1 //===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides interfaces used to build and manipulate a call graph,
11 /// which is a very useful tool for interprocedural optimization.
12 ///
13 /// Every function in a module is represented as a node in the call graph.  The
14 /// callgraph node keeps track of which functions are called by the function
15 /// corresponding to the node.
16 ///
17 /// A call graph may contain nodes where the function that they correspond to
18 /// is null.  These 'external' nodes are used to represent control flow that is
19 /// not represented (or analyzable) in the module.  In particular, this
20 /// analysis builds one external node such that:
21 ///   1. All functions in the module without internal linkage will have edges
22 ///      from this external node, indicating that they could be called by
23 ///      functions outside of the module.
24 ///   2. All functions whose address is used for something more than a direct
25 ///      call, for example being stored into a memory location will also have
26 ///      an edge from this external node.  Since they may be called by an
27 ///      unknown caller later, they must be tracked as such.
28 ///
29 /// There is a second external node added for calls that leave this module.
30 /// Functions have a call edge to the external node iff:
31 ///   1. The function is external, reflecting the fact that they could call
32 ///      anything without internal linkage or that has its address taken.
33 ///   2. The function contains an indirect function call.
34 ///
35 /// As an extension in the future, there may be multiple nodes with a null
36 /// function.  These will be used when we can prove (through pointer analysis)
37 /// that an indirect call site can call only a specific set of functions.
38 ///
39 /// Because of these properties, the CallGraph captures a conservative superset
40 /// of all of the caller-callee relationships, which is useful for
41 /// transformations.
42 ///
43 //===----------------------------------------------------------------------===//
44 
45 #ifndef LLVM_ANALYSIS_CALLGRAPH_H
46 #define LLVM_ANALYSIS_CALLGRAPH_H
47 
48 #include "llvm/ADT/GraphTraits.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Pass.h"
56 #include <cassert>
57 #include <map>
58 #include <memory>
59 #include <utility>
60 #include <vector>
61 
62 namespace llvm {
63 
64 class CallGraphNode;
65 class Module;
66 class raw_ostream;
67 
68 /// The basic data container for the call graph of a \c Module of IR.
69 ///
70 /// This class exposes both the interface to the call graph for a module of IR.
71 ///
72 /// The core call graph itself can also be updated to reflect changes to the IR.
73 class CallGraph {
74   Module &M;
75 
76   using FunctionMapTy =
77       std::map<const Function *, std::unique_ptr<CallGraphNode>>;
78 
79   /// A map from \c Function* to \c CallGraphNode*.
80   FunctionMapTy FunctionMap;
81 
82   /// This node has edges to all external functions and those internal
83   /// functions that have their address taken.
84   CallGraphNode *ExternalCallingNode;
85 
86   /// This node has edges to it from all functions making indirect calls
87   /// or calling an external function.
88   std::unique_ptr<CallGraphNode> CallsExternalNode;
89 
90   /// Replace the function represented by this node by another.
91   ///
92   /// This does not rescan the body of the function, so it is suitable when
93   /// splicing the body of one function to another while also updating all
94   /// callers from the old function to the new.
95   void spliceFunction(const Function *From, const Function *To);
96 
97   /// Add a function to the call graph, and link the node to all of the
98   /// functions that it calls.
99   void addToCallGraph(Function *F);
100 
101 public:
102   explicit CallGraph(Module &M);
103   CallGraph(CallGraph &&Arg);
104   ~CallGraph();
105 
106   void print(raw_ostream &OS) const;
107   void dump() const;
108 
109   using iterator = FunctionMapTy::iterator;
110   using const_iterator = FunctionMapTy::const_iterator;
111 
112   /// Returns the module the call graph corresponds to.
113   Module &getModule() const { return M; }
114 
115   inline iterator begin() { return FunctionMap.begin(); }
116   inline iterator end() { return FunctionMap.end(); }
117   inline const_iterator begin() const { return FunctionMap.begin(); }
118   inline const_iterator end() const { return FunctionMap.end(); }
119 
120   /// Returns the call graph node for the provided function.
121   inline const CallGraphNode *operator[](const Function *F) const {
122     const_iterator I = FunctionMap.find(F);
123     assert(I != FunctionMap.end() && "Function not in callgraph!");
124     return I->second.get();
125   }
126 
127   /// Returns the call graph node for the provided function.
