator&(APInt a, const APInt &b) {
1999   a &= b;
2000   return a;
2001 }
2002 
2003 inline APInt operator&(const APInt &a, APInt &&b) {
2004   b &= a;
2005   return std::move(b);
2006 }
2007 
2008 inline APInt operator&(APInt a, uint64_t RHS) {
2009   a &= RHS;
2010   return a;
2011 }
2012 
2013 inline APInt operator&(uint64_t LHS, APInt b) {
2014   b &= LHS;
2015   return b;
2016 }
2017 
2018 inline APInt operator|(APInt a, const APInt &b) {
2019   a |= b;
2020   return a;
2021 }
2022 
2023 inline APInt operator|(const APInt &a, APInt &&b) {
2024   b |= a;
2025   return std::move(b);
2026 }
2027 
2028 inline APInt operator|(APInt a, uint64_t RHS) {
2029   a |= RHS;
2030   return a;
2031 }
2032 
2033 inline APInt operator|(uint64_t LHS, APInt b) {
2034   b |= LHS;
2035   return b;
2036 }
2037 
2038 inline APInt operator^(APInt a, const APInt &b) {
2039   a ^= b;
2040   return a;
2041 }
2042 
2043 inline APInt operator^(const APInt &a, APInt &&b) {
2044   b ^= a;
2045   return std::move(b);
2046 }
2047 
2048 inline APInt operator^(APInt a, uint64_t RHS) {
2049   a ^= RHS;
2050   return a;
2051 }
2052 
2053 inline APInt operator^(uint64_t LHS, APInt b) {
2054   b ^= LHS;
2055   return b;
2056 }
2057 
2058 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2059   I.print(OS, true);
2060   return OS;
2061 }
2062 
2063 inline APInt operator-(APInt v) {
2064   v.negate();
2065   return v;
2066 }
2067 
2068 inline APInt operator+(APInt a, const APInt &b) {
2069   a += b;
2070   return a;
2071 }
2072 
2073 inline APInt operator+(const APInt &a, APInt &&b) {
2074   b += a;
2075   return std::move(b);
2076 }
2077 
2078 inline APInt operator+(APInt a, uint64_t RHS) {
2079   a += RHS;
2080   return a;
2081 }
2082 
2083 inline APInt operator+(uint64_t LHS, APInt b) {
2084   b += LHS;
2085   return b;
2086 }
2087 
2088 inline APInt operator-(APInt a, const APInt &b) {
2089   a -= b;
2090   return a;
2091 }
2092 
2093 inline APInt operator-(const APInt &a, APInt &&b) {
2094   b.negate();
2095   b += a;
2096   return std::move(b);
2097 }
2098 
2099 inline APInt operator-(APInt a, uint64_t RHS) {
2100   a -= RHS;
2101   return a;
2102 }
2103 
2104 inline APInt operator-(uint64_t LHS, APInt b) {
2105   b.negate();
2106   b += LHS;
2107   return b;
2108 }
2109 
2110 inline APInt operator*(APInt a, uint64_t RHS) {
2111   a *= RHS;
2112   return a;
2113 }
2114 
2115 inline APInt operator*(uint64_t LHS, APInt b) {
2116   b *= LHS;
2117   return b;
2118 }
2119 
2120 namespace APIntOps {
2121 
2122 /// Determine the smaller of two APInts considered to be signed.
2123 inline const APInt &smin(const APInt &A, const APInt &B) {
2124   return A.slt(B) ? A : B;
2125 }
2126 
2127 /// Determine the larger of two APInts considered to be signed.
2128 inline const APInt &smax(const APInt &A, const APInt &B) {
2129   return A.sgt(B) ? A : B;
2130 }
2131 
2132 /// Determine the smaller of two APInts considered to be unsigned.
2133 inline const APInt &umin(const APInt &A, const APInt &B) {
2134   return A.ult(B) ? A : B;
2135 }
2136 
2137 /// Determine the larger of two APInts considered to be unsigned.
2138 inline const APInt &umax(const APInt &A, const APInt &B) {
2139   return A.ugt(B) ? A : B;
2140 }
2141 
2142 /// Compute GCD of two unsigned APInt values.
2143 ///
2144 /// This function returns the greatest common divisor of the two APInt values
2145 /// using Stein's algorithm.
2146 ///
2147 /// \returns the greatest common divisor of A and B.
2148 APInt GreatestCommonDivisor(APInt A, APInt B);
2149 
2150 /// Converts the given APInt to a double value.
