1 //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the newly proposed standard C++ interfaces for hashing
10 // arbitrary data and building hash functions for user-defined types. This
11 // interface was originally proposed in N3333[1] and is currently under review
12 // for inclusion in a future TR and/or standard.
13 //
14 // The primary interfaces provide are comprised of one type and three functions:
15 //
16 //  -- 'hash_code' class is an opaque type representing the hash code for some
17 //     data. It is the intended product of hashing, and can be used to implement
18 //     hash tables, checksumming, and other common uses of hashes. It is not an
19 //     integer type (although it can be converted to one) because it is risky
20 //     to assume much about the internals of a hash_code. In particular, each
21 //     execution of the program has a high probability of producing a different
22 //     hash_code for a given input. Thus their values are not stable to save or
23 //     persist, and should only be used during the execution for the
24 //     construction of hashing datastructures.
25 //
26 //  -- 'hash_value' is a function designed to be overloaded for each
27 //     user-defined type which wishes to be used within a hashing context. It
28 //     should be overloaded within the user-defined type's namespace and found
29 //     via ADL. Overloads for primitive types are provided by this library.
30 //
31 //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
32 //      programmers in easily and intuitively combining a set of data into
33 //      a single hash_code for their object. They should only logically be used
34 //      within the implementation of a 'hash_value' routine or similar context.
35 //
36 // Note that 'hash_combine_range' contains very special logic for hashing
37 // a contiguous array of integers or pointers. This logic is *extremely* fast,
38 // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
39 // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
40 // under 32-bytes.
41 //
42 //===----------------------------------------------------------------------===//
43 
44 #ifndef LLVM_ADT_HASHING_H
45 #define LLVM_ADT_HASHING_H
46 
47 #include "llvm/Support/DataTypes.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/SwapByteOrder.h"
50 #include "llvm/Support/type_traits.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <optional>
55 #include <string>
56 #include <tuple>
57 #include <utility>
58 
59 namespace llvm {
60 template <typename T, typename Enable> struct DenseMapInfo;
61 
62 /// An opaque object representing a hash code.
63 ///
64 /// This object represents the result of hashing some entity. It is intended to
65 /// be used to implement hashtables or other hashing-based data structures.
66 /// While it wraps and exposes a numeric value, this value should not be
67 /// trusted to be stable or predictable across processes or executions.
68 ///
69 /// In order to obtain the hash_code for an object 'x':
70 /// \code
71 ///   using llvm::hash_value;
72 ///   llvm::hash_code code = hash_value(x);
73 /// \endcode
74 class hash_code {
75   size_t value;
76 
77 public:
78   /// Default construct a hash_code.
79   /// Note that this leaves the value uninitialized.
80   hash_code() = default;
81 
82   /// Form a hash code directly from a numerical value.
83   hash_code(size_t value) : value(value) {}
84 
85   /// Convert the hash code to its numerical value for use.
86   /*explicit*/ operator size_t() const { return value; }
87 
88   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
89     return lhs.value == rhs.value;
90   }
91   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
92     return lhs.value != rhs.value;
93   }
94 
95   /// Allow a hash_code to be directly run through hash_value.
96   friend size_t hash_value(const hash_code &code) { return code.value; }
97 };
98 
99 /// Compute a hash_code for any integer value.
100 ///
101 /// Note that this function is intended to compute the same hash_code for
102 /// a particular value without regard to the pre-promotion type. This is in
103 /// contrast to hash_combine which may produce different hash_codes for
104 /// differing argument types even if they would implicit promote to a common
105 /// type without changing the value.
106 template <typename T>
107 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value);
108 
109 /// Compute a hash_code for a pointer's address.
110 ///
111 /// N.B.: This hashes the *address*. Not the value and not the type.
112 template <typename T> hash_code hash_value(const T *ptr);
113 
114 /// Compute a hash_code for a pair of objects.
115 template <typename T, typename U>
116 hash_code hash_value(const std::pair<T, U> &arg);
117 
118 /// Compute a hash_code for a tuple.
119 template <typename... Ts>
120 hash_code hash_value(const std::tuple<Ts...> &arg);
121 
122 /// Compute a hash_code for a standard string.
