1 //===- IRSimilarityIdentifier.h - Find similarity in a module --------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // Interface file for the IRSimilarityIdentifier for identifying similarities in
11 // IR including the IRInstructionMapper, which maps an Instruction to unsigned
12 // integers.
13 //
14 // Two sequences of instructions are called "similar" if they perform the same
15 // series of operations for all inputs.
16 //
17 // \code
18 // %1 = add i32 %a, 10
19 // %2 = add i32 %a, %1
20 // %3 = icmp slt icmp %1, %2
21 // \endcode
22 //
23 // and
24 //
25 // \code
26 // %1 = add i32 11, %a
27 // %2 = sub i32 %a, %1
28 // %3 = icmp sgt icmp %2, %1
29 // \endcode
30 //
31 // ultimately have the same result, even if the inputs, and structure are
32 // slightly different.
33 //
34 // For instructions, we do not worry about operands that do not have fixed
35 // semantic meaning to the program.  We consider the opcode that the instruction
36 // has, the types, parameters, and extra information such as the function name,
37 // or comparison predicate.  These are used to create a hash to map instructions
38 // to integers to be used in similarity matching in sequences of instructions
39 //
40 // Terminology:
41 // An IRSimilarityCandidate is a region of IRInstructionData (wrapped
42 // Instructions), usually used to denote a region of similarity has been found.
43 //
44 // A SimilarityGroup is a set of IRSimilarityCandidates that are structurally
45 // similar to one another.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 #ifndef LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
50 #define LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
51 
52 #include "llvm/IR/InstVisitor.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/Allocator.h"
57 
58 namespace llvm {
59 class Module;
60 
61 namespace IRSimilarity {
62 
63 struct IRInstructionDataList;
64 
65 /// This represents what is and is not supported when finding similarity in
66 /// Instructions.
67 ///
68 /// Legal Instructions are considered when looking at similarity between
69 /// Instructions.
70 ///
71 /// Illegal Instructions cannot be considered when looking for similarity
72 /// between Instructions. They act as boundaries between similarity regions.
73 ///
74 /// Invisible Instructions are skipped over during analysis.
75 // TODO: Shared with MachineOutliner
76 enum InstrType { Legal, Illegal, Invisible };
77 
78 /// This provides the utilities for hashing an Instruction to an unsigned
79 /// integer. Two IRInstructionDatas produce the same hash value when their
80 /// underlying Instructions perform the same operation (even if they don't have
81 /// the same input operands.)
82 /// As a more concrete example, consider the following:
83 ///
84 /// \code
85 /// %add1 = add i32 %a, %b
86 /// %add2 = add i32 %c, %d
87 /// %add3 = add i64 %e, %f
88 /// \endcode
89 ///
90 // Then the IRInstructionData wrappers for these Instructions may be hashed like
91 /// so:
92 ///
93 /// \code
94 /// ; These two adds have the same types and operand types, so they hash to the
95 /// ; same number.
96 /// %add1 = add i32 %a, %b ; Hash: 1
97 /// %add2 = add i32 %c, %d ; Hash: 1
98 /// ; This add produces an i64. This differentiates it from %add1 and %add2. So,
99 /// ; it hashes to a different number.
100 /// %add3 = add i64 %e, %f; Hash: 2
101 /// \endcode
102 ///
103 ///
104 /// This hashing scheme will be used to represent the program as a very long
105 /// string. This string can then be placed in a data structure which can be used
106 /// for similarity queries.
107 ///
108 /// TODO: Handle types of Instructions which can be equal even with different
109 /// operands. (E.g. comparisons with swapped predicates.)
110 /// TODO: Handle CallInsts, which are only checked for function type
111 /// by \ref isSameOperationAs.
112 /// TODO: Handle GetElementPtrInsts, as some of the operands have to be the
113 /// exact same, and some do not.
114 struct IRInstructionData
115     : ilist_node<IRInstructionData, ilist_sentinel_tracking<true>> {
116 
117   /// The source Instruction that is being wrapped.
118   Instruction *Inst = nullptr;
119   /// The values of the operands in the Instruction.
120   SmallVector<Value *, 4> OperVals;
121   /// The legality of the wrapped instruction. This is informed by InstrType,
122   /// and is used when checking when two instructions are considered similar.
123   /// If either instruction is not legal, the instructions are automatically not
124   /// considered similar.
125   bool Legal = false;
126 
127   /// This is only relevant if we are wrapping a CmpInst where we needed to
128   /// change the predicate of a compare instruction from a greater than form
129   /// to a less than form.  It is None otherwise.
130   Optional<CmpInst::Predicate> RevisedPredicate;
131 
132   /// This is only relevant if we are wrapping a CallInst. If we are requiring
133   /// that the function calls have matching names as well as types, and the
134   /// call is not an indirect call, this will hold the name of the function.  If
135   /// it is an indirect string, it will be the empty string.  However, if this
136   /// requirement is not in place it will be the empty string regardless of the
137   /// function call type.  The value held here is used to create the hash of the
138   /// instruction, and check to make sure two instructions are close to one
139   /// another.
