1 //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass is used to evaluate branch probabilties.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
14 #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/ValueHandle.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/BranchProbability.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstdint>
28 #include <memory>
29 #include <utility>
30 
31 namespace llvm {
32 
33 class Function;
34 class Loop;
35 class LoopInfo;
36 class raw_ostream;
37 class DominatorTree;
38 class PostDominatorTree;
39 class TargetLibraryInfo;
40 class Value;
41 
42 /// Analysis providing branch probability information.
43 ///
44 /// This is a function analysis which provides information on the relative
45 /// probabilities of each "edge" in the function's CFG where such an edge is
46 /// defined by a pair (PredBlock and an index in the successors). The
47 /// probability of an edge from one block is always relative to the
48 /// probabilities of other edges from the block. The probabilites of all edges
49 /// from a block sum to exactly one (100%).
50 /// We use a pair (PredBlock and an index in the successors) to uniquely
51 /// identify an edge, since we can have multiple edges from Src to Dst.
52 /// As an example, we can have a switch which jumps to Dst with value 0 and
53 /// value 10.
54 ///
55 /// Process of computing branch probabilities can be logically viewed as three
56 /// step process:
57 ///
58 ///   First, if there is a profile information associated with the branch then
59 /// it is trivially translated to branch probabilities. There is one exception
60 /// from this rule though. Probabilities for edges leading to "unreachable"
61 /// blocks (blocks with the estimated weight not greater than
62 /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
63 /// override profile information. If no branch probabilities were calculated
64 /// on this step then take the next one.
65 ///
66 ///   Second, estimate absolute execution weights for each block based on
67 /// statically known information. Roots of such information are "cold",
68 /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
69 /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
70 /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
71 /// weights are propagated to the other blocks up the domination line. In
72 /// addition, if all successors have estimated weights set then maximum of these
73 /// weights assigned to the block itself (while this is not ideal heuristic in
74 /// theory it's simple and works reasonably well in most cases) and the process
75 /// repeats. Once the process of weights propagation converges branch
76 /// probabilities are set for all such branches that have at least one successor
77 /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
78 /// used for any successors which doesn't have its weight set. For loop back
79 /// branches we use their weights scaled by loop trip count equal to
80 /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
81 ///
82 /// Here is a simple example demonstrating how the described algorithm works.
83 ///
84 ///          BB1
85 ///         /   \
86 ///        v     v
87 ///      BB2     BB3
88 ///     /   \
89 ///    v     v
90 ///  ColdBB  UnreachBB
91 ///
92 /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
93 /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
94 /// successors. BB1 and BB3 has no explicit estimated weights and assumed to
95 /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
96 /// following probabilities:
97 /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
98 ///   0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
99 /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
100 ///          0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
101 /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
102 /// P(BB2->UnreachBB) =
103 ///   UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
104 ///
105 /// If no branch probabilities were calculated on this step then take the next
106 /// one.
107 ///
108 ///   Third, apply different kinds of local heuristics for each individual
109 /// branch until first match. For example probability of a pointer to be null is
110 /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
111 /// no local heuristic has been matched then branch is left with no explicit
112 /// probability set and assumed to have default probability.
113 class BranchProbabilityInfo {
114 public:
115   BranchProbabilityInfo() = default;
116 
117   BranchProbabilityInfo(const Function &F, const LoopInfo &LI,
118                         const TargetLibraryInfo *TLI = nullptr,
119                         DominatorTree *DT = nullptr,
120                         PostDominatorTree *PDT = nullptr) {
121     calculate(F, LI, TLI, DT, PDT);
122   }
123 
124   BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
125       : Probs(std::move(Arg.Probs)), LastF(Arg.LastF),
126         EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {}
127 
128   BranchProbabilityInfo(const BranchProbabilityInfo &) = delete;
129   BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete;
130 
131   BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) {
132     releaseMemory();
133     Probs = std::move(RHS.Probs);
134     EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
135     return *this;
136   }
137 
138   bool invalidate(Function &, const PreservedAnalyses &PA,
139                   FunctionAnalysisManager::Invalidator &);
140 
141   void releaseMemory();
142 
143   void print(raw_ostream &OS) const;
144 
145   /// Get an edge's probability, relative to other out-edges of the Src.