123 template <typename T>
124 hash_code hash_value(const std::basic_string<T> &arg);
125 
126 /// Compute a hash_code for a standard string.
127 template <typename T> hash_code hash_value(const std::optional<T> &arg);
128 
129 /// Override the execution seed with a fixed value.
130 ///
131 /// This hashing library uses a per-execution seed designed to change on each
132 /// run with high probability in order to ensure that the hash codes are not
133 /// attackable and to ensure that output which is intended to be stable does
134 /// not rely on the particulars of the hash codes produced.
135 ///
136 /// That said, there are use cases where it is important to be able to
137 /// reproduce *exactly* a specific behavior. To that end, we provide a function
138 /// which will forcibly set the seed to a fixed value. This must be done at the
139 /// start of the program, before any hashes are computed. Also, it cannot be
140 /// undone. This makes it thread-hostile and very hard to use outside of
141 /// immediately on start of a simple program designed for reproducible
142 /// behavior.
143 void set_fixed_execution_hash_seed(uint64_t fixed_value);
144 
145 
146 // All of the implementation details of actually computing the various hash
147 // code values are held within this namespace. These routines are included in
148 // the header file mainly to allow inlining and constant propagation.
149 namespace hashing {
150 namespace detail {
151 
152 inline uint64_t fetch64(const char *p) {
153   uint64_t result;
154   memcpy(&result, p, sizeof(result));
155   if (sys::IsBigEndianHost)
156     sys::swapByteOrder(result);
157   return result;
158 }
159 
160 inline uint32_t fetch32(const char *p) {
161   uint32_t result;
162   memcpy(&result, p, sizeof(result));
163   if (sys::IsBigEndianHost)
164     sys::swapByteOrder(result);
165   return result;
166 }
167 
168 /// Some primes between 2^63 and 2^64 for various uses.
169 static constexpr uint64_t k0 = 0xc3a5c85c97cb3127ULL;
170 static constexpr uint64_t k1 = 0xb492b66fbe98f273ULL;
171 static constexpr uint64_t k2 = 0x9ae16a3b2f90404fULL;
172 static constexpr uint64_t k3 = 0xc949d7c7509e6557ULL;
173 
174 /// Bitwise right rotate.
175 /// Normally this will compile to a single instruction, especially if the
176 /// shift is a manifest constant.
177 inline uint64_t rotate(uint64_t val, size_t shift) {
178   // Avoid shifting by 64: doing so yields an undefined result.
179   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
180 }
181 
182 inline uint64_t shift_mix(uint64_t val) {
183   return val ^ (val >> 47);
184 }
185 
186 inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
187   // Murmur-inspired hashing.
188   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
189   uint64_t a = (low ^ high) * kMul;
190   a ^= (a >> 47);
191   uint64_t b = (high ^ a) * kMul;
192   b ^= (b >> 47);
193   b *= kMul;
194   return b;
195 }
196 
197 inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
198   uint8_t a = s[0];
199   uint8_t b = s[len >> 1];
200   uint8_t c = s[len - 1];
201   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
202   uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
203   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
204 }
205 
206 inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
207   uint64_t a = fetch32(s);
208   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
209 }
210 
211 inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
212   uint64_t a = fetch64(s);
213   uint64_t b = fetch64(s + len - 8);
214   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
215 }
216 
217 inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
218   uint64_t a = fetch64(s) * k1;
219   uint64_t b = fetch64(s + 8);
220   uint64_t c = fetch64(s + len - 8) * k2;
221   uint64_t d = fetch64(s + len - 16) * k0;
222   return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
223                        a + rotate(b ^ k3, 20) - c + len + seed);
224 }
225 
226 inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
227   uint64_t z = fetch64(s + 24);
228   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
229   uint64_t b = rotate(a + z, 52);
230   uint64_t c = rotate(a, 37);
231   a += fetch64(s + 8);
232   c += rotate(a, 7);
233   a += fetch64(s + 16);
234   uint64_t vf = a + z;
235   uint64_t vs = b + rotate(a, 31) + c;
236   a = fetch64(s + 16) + fetch64(s + len - 32);
237   z = fetch64(s + len - 8);
238   b = rotate(a + z, 52);
239   c = rotate(a, 37);
240   a += fetch64(s + len - 24);
241   c += rotate(a, 7);
242   a += fetch64(s + len - 16);
243   uint64_t wf = a + z;
244   uint64_t ws = b + rotate(a, 31) + c;
245   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
246   return shift_mix((seed ^ (r * k0)) + vs) * k2;
247 }
248 
249 inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
250   if (length >= 4 && length <= 8)
251     return hash_4to8_bytes(s, length, seed);
252   if (length > 8 && length <= 16)
253     return hash_9to16_bytes(s, length, seed);
254   if (length > 16 && length <= 32)
255     return hash_17to32_bytes(s, length, seed);
256   if (length > 32)
257     return hash_33to64_bytes(s, length, seed);
258   if (length != 0)
259     return hash_1to3_bytes(s, length, seed);
260 
261   return k2 ^ seed;
262 }
263 
264 /// The intermediate state used during hashing.