2151 ///
2152 /// Treats the APInt as an unsigned value for conversion purposes.
2153 inline double RoundAPIntToDouble(const APInt &APIVal) {
2154   return APIVal.roundToDouble();
2155 }
2156 
2157 /// Converts the given APInt to a double value.
2158 ///
2159 /// Treats the APInt as a signed value for conversion purposes.
2160 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2161   return APIVal.signedRoundToDouble();
2162 }
2163 
2164 /// Converts the given APInt to a float value.
2165 inline float RoundAPIntToFloat(const APInt &APIVal) {
2166   return float(RoundAPIntToDouble(APIVal));
2167 }
2168 
2169 /// Converts the given APInt to a float value.
2170 ///
2171 /// Treats the APInt as a signed value for conversion purposes.
2172 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2173   return float(APIVal.signedRoundToDouble());
2174 }
2175 
2176 /// Converts the given double value into a APInt.
2177 ///
2178 /// This function convert a double value to an APInt value.
2179 APInt RoundDoubleToAPInt(double Double, unsigned width);
2180 
2181 /// Converts a float value into a APInt.
2182 ///
2183 /// Converts a float value into an APInt value.
2184 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2185   return RoundDoubleToAPInt(double(Float), width);
2186 }
2187 
2188 /// Return A unsign-divided by B, rounded by the given rounding mode.
2189 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2190 
2191 /// Return A sign-divided by B, rounded by the given rounding mode.
2192 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2193 
2194 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2195 /// (e.g. 32 for i32).
2196 /// This function finds the smallest number n, such that
2197 /// (a) n >= 0 and q(n) = 0, or
2198 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2199 ///     integers, belong to two different intervals [Rk, Rk+R),
2200 ///     where R = 2^BW, and k is an integer.
2201 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2202 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2203 /// subtraction (treated as addition of negated numbers) would always
2204 /// count as an overflow, but here we want to allow values to decrease
2205 /// and increase as long as they are within the same interval.
2206 /// Specifically, adding of two negative numbers should not cause an
2207 /// overflow (as long as the magnitude does not exceed the bit width).
2208 /// On the other hand, given a positive number, adding a negative
2209 /// number to it can give a negative result, which would cause the
2210 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2211 /// treated as a special case of an overflow.
2212 ///
2213 /// This function returns None if after finding k that minimizes the
2214 /// positive solution to q(n) = kR, both solutions are contained between
2215 /// two consecutive integers.
2216 ///
2217 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2218 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2219 /// virtue of *signed* overflow. This function will *not* find such an n,
2220 /// however it may find a value of n satisfying the inequalities due to
2221 /// an *unsigned* overflow (if the values are treated as unsigned).
2222 /// To find a solution for a signed overflow, treat it as a problem of
2223 /// finding an unsigned overflow with a range with of BW-1.
2224 ///
2225 /// The returned value may have a different bit width from the input
2226 /// coefficients.
2227 Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2228                                            unsigned RangeWidth);
2229 
2230 /// Compare two values, and if they are different, return the position of the
2231 /// most significant bit that is different in the values.
2232 Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2233                                                   const APInt &B);
2234 
2235 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2236 /// by \param A to \param NewBitWidth bits.
2237 ///
2238 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2239 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2240 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2241 ///
2242 /// TODO: Do we need a mode where all bits must be set when merging down?
2243 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth);
2244 } // namespace APIntOps
2245 
2246 // See friend declaration above. This additional declaration is required in
2247 // order to compile LLVM with IBM xlC compiler.
2248 hash_code hash_value(const APInt &Arg);
2249 
2250 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2251 /// with the integer held in IntVal.
2252 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2253 
2254 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2255 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2256 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2257 
2258 /// Provide DenseMapInfo for APInt.
2259 template <> struct DenseMapInfo<APInt, void> {
2260   static inline APInt getEmptyKey() {
2261     APInt V(nullptr, 0);
2262     V.U.VAL = 0;
2263     return V;
2264   }
2265 
2266   static inline APInt getTombstoneKey() {
2267     APInt V(nullptr, 0);
2268     V.U.VAL = 1;
2269     return V;
2270   }
2271 
2272   static unsigned getHashValue(const APInt &Key);
2273 
2274   static bool isEqual(const APInt &LHS, const APInt &RHS) {
2275     return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2276   }
2277 };
2278 
2279 } // namespace llvm
2280 
2281 #endif
2282