128   inline CallGraphNode *operator[](const Function *F) {
129     const_iterator I = FunctionMap.find(F);
130     assert(I != FunctionMap.end() && "Function not in callgraph!");
131     return I->second.get();
132   }
133 
134   /// Returns the \c CallGraphNode which is used to represent
135   /// undetermined calls into the callgraph.
136   CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
137 
138   CallGraphNode *getCallsExternalNode() const {
139     return CallsExternalNode.get();
140   }
141 
142   //===---------------------------------------------------------------------
143   // Functions to keep a call graph up to date with a function that has been
144   // modified.
145   //
146 
147   /// Unlink the function from this module, returning it.
148   ///
149   /// Because this removes the function from the module, the call graph node is
150   /// destroyed.  This is only valid if the function does not call any other
151   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
152   /// this is to dropAllReferences before calling this.
153   Function *removeFunctionFromModule(CallGraphNode *CGN);
154 
155   /// Similar to operator[], but this will insert a new CallGraphNode for
156   /// \c F if one does not already exist.
157   CallGraphNode *getOrInsertFunction(const Function *F);
158 };
159 
160 /// A node in the call graph for a module.
161 ///
162 /// Typically represents a function in the call graph. There are also special
163 /// "null" nodes used to represent theoretical entries in the call graph.
164 class CallGraphNode {
165 public:
166   /// A pair of the calling instruction (a call or invoke)
167   /// and the call graph node being called.
168   using CallRecord = std::pair<WeakTrackingVH, CallGraphNode *>;
169 
170 public:
171   using CalledFunctionsVector = std::vector<CallRecord>;
172 
173   /// Creates a node for the specified function.
174   inline CallGraphNode(Function *F) : F(F) {}
175 
176   CallGraphNode(const CallGraphNode &) = delete;
177   CallGraphNode &operator=(const CallGraphNode &) = delete;
178 
179   ~CallGraphNode() {
180     assert(NumReferences == 0 && "Node deleted while references remain");
181   }
182 
183   using iterator = std::vector<CallRecord>::iterator;
184   using const_iterator = std::vector<CallRecord>::const_iterator;
185 
186   /// Returns the function that this call graph node represents.
187   Function *getFunction() const { return F; }
188 
189   inline iterator begin() { return CalledFunctions.begin(); }
190   inline iterator end() { return CalledFunctions.end(); }
191   inline const_iterator begin() const { return CalledFunctions.begin(); }
192   inline const_iterator end() const { return CalledFunctions.end(); }
193   inline bool empty() const { return CalledFunctions.empty(); }
194   inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
195 
196   /// Returns the number of other CallGraphNodes in this CallGraph that
197   /// reference this node in their callee list.
198   unsigned getNumReferences() const { return NumReferences; }
199 
200   /// Returns the i'th called function.
201   CallGraphNode *operator[](unsigned i) const {
202     assert(i < CalledFunctions.size() && "Invalid index");
203     return CalledFunctions[i].second;
204   }
205 
206   /// Print out this call graph node.
207   void dump() const;
208   void print(raw_ostream &OS) const;
209 
210   //===---------------------------------------------------------------------
211   // Methods to keep a call graph up to date with a function that has been
212   // modified
213   //
214 
215   /// Removes all edges from this CallGraphNode to any functions it
216   /// calls.
217   void removeAllCalledFunctions() {
218     while (!CalledFunctions.empty()) {
219       CalledFunctions.back().second->DropRef();
220       CalledFunctions.pop_back();
221     }
222   }
223 
224   /// Moves all the callee information from N to this node.
225   void stealCalledFunctionsFrom(CallGraphNode *N) {
226     assert(CalledFunctions.empty() &&
227            "Cannot steal callsite information if I already have some");
228     std::swap(CalledFunctions, N->CalledFunctions);
229   }
230 
231   /// Adds a function to the list of functions called by this one.
232   void addCalledFunction(CallBase *Call, CallGraphNode *M) {
233     assert(!Call || !Call->getCalledFunction() ||
234            !Call->getCalledFunction()->isIntrinsic() ||
235            !Intrinsic::isLeaf(Call->getCalledFunction()->getIntrinsicID()));
236     CalledFunctions.emplace_back(Call, M);
237     M->AddRef();
238   }
239 
240   void removeCallEdge(iterator I) {
241     I->second->DropRef();
242     *I = CalledFunctions.back();
243     CalledFunctions.pop_back();
244   }
245 
246   /// Removes the edge in the node for the specified call site.
247   ///
248   /// Note that this method takes linear time, so it should be used sparingly.