146   ///
147   /// This routine provides access to the fractional probability between zero
148   /// (0%) and one (100%) of this edge executing, relative to other edges
149   /// leaving the 'Src' block. The returned probability is never zero, and can
150   /// only be one if the source block has only one successor.
151   BranchProbability getEdgeProbability(const BasicBlock *Src,
152                                        unsigned IndexInSuccessors) const;
153 
154   /// Get the probability of going from Src to Dst.
155   ///
156   /// It returns the sum of all probabilities for edges from Src to Dst.
157   BranchProbability getEdgeProbability(const BasicBlock *Src,
158                                        const BasicBlock *Dst) const;
159 
160   BranchProbability getEdgeProbability(const BasicBlock *Src,
161                                        const_succ_iterator Dst) const;
162 
163   /// Test if an edge is hot relative to other out-edges of the Src.
164   ///
165   /// Check whether this edge out of the source block is 'hot'. We define hot
166   /// as having a relative probability >= 80%.
167   bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
168 
169   /// Print an edge's probability.
170   ///
171   /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
172   /// then prints that probability to the provided stream. That stream is then
173   /// returned.
174   raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src,
175                                     const BasicBlock *Dst) const;
176 
177 public:
178   /// Set the raw probabilities for all edges from the given block.
179   ///
180   /// This allows a pass to explicitly set edge probabilities for a block. It
181   /// can be used when updating the CFG to update the branch probability
182   /// information.
183   void setEdgeProbability(const BasicBlock *Src,
184                           const SmallVectorImpl<BranchProbability> &Probs);
185 
186   /// Copy outgoing edge probabilities from \p Src to \p Dst.
187   ///
188   /// This allows to keep probabilities unset for the destination if they were
189   /// unset for source.
190   void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst);
191 
192   /// Swap outgoing edges probabilities for \p Src with branch terminator
193   void swapSuccEdgesProbabilities(const BasicBlock *Src);
194 
195   static BranchProbability getBranchProbStackProtector(bool IsLikely) {
196     static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
197     return IsLikely ? LikelyProb : LikelyProb.getCompl();
198   }
199 
200   void calculate(const Function &F, const LoopInfo &LI,
201                  const TargetLibraryInfo *TLI, DominatorTree *DT,
202                  PostDominatorTree *PDT);
203 
204   /// Forget analysis results for the given basic block.
205   void eraseBlock(const BasicBlock *BB);
206 
207   // Data structure to track SCCs for handling irreducible loops.
208   class SccInfo {
209     // Enum of types to classify basic blocks in SCC. Basic block belonging to
210     // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
211     // basic block can be 'Header' and 'Exiting' at the same time.
212     enum SccBlockType {
213       Inner = 0x0,
214       Header = 0x1,
215       Exiting = 0x2,
216     };
217     // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
218     // belong to any SCC it is not in the map.
219     using SccMap = DenseMap<const BasicBlock *, int>;
220     // Each basic block in SCC is attributed with one or several types from
221     // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
222     // since basic block may be for example "Header" and "Exiting" at the same
223     // time and we need to be able to keep more than one value from
224     // SccBlockType.
225     using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>;
226     // Vector containing classification of basic blocks for all  SCCs where i'th
227     // vector element corresponds to SCC with ID equal to i.
228     using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
229 
230     SccMap SccNums;
231     SccBlockTypeMaps SccBlocks;
232 
233   public:
234     explicit SccInfo(const Function &F);
235 
236     /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
237     /// -1 is returned. If \p BB belongs to more than one SCC at the same time
238     /// result is undefined.
239     int getSCCNum(const BasicBlock *BB) const;
240     /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
241     /// false otherwise.
242     bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
243       return getSccBlockType(BB, SccNum) & Header;
244     }
245     /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
246     /// false otherwise.