265 /// Currently, the algorithm for computing hash codes is based on CityHash and
266 /// keeps 56 bytes of arbitrary state.
267 struct hash_state {
268   uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
269 
270   /// Create a new hash_state structure and initialize it based on the
271   /// seed and the first 64-byte chunk.
272   /// This effectively performs the initial mix.
273   static hash_state create(const char *s, uint64_t seed) {
274     hash_state state = {
275       0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
276       seed * k1, shift_mix(seed), 0 };
277     state.h6 = hash_16_bytes(state.h4, state.h5);
278     state.mix(s);
279     return state;
280   }
281 
282   /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
283   /// and 'b', including whatever is already in 'a' and 'b'.
284   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
285     a += fetch64(s);
286     uint64_t c = fetch64(s + 24);
287     b = rotate(b + a + c, 21);
288     uint64_t d = a;
289     a += fetch64(s + 8) + fetch64(s + 16);
290     b += rotate(a, 44) + d;
291     a += c;
292   }
293 
294   /// Mix in a 64-byte buffer of data.
295   /// We mix all 64 bytes even when the chunk length is smaller, but we
296   /// record the actual length.
297   void mix(const char *s) {
298     h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
299     h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
300     h0 ^= h6;
301     h1 += h3 + fetch64(s + 40);
302     h2 = rotate(h2 + h5, 33) * k1;
303     h3 = h4 * k1;
304     h4 = h0 + h5;
305     mix_32_bytes(s, h3, h4);
306     h5 = h2 + h6;
307     h6 = h1 + fetch64(s + 16);
308     mix_32_bytes(s + 32, h5, h6);
309     std::swap(h2, h0);
310   }
311 
312   /// Compute the final 64-bit hash code value based on the current
313   /// state and the length of bytes hashed.
314   uint64_t finalize(size_t length) {
315     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
316                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
317   }
318 };
319 
320 
321 /// A global, fixed seed-override variable.
322 ///
323 /// This variable can be set using the \see llvm::set_fixed_execution_seed
324 /// function. See that function for details. Do not, under any circumstances,
325 /// set or read this variable.
326 extern uint64_t fixed_seed_override;
327 
328 inline uint64_t get_execution_seed() {
329   // FIXME: This needs to be a per-execution seed. This is just a placeholder
330   // implementation. Switching to a per-execution seed is likely to flush out
331   // instability bugs and so will happen as its own commit.
332   //
333   // However, if there is a fixed seed override set the first time this is
334   // called, return that instead of the per-execution seed.
335   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
336   static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
337   return seed;
338 }
339 
340 
341 /// Trait to indicate whether a type's bits can be hashed directly.
342 ///
343 /// A type trait which is true if we want to combine values for hashing by
344 /// reading the underlying data. It is false if values of this type must
345 /// first be passed to hash_value, and the resulting hash_codes combined.
346 //
347 // FIXME: We want to replace is_integral_or_enum and is_pointer here with
348 // a predicate which asserts that comparing the underlying storage of two
349 // values of the type for equality is equivalent to comparing the two values
350 // for equality. For all the platforms we care about, this holds for integers
351 // and pointers, but there are platforms where it doesn't and we would like to
352 // support user-defined types which happen to satisfy this property.