249   void removeCallEdgeFor(CallBase &Call);
250 
251   /// Removes all call edges from this node to the specified callee
252   /// function.
253   ///
254   /// This takes more time to execute than removeCallEdgeTo, so it should not
255   /// be used unless necessary.
256   void removeAnyCallEdgeTo(CallGraphNode *Callee);
257 
258   /// Removes one edge associated with a null callsite from this node to
259   /// the specified callee function.
260   void removeOneAbstractEdgeTo(CallGraphNode *Callee);
261 
262   /// Replaces the edge in the node for the specified call site with a
263   /// new one.
264   ///
265   /// Note that this method takes linear time, so it should be used sparingly.
266   void replaceCallEdge(CallBase &Call, CallBase &NewCall,
267                        CallGraphNode *NewNode);
268 
269 private:
270   friend class CallGraph;
271 
272   Function *F;
273 
274   std::vector<CallRecord> CalledFunctions;
275 
276   /// The number of times that this CallGraphNode occurs in the
277   /// CalledFunctions array of this or other CallGraphNodes.
278   unsigned NumReferences = 0;
279 
280   void DropRef() { --NumReferences; }
281   void AddRef() { ++NumReferences; }
282 
283   /// A special function that should only be used by the CallGraph class.
284   void allReferencesDropped() { NumReferences = 0; }
285 };
286 
287 /// An analysis pass to compute the \c CallGraph for a \c Module.
288 ///
289 /// This class implements the concept of an analysis pass used by the \c
290 /// ModuleAnalysisManager to run an analysis over a module and cache the
291 /// resulting data.
292 class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> {
293   friend AnalysisInfoMixin<CallGraphAnalysis>;
294 
295   static AnalysisKey Key;
296 
297 public:
298   /// A formulaic type to inform clients of the result type.
299   using Result = CallGraph;
300 
301   /// Compute the \c CallGraph for the module \c M.
302   ///
303   /// The real work here is done in the \c CallGraph constructor.
304   CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); }
305 };
306 
307 /// Printer pass for the \c CallGraphAnalysis results.
308 class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> {
309   raw_ostream &OS;
310 
311 public:
312   explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
313 
314   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
315 };
316 
317 /// The \c ModulePass which wraps up a \c CallGraph and the logic to
318 /// build it.
319 ///
320 /// This class exposes both the interface to the call graph container and the
321 /// module pass which runs over a module of IR and produces the call graph. The
322 /// call graph interface is entirelly a wrapper around a \c CallGraph object
323 /// which is stored internally for each module.
324 class CallGraphWrapperPass : public ModulePass {
325   std::unique_ptr<CallGraph> G;
326 
327 public:
328   static char ID; // Class identification, replacement for typeinfo
329 
330   CallGraphWrapperPass();
331   ~CallGraphWrapperPass() override;
332 
333   /// The internal \c CallGraph around which the rest of this interface
334   /// is wrapped.
335   const CallGraph &getCallGraph() const { return *G; }
336   CallGraph &getCallGraph() { return *G; }
337 
338   using iterator = CallGraph::iterator;
339   using const_iterator = CallGraph::const_iterator;
340 
341   /// Returns the module the call graph corresponds to.
342   Module &getModule() const { return G->getModule(); }
343 
344   inline iterator begin() { return G->begin(); }
345   inline iterator end() { return G->end(); }
346   inline const_iterator begin() const { return G->begin(); }
347   inline const_iterator end() const { return G->end(); }
348 
349   /// Returns the call graph node for the provided function.
350   inline const CallGraphNode *operator[](const Function *F) const {
351     return (*G)[F];
352   }
353 
354   /// Returns the call graph node for the provided function.
355   inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
356 
357   /// Returns the \c CallGraphNode which is used to represent
358   /// undetermined calls into the callgraph.
359   CallGraphNode *getExternalCallingNode() const {
360     return G->getExternalCallingNode();
361   }
362 
363   CallGraphNode *getCallsExternalNode() const {
364     return G->getCallsExternalNode();
365   }
366 
367   //===---------------------------------------------------------------------
368   // Functions to keep a call graph up to date with a function that has been
369   // modified.
370   //
371 
372   /// Unlink the function from this module, returning it.
373   ///
374   /// Because this removes the function from the module, the call graph node is
375   /// destroyed.  This is only valid if the function does not call any other
376   /// functions (ie, there are no edges in it's CGN).  The easiest way to do
377   /// this is to dropAllReferences before calling this.