140   Optional<std::string> CalleeName;
141 
142   /// This structure holds the distances of how far "ahead of" or "behind" the
143   /// target blocks of a branch, or the incoming blocks of a phi nodes are.
144   /// If the value is negative, it means that the block was registered before
145   /// the block of this instruction in terms of blocks in the function.
146   /// Code Example:
147   /// \code
148   /// block_1:
149   ///   br i1 %0, label %block_2, label %block_3
150   /// block_2:
151   ///   br i1 %1, label %block_1, label %block_2
152   /// block_3:
153   ///   br i1 %2, label %block_2, label %block_1
154   /// ; Replacing the labels with relative values, this becomes:
155   /// block_1:
156   ///   br i1 %0, distance 1, distance 2
157   /// block_2:
158   ///   br i1 %1, distance -1, distance 0
159   /// block_3:
160   ///   br i1 %2, distance -1, distance -2
161   /// \endcode
162   /// Taking block_2 as our example, block_1 is "behind" block_2, and block_2 is
163   /// "ahead" of block_2.
164   SmallVector<int, 4> RelativeBlockLocations;
165 
166   /// Gather the information that is difficult to gather for an Instruction, or
167   /// is changed. i.e. the operands of an Instruction and the Types of those
168   /// operands. This extra information allows for similarity matching to make
169   /// assertions that allow for more flexibility when checking for whether an
170   /// Instruction performs the same operation.
171   IRInstructionData(Instruction &I, bool Legality, IRInstructionDataList &IDL);
172   IRInstructionData(IRInstructionDataList &IDL);
173 
174   /// Fills data stuctures for IRInstructionData when it is constructed from a
175   // reference or a pointer.
176   void initializeInstruction();
177 
178   /// Get the predicate that the compare instruction is using for hashing the
179   /// instruction. the IRInstructionData must be wrapping a CmpInst.
180   CmpInst::Predicate getPredicate() const;
181 
182   /// Get the callee name that the call instruction is using for hashing the
183   /// instruction. The IRInstructionData must be wrapping a CallInst.
184   StringRef getCalleeName() const;
185 
186   /// A function that swaps the predicates to their less than form if they are
187   /// in a greater than form. Otherwise, the predicate is unchanged.
188   ///
189   /// \param CI - The comparison operation to find a consistent preidcate for.
190   /// \return the consistent comparison predicate.
191   static CmpInst::Predicate predicateForConsistency(CmpInst *CI);
192 
193   /// For an IRInstructionData containing a branch, finds the
194   /// relative distances from the source basic block to the target by taking
195   /// the difference of the number assigned to the current basic block and the
196   /// target basic block of the branch.
197   ///
198   /// \param BasicBlockToInteger - The mapping of basic blocks to their location
199   /// in the module.
200   void
201   setBranchSuccessors(DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger);
202 
203   /// For an IRInstructionData containing a CallInst, set the function name
204   /// appropriately.  This will be an empty string if it is an indirect call,
205   /// or we are not matching by name of the called function.  It will be the
206   /// name of the function if \p MatchByName is true and it is not an indirect
207   /// call.  We may decide not to match by name in order to expand the
208   /// size of the regions we can match.  If a function name has the same type
209   /// signature, but the different name, the region of code is still almost the
210   /// same.  Since function names can be treated as constants, the name itself
211   /// could be extrapolated away.  However, matching by name provides a
212   /// specificity and more "identical" code than not matching by name.
213   ///
214   /// \param MatchByName - A flag to mark whether we are using the called
215   /// function name as a differentiating parameter.
216   void setCalleeName(bool MatchByName = true);
217 
218   /// For an IRInstructionData containing a PHINode, finds the
219   /// relative distances from the incoming basic block to the current block by
220   /// taking the difference of the number assigned to the current basic block
221   /// and the incoming basic block of the branch.
222   ///
223   /// \param BasicBlockToInteger - The mapping of basic blocks to their location
224   /// in the module.
225   void
226   setPHIPredecessors(DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger);
227 
228   /// Hashes \p Value based on its opcode, types, and operand types.
229   /// Two IRInstructionData instances produce the same hash when they perform
230   /// the same operation.
231   ///
232   /// As a simple example, consider the following instructions.
233   ///
234   /// \code
235   /// %add1 = add i32 %x1, %y1
236   /// %add2 = add i32 %x2, %y2
237   ///
238   /// %sub = sub i32 %x1, %y1
239   ///
240   /// %add_i64 = add i64 %x2, %y2
241   /// \endcode
242   ///
243   /// Because the first two adds operate the same types, and are performing the
244   /// same action, they will be hashed to the same value.
245   ///
246   /// However, the subtraction instruction is not the same as an addition, and
247   /// will be hashed to a different value.
248   ///
249   /// Finally, the last add has a different type compared to the first two add
250   /// instructions, so it will also be hashed to a different value that any of
251   /// the previous instructions.