353 template <typename T> struct is_hashable_data
354   : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
355                                    std::is_pointer<T>::value) &&
356                                   64 % sizeof(T) == 0)> {};
357 
358 // Special case std::pair to detect when both types are viable and when there
359 // is no alignment-derived padding in the pair. This is a bit of a lie because
360 // std::pair isn't truly POD, but it's close enough in all reasonable
361 // implementations for our use case of hashing the underlying data.
362 template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
363   : std::integral_constant<bool, (is_hashable_data<T>::value &&
364                                   is_hashable_data<U>::value &&
365                                   (sizeof(T) + sizeof(U)) ==
366                                    sizeof(std::pair<T, U>))> {};
367 
368 /// Helper to get the hashable data representation for a type.
369 /// This variant is enabled when the type itself can be used.
370 template <typename T>
371 std::enable_if_t<is_hashable_data<T>::value, T>
372 get_hashable_data(const T &value) {
373   return value;
374 }
375 /// Helper to get the hashable data representation for a type.
376 /// This variant is enabled when we must first call hash_value and use the
377 /// result as our data.
378 template <typename T>
379 std::enable_if_t<!is_hashable_data<T>::value, size_t>
380 get_hashable_data(const T &value) {
381   using ::llvm::hash_value;
382   return hash_value(value);
383 }
384 
385 /// Helper to store data from a value into a buffer and advance the
386 /// pointer into that buffer.
387 ///
388 /// This routine first checks whether there is enough space in the provided
389 /// buffer, and if not immediately returns false. If there is space, it
390 /// copies the underlying bytes of value into the buffer, advances the
391 /// buffer_ptr past the copied bytes, and returns true.
392 template <typename T>
393 bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
394                        size_t offset = 0) {
395   size_t store_size = sizeof(value) - offset;
396   if (buffer_ptr + store_size > buffer_end)
397     return false;
398   const char *value_data = reinterpret_cast<const char *>(&value);
399   memcpy(buffer_ptr, value_data + offset, store_size);
400   buffer_ptr += store_size;
401   return true;
402 }
403 
404 /// Implement the combining of integral values into a hash_code.
405 ///
406 /// This overload is selected when the value type of the iterator is
407 /// integral. Rather than computing a hash_code for each object and then
408 /// combining them, this (as an optimization) directly combines the integers.
409 template <typename InputIteratorT>
410 hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
411   const uint64_t seed = get_execution_seed();
412   char buffer[64], *buffer_ptr = buffer;
413   char *const buffer_end = std::end(buffer);
414   while (first != last && store_and_advance(buffer_ptr, buffer_end,
415                                             get_hashable_data(*first)))
416     ++first;
417   if (first == last)
418     return hash_short(buffer, buffer_ptr - buffer, seed);
419   assert(buffer_ptr == buffer_end);
420 
421   hash_state state = state.create(buffer, seed);
422   size_t length = 64;
423   while (first != last) {
424     // Fill up the buffer. We don't clear it, which re-mixes the last round
425     // when only a partial 64-byte chunk is left.
426     buffer_ptr = buffer;
427     while (first != last && store_and_advance(buffer_ptr, buffer_end,
428                                               get_hashable_data(*first)))
429       ++first;
430 
431     // Rotate the buffer if we did a partial fill in order to simulate doing
432     // a mix of the last 64-bytes. That is how the algorithm works when we
433     // have a contiguous byte sequence, and we want to emulate that here.
434     std::rotate(buffer, buffer_ptr, buffer_end);
435 
436     // Mix this chunk into the current state.
437     state.mix(buffer);
438     length += buffer_ptr - buffer;
439   };
440 
441   return state.finalize(length);
442 }
443 
444 /// Implement the combining of integral values into a hash_code.
445 ///
446 /// This overload is selected when the value type of the iterator is integral
447 /// and when the input iterator is actually a pointer. Rather than computing
448 /// a hash_code for each object and then combining them, this (as an
449 /// optimization) directly combines the integers. Also, because the integers
450 /// are stored in contiguous memory, this routine avoids copying each value
451 /// and directly reads from the underlying memory.