378   Function *removeFunctionFromModule(CallGraphNode *CGN) {
379     return G->removeFunctionFromModule(CGN);
380   }
381 
382   /// Similar to operator[], but this will insert a new CallGraphNode for
383   /// \c F if one does not already exist.
384   CallGraphNode *getOrInsertFunction(const Function *F) {
385     return G->getOrInsertFunction(F);
386   }
387 
388   //===---------------------------------------------------------------------
389   // Implementation of the ModulePass interface needed here.
390   //
391 
392   void getAnalysisUsage(AnalysisUsage &AU) const override;
393   bool runOnModule(Module &M) override;
394   void releaseMemory() override;
395 
396   void print(raw_ostream &o, const Module *) const override;
397   void dump() const;
398 };
399 
400 //===----------------------------------------------------------------------===//
401 // GraphTraits specializations for call graphs so that they can be treated as
402 // graphs by the generic graph algorithms.
403 //
404 
405 // Provide graph traits for tranversing call graphs using standard graph
406 // traversals.
407 template <> struct GraphTraits<CallGraphNode *> {
408   using NodeRef = CallGraphNode *;
409   using CGNPairTy = CallGraphNode::CallRecord;
410 
411   static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; }
412   static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
413 
414   using ChildIteratorType =
415       mapped_iterator<CallGraphNode::iterator, decltype(&CGNGetValue)>;
416 
417   static ChildIteratorType child_begin(NodeRef N) {
418     return ChildIteratorType(N->begin(), &CGNGetValue);
419   }
420 
421   static ChildIteratorType child_end(NodeRef N) {
422     return ChildIteratorType(N->end(), &CGNGetValue);
423   }
424 };
425 
426 template <> struct GraphTraits<const CallGraphNode *> {
427   using NodeRef = const CallGraphNode *;
428   using CGNPairTy = CallGraphNode::CallRecord;
429   using EdgeRef = const CallGraphNode::CallRecord &;
430 
431   static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; }
432   static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
433 
434   using ChildIteratorType =
435       mapped_iterator<CallGraphNode::const_iterator, decltype(&CGNGetValue)>;
436   using ChildEdgeIteratorType = CallGraphNode::const_iterator;
437 
438   static ChildIteratorType child_begin(NodeRef N) {
439     return ChildIteratorType(N->begin(), &CGNGetValue);
440   }
441 
442   static ChildIteratorType child_end(NodeRef N) {
443     return ChildIteratorType(N->end(), &CGNGetValue);
444   }
445 
446   static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
447     return N->begin();
448   }
449   static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
450 
451   static NodeRef edge_dest(EdgeRef E) { return E.second; }
452 };
453 
454 template <>
455 struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
456   using PairTy =
457       std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
458 
459   static NodeRef getEntryNode(CallGraph *CGN) {
460     return CGN->getExternalCallingNode(); // Start at the external node!
461   }
462 
463   static CallGraphNode *CGGetValuePtr(const PairTy &P) {
464     return P.second.get();
465   }
466 
467   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
468   using nodes_iterator =
469       mapped_iterator<CallGraph::iterator, decltype(&CGGetValuePtr)>;
470 
471   static nodes_iterator nodes_begin(CallGraph *CG) {
472     return nodes_iterator(CG->begin(), &CGGetValuePtr);
473   }
474 
475   static nodes_iterator nodes_end(CallGraph *CG) {
476     return nodes_iterator(CG->end(), &CGGetValuePtr);
477   }
478 };
479 
480 template <>
481 struct GraphTraits<const CallGraph *> : public GraphTraits<
482                                             const CallGraphNode *> {
483   using PairTy =
484       std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
485 
486   static NodeRef getEntryNode(const CallGraph *CGN) {
487     return CGN->getExternalCallingNode(); // Start at the external node!
488   }
489 
490   static const CallGraphNode *CGGetValuePtr(const PairTy &P) {
491     return P.second.get();
492   }
493 
494   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
495   using nodes_iterator =
496       mapped_iterator<CallGraph::const_iterator, decltype(&CGGetValuePtr)>;
497 
498   static nodes_iterator nodes_begin(const CallGraph *CG) {
499     return nodes_iterator(CG->begin(), &CGGetValuePtr);
500   }
501 
502   static nodes_iterator nodes_end(const CallGraph *CG) {
503     return nodes_iterator(CG->end(), &CGGetValuePtr);
504   }
505 };
506 
507 } // end namespace llvm
508 
509 #endif // LLVM_ANALYSIS_CALLGRAPH_H
510