247     bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
248       return getSccBlockType(BB, SccNum) & Exiting;
249     }
250     /// Fills in \p Enters vector with all such blocks that don't belong to
251     /// SCC with \p SccNum ID but there is an edge to a block belonging to the
252     /// SCC.
253     void getSccEnterBlocks(int SccNum,
254                            SmallVectorImpl<BasicBlock *> &Enters) const;
255     /// Fills in \p Exits vector with all such blocks that don't belong to
256     /// SCC with \p SccNum ID but there is an edge from a block belonging to the
257     /// SCC.
258     void getSccExitBlocks(int SccNum,
259                           SmallVectorImpl<BasicBlock *> &Exits) const;
260 
261   private:
262     /// Returns \p BB's type according to classification given by SccBlockType
263     /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
264     uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
265     /// Calculates \p BB's type and stores it in internal data structures for
266     /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
267     void calculateSccBlockType(const BasicBlock *BB, int SccNum);
268   };
269 
270 private:
271   // We need to store CallbackVH's in order to correctly handle basic block
272   // removal.
273   class BasicBlockCallbackVH final : public CallbackVH {
274     BranchProbabilityInfo *BPI;
275 
276     void deleted() override {
277       assert(BPI != nullptr);
278       BPI->eraseBlock(cast<BasicBlock>(getValPtr()));
279     }
280 
281   public:
282     BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
283         : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
284   };
285 
286   /// Pair of Loop and SCC ID number. Used to unify handling of normal and
287   /// SCC based loop representations.
288   using LoopData = std::pair<Loop *, int>;
289   /// Helper class to keep basic block along with its loop data information.
290   class LoopBlock {
291   public:
292     explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
293                        const SccInfo &SccI);
294 
295     const BasicBlock *getBlock() const { return BB; }
296     BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
297     LoopData getLoopData() const { return LD; }
298     Loop *getLoop() const { return LD.first; }
299     int getSccNum() const { return LD.second; }
300 
301     bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
302     bool belongsToSameLoop(const LoopBlock &LB) const {
303       return (LB.getLoop() && getLoop() == LB.getLoop()) ||
304              (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
305     }
306 
307   private:
308     const BasicBlock *const BB = nullptr;
309     LoopData LD = {nullptr, -1};
310   };
311 
312   // Pair of LoopBlocks representing an edge from first to second block.
313   using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
314 
315   DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
316 
317   // Since we allow duplicate edges from one basic block to another, we use
318   // a pair (PredBlock and an index in the successors) to specify an edge.
319   using Edge = std::pair<const BasicBlock *, unsigned>;
320 
321   DenseMap<Edge, BranchProbability> Probs;
322 
323   /// Track the last function we run over for printing.
324   const Function *LastF = nullptr;
325 
326   const LoopInfo *LI = nullptr;
327 
328   /// Keeps information about all SCCs in a function.
329   std::unique_ptr<const SccInfo> SccI;
330 
331   /// Keeps mapping of a basic block to its estimated weight.
332   SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
333 
334   /// Keeps mapping of a loop to estimated weight to enter the loop.
335   SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
336 
337   /// Helper to construct LoopBlock for \p BB.
338   LoopBlock getLoopBlock(const BasicBlock *BB) const {
339     return LoopBlock(BB, *LI, *SccI.get());
340   }
341 
342   /// Returns true if destination block belongs to some loop and source block is
343   /// either doesn't belong to any loop or belongs to a loop which is not inner
344   /// relative to the destination block.
345   bool isLoopEnteringEdge(const LoopEdge &Edge) const;
346   /// Returns true if source block belongs to some loop and destination block is
347   /// either doesn't belong to any loop or belongs to a loop which is not inner
348   /// relative to the source block.
349   bool isLoopExitingEdge(const LoopEdge &Edge) const;
350   /// Returns true if \p Edge is either enters to or exits from some loop, false
351   /// in all other cases.
352   bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
353   /// Returns true if source and destination blocks belongs to the same loop and
354   /// destination block is loop header.