452 template <typename ValueT>
453 std::enable_if_t<is_hashable_data<ValueT>::value, hash_code>
454 hash_combine_range_impl(ValueT *first, ValueT *last) {
455   const uint64_t seed = get_execution_seed();
456   const char *s_begin = reinterpret_cast<const char *>(first);
457   const char *s_end = reinterpret_cast<const char *>(last);
458   const size_t length = std::distance(s_begin, s_end);
459   if (length <= 64)
460     return hash_short(s_begin, length, seed);
461 
462   const char *s_aligned_end = s_begin + (length & ~63);
463   hash_state state = state.create(s_begin, seed);
464   s_begin += 64;
465   while (s_begin != s_aligned_end) {
466     state.mix(s_begin);
467     s_begin += 64;
468   }
469   if (length & 63)
470     state.mix(s_end - 64);
471 
472   return state.finalize(length);
473 }
474 
475 } // namespace detail
476 } // namespace hashing
477 
478 
479 /// Compute a hash_code for a sequence of values.
480 ///
481 /// This hashes a sequence of values. It produces the same hash_code as
482 /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
483 /// and is significantly faster given pointers and types which can be hashed as
484 /// a sequence of bytes.
485 template <typename InputIteratorT>
486 hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
487   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
488 }
489 
490 
491 // Implementation details for hash_combine.
492 namespace hashing {
493 namespace detail {
494 
495 /// Helper class to manage the recursive combining of hash_combine
496 /// arguments.
497 ///
498 /// This class exists to manage the state and various calls involved in the
499 /// recursive combining of arguments used in hash_combine. It is particularly
500 /// useful at minimizing the code in the recursive calls to ease the pain
501 /// caused by a lack of variadic functions.
502 struct hash_combine_recursive_helper {
503   char buffer[64] = {};
504   hash_state state;
505   const uint64_t seed;
506 
507 public:
508   /// Construct a recursive hash combining helper.
509   ///
510   /// This sets up the state for a recursive hash combine, including getting
511   /// the seed and buffer setup.
512   hash_combine_recursive_helper()
513     : seed(get_execution_seed()) {}
514 
515   /// Combine one chunk of data into the current in-flight hash.
516   ///
517   /// This merges one chunk of data into the hash. First it tries to buffer
518   /// the data. If the buffer is full, it hashes the buffer into its
519   /// hash_state, empties it, and then merges the new chunk in. This also
520   /// handles cases where the data straddles the end of the buffer.
521   template <typename T>
522   char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
523     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
524       // Check for skew which prevents the buffer from being packed, and do
525       // a partial store into the buffer to fill it. This is only a concern
526       // with the variadic combine because that formation can have varying
527       // argument types.
528       size_t partial_store_size = buffer_end - buffer_ptr;
529       memcpy(buffer_ptr, &data, partial_store_size);
530 
531       // If the store fails, our buffer is full and ready to hash. We have to
532       // either initialize the hash state (on the first full buffer) or mix
533       // this buffer into the existing hash state. Length tracks the *hashed*
534       // length, not the buffered length.
535       if (length == 0) {
536         state = state.create(buffer, seed);
537         length = 64;
538       } else {
539         // Mix this chunk into the current state and bump length up by 64.
540         state.mix(buffer);
541         length += 64;
542       }
543       // Reset the buffer_ptr to the head of the buffer for the next chunk of
544       // data.
545       buffer_ptr = buffer;
546 
547       // Try again to store into the buffer -- this cannot fail as we only
548       // store types smaller than the buffer.
549       if (!store_and_advance(buffer_ptr, buffer_end, data,
550                              partial_store_size))
551         llvm_unreachable("buffer smaller than stored type");
552     }
553     return buffer_ptr;
554   }
555 
556   /// Recursive, variadic combining method.
557   ///
558   /// This function recurses through each argument, combining that argument
559   /// into a single hash.
560   template <typename T, typename ...Ts>
561   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
562                     const T &arg, const Ts &...args) {
563     buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
564 
565     // Recurse to the next argument.
566     return combine(length, buffer_ptr, buffer_end, args...);
567   }
568 
569   /// Base case for recursive, variadic combining.
570   ///
571   /// The base case when combining arguments recursively is reached when all
572   /// arguments have been handled. It flushes the remaining buffer and
573   /// constructs a hash_code.
574   hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
575     // Check whether the entire set of values fit in the buffer. If so, we'll
576     // use the optimized short hashing routine and skip state entirely.
577     if (length == 0)
578       return hash_short(buffer, buffer_ptr - buffer, seed);
579 
580     // Mix the final buffer, rotating it if we did a partial fill in order to
581     // simulate doing a mix of the last 64-bytes. That is how the algorithm
582     // works when we have a contiguous byte sequence, and we want to emulate
583     // that here.
584     std::rotate(buffer, buffer_ptr, buffer_end);
585 
586     // Mix this chunk into the current state.
587     state.mix(buffer);
588     length += buffer_ptr - buffer;
589 
590     return state.finalize(length);
591   }
592 };
593 
594 } // namespace detail
595 } // namespace hashing
596 
597 /// Combine values into a single hash_code.
598 ///
599 /// This routine accepts a varying number of arguments of any type. It will
600 /// attempt to combine them into a single hash_code. For user-defined types it
601 /// attempts to call a \see hash_value overload (via ADL) for the type. For
602 /// integer and pointer types it directly combines their data into the
603 /// resulting hash_code.
604 ///
605 /// The result is suitable for returning from a user's hash_value
606 /// *implementation* for their user-defined type. Consumers of a type should
607 /// *not* call this routine, they should instead call 'hash_value'.
608 template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
609   // Recursively hash each argument using a helper class.
610   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
611   return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
612 }
613 
614 // Implementation details for implementations of hash_value overloads provided
615 // here.
616 namespace hashing {
617 namespace detail {
618 
619 /// Helper to hash the value of a single integer.
620 ///
621 /// Overloads for smaller integer types are not provided to ensure consistent
622 /// behavior in the presence of integral promotions. Essentially,
623 /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
624 inline hash_code hash_integer_value(uint64_t value) {
625   // Similar to hash_4to8_bytes but using a seed instead of length.
626   const uint64_t seed = get_execution_seed();
627   const char *s = reinterpret_cast<const char *>(&value);
628   const uint64_t a = fetch32(s);
629   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
630 }
631 
632 } // namespace detail
633 } // namespace hashing
634 
635 // Declared and documented above, but defined here so that any of the hashing
636 // infrastructure is available.
637 template <typename T>
638 std::enable_if_t<is_integral_or_enum<T>::value, hash_code> hash_value(T value) {
639   return ::llvm::hashing::detail::hash_integer_value(
640       static_cast<uint64_t>(value));
641 }
642 
643 // Declared and documented above, but defined here so that any of the hashing
644 // infrastructure is available.
645 template <typename T> hash_code hash_value(const T *ptr) {
646   return ::llvm::hashing::detail::hash_integer_value(
647     reinterpret_cast<uintptr_t>(ptr));
648 }
649 
650 // Declared and documented above, but defined here so that any of the hashing
651 // infrastructure is available.
652 template <typename T, typename U>
653 hash_code hash_value(const std::pair<T, U> &arg) {
654   return hash_combine(arg.first, arg.second);
655 }
656 
657 template <typename... Ts> hash_code hash_value(const std::tuple<Ts...> &arg) {
658   return std::apply([](const auto &...xs) { return hash_combine(xs...); }, arg);
659 }
660 
661 // Declared and documented above, but defined here so that any of the hashing
662 // infrastructure is available.
663 template <typename T>
664 hash_code hash_value(const std::basic_string<T> &arg) {
665   return hash_combine_range(arg.begin(), arg.end());
666 }
667 
668 template <typename T> hash_code hash_value(const std::optional<T> &arg) {
669   return arg ? hash_combine(true, *arg) : hash_value(false);
670 }
671 
672 template <> struct DenseMapInfo<hash_code, void> {
673   static inline hash_code getEmptyKey() { return hash_code(-1); }
674   static inline hash_code getTombstoneKey() { return hash_code(-2); }
675   static unsigned getHashValue(hash_code val) { return val; }
676   static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; }
677 };
678 
679 } // namespace llvm
680 
681 #endif
682