355   bool isLoopBackEdge(const LoopEdge &Edge) const;
356   // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
357   void getLoopEnterBlocks(const LoopBlock &LB,
358                           SmallVectorImpl<BasicBlock *> &Enters) const;
359   // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
360   void getLoopExitBlocks(const LoopBlock &LB,
361                          SmallVectorImpl<BasicBlock *> &Exits) const;
362 
363   /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated
364   /// weight.
365   std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
366 
367   /// Returns estimated weight to enter \p L. In other words it is weight of
368   /// loop's header block not scaled by trip count. Returns std::nullopt if \p L
369   /// has no no estimated weight.
370   std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
371 
372   /// Return estimated weight for \p Edge. Returns std::nullopt if estimated
373   /// weight is unknown.
374   std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
375 
376   /// Iterates over all edges leading from \p SrcBB to \p Successors and
377   /// returns maximum of all estimated weights. If at least one edge has unknown
378   /// estimated weight std::nullopt is returned.
379   template <class IterT>
380   std::optional<uint32_t>
381   getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
382                             iterator_range<IterT> Successors) const;
383 
384   /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
385   /// return true. Otherwise \p BB's weight remains unchanged and false is
386   /// returned. In addition all blocks/loops that might need their weight to be
387   /// re-estimated are put into BlockWorkList/LoopWorkList.
388   bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
389                                   SmallVectorImpl<BasicBlock *> &BlockWorkList,
390                                   SmallVectorImpl<LoopBlock> &LoopWorkList);
391 
392   /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
393   /// up the domination tree.
394   void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
395                                      PostDominatorTree *PDT, uint32_t BBWeight,
396                                      SmallVectorImpl<BasicBlock *> &WorkList,
397                                      SmallVectorImpl<LoopBlock> &LoopWorkList);
398 
399   /// Returns block's weight encoded in the IR.
400   std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
401 
402   // Computes estimated weights for all blocks in \p F.
403   void computeEestimateBlockWeight(const Function &F, DominatorTree *DT,
404                                    PostDominatorTree *PDT);
405 
406   /// Based on computed weights by \p computeEstimatedBlockWeight set
407   /// probabilities on branches.
408   bool calcEstimatedHeuristics(const BasicBlock *BB);
409   bool calcMetadataWeights(const BasicBlock *BB);
410   bool calcPointerHeuristics(const BasicBlock *BB);
411   bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
412   bool calcFloatingPointHeuristics(const BasicBlock *BB);
413 };
414 
415 /// Analysis pass which computes \c BranchProbabilityInfo.
416 class BranchProbabilityAnalysis
417     : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
418   friend AnalysisInfoMixin<BranchProbabilityAnalysis>;
419 
420   static AnalysisKey Key;
421 
422 public:
423   /// Provide the result type for this analysis pass.
424   using Result = BranchProbabilityInfo;
425 
426   /// Run the analysis pass over a function and produce BPI.
427   BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM);
428 };
429 
430 /// Printer pass for the \c BranchProbabilityAnalysis results.
431 class BranchProbabilityPrinterPass
432     : public PassInfoMixin<BranchProbabilityPrinterPass> {
433   raw_ostream &OS;
434 
435 public:
436   explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {}
437 
438   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
439 };
440 
441 /// Legacy analysis pass which computes \c BranchProbabilityInfo.
442 class BranchProbabilityInfoWrapperPass : public FunctionPass {
443   BranchProbabilityInfo BPI;
444 
445 public:
446   static char ID;
447 
448   BranchProbabilityInfoWrapperPass();
449 
450   BranchProbabilityInfo &getBPI() { return BPI; }
451   const BranchProbabilityInfo &getBPI() const { return BPI; }
452 
453   void getAnalysisUsage(AnalysisUsage &AU) const override;
454   bool runOnFunction(Function &F) override;
455   void releaseMemory() override;
456   void print(raw_ostream &OS, const Module *M = nullptr) const override;
457 };
458 
459 } // end namespace llvm
460 
461 #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
462