252   ///
253   /// \param [in] ID - The IRInstructionData instance to be hashed.
254   /// \returns A hash_value of the IRInstructionData.
255   friend hash_code hash_value(const IRInstructionData &ID) {
256     SmallVector<Type *, 4> OperTypes;
257     for (Value *V : ID.OperVals)
258       OperTypes.push_back(V->getType());
259 
260     if (isa<CmpInst>(ID.Inst))
261       return llvm::hash_combine(
262           llvm::hash_value(ID.Inst->getOpcode()),
263           llvm::hash_value(ID.Inst->getType()),
264           llvm::hash_value(ID.getPredicate()),
265           llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
266 
267     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(ID.Inst)) {
268       // To hash intrinsics, we use the opcode, and types like the other
269       // instructions, but also, the Intrinsic ID, and the Name of the
270       // intrinsic.
271       Intrinsic::ID IntrinsicID = II->getIntrinsicID();
272       return llvm::hash_combine(
273           llvm::hash_value(ID.Inst->getOpcode()),
274           llvm::hash_value(ID.Inst->getType()), llvm::hash_value(IntrinsicID),
275           llvm::hash_value(*ID.CalleeName),
276           llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
277     }
278 
279     if (isa<CallInst>(ID.Inst)) {
280       std::string FunctionName = *ID.CalleeName;
281       return llvm::hash_combine(
282           llvm::hash_value(ID.Inst->getOpcode()),
283           llvm::hash_value(ID.Inst->getType()),
284           llvm::hash_value(ID.Inst->getType()), llvm::hash_value(FunctionName),
285           llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
286     }
287 
288     return llvm::hash_combine(
289         llvm::hash_value(ID.Inst->getOpcode()),
290         llvm::hash_value(ID.Inst->getType()),
291         llvm::hash_combine_range(OperTypes.begin(), OperTypes.end()));
292   }
293 
294   IRInstructionDataList *IDL = nullptr;
295 };
296 
297 struct IRInstructionDataList
298     : simple_ilist<IRInstructionData, ilist_sentinel_tracking<true>> {};
299 
300 /// Compare one IRInstructionData class to another IRInstructionData class for
301 /// whether they are performing a the same operation, and can mapped to the
302 /// same value. For regular instructions if the hash value is the same, then
303 /// they will also be close.
304 ///
305 /// \param A - The first IRInstructionData class to compare
306 /// \param B - The second IRInstructionData class to compare
307 /// \returns true if \p A and \p B are similar enough to be mapped to the same
308 /// value.
309 bool isClose(const IRInstructionData &A, const IRInstructionData &B);
310 
311 struct IRInstructionDataTraits : DenseMapInfo<IRInstructionData *> {
312   static inline IRInstructionData *getEmptyKey() { return nullptr; }
313   static inline IRInstructionData *getTombstoneKey() {
314     return reinterpret_cast<IRInstructionData *>(-1);
315   }
316 
317   static unsigned getHashValue(const IRInstructionData *E) {
318     using llvm::hash_value;
319     assert(E && "IRInstructionData is a nullptr?");
320     return hash_value(*E);
321   }
322 
323   static bool isEqual(const IRInstructionData *LHS,
324                       const IRInstructionData *RHS) {
325     if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
326         LHS == getEmptyKey() || LHS == getTombstoneKey())
327       return LHS == RHS;
328 
329     assert(LHS && RHS && "nullptr should have been caught by getEmptyKey?");
330     return isClose(*LHS, *RHS);
331   }
332 };
333 
334 /// Helper struct for converting the Instructions in a Module into a vector of
335 /// unsigned integers. This vector of unsigned integers can be thought of as a
336 /// "numeric string". This numeric string can then be queried by, for example,
337 /// data structures that find repeated substrings.
338 ///
339 /// This hashing is done per BasicBlock in the module. To hash Instructions
340 /// based off of their operations, each Instruction is wrapped in an
341 /// IRInstructionData struct. The unsigned integer for an IRInstructionData
342 /// depends on:
343 /// - The hash provided by the IRInstructionData.
344 /// - Which member of InstrType the IRInstructionData is classified as.
345 // See InstrType for more details on the possible classifications, and how they
346 // manifest in the numeric string.
347 ///
348 /// The numeric string for an individual BasicBlock is terminated by an unique
349 /// unsigned integer. This prevents data structures which rely on repetition
350 /// from matching across BasicBlocks. (For example, the SuffixTree.)
351 /// As a concrete example, if we have the following two BasicBlocks:
352 /// \code
353 /// bb0:
354 /// %add1 = add i32 %a, %b
355 /// %add2 = add i32 %c, %d
356 /// %add3 = add i64 %e, %f
357 /// bb1:
358 /// %sub = sub i32 %c, %d
359 /// \endcode
360 /// We may hash the Instructions like this (via IRInstructionData):
361 /// \code
362 /// bb0:
363 /// %add1 = add i32 %a, %b ; Hash: 1
364 /// %add2 = add i32 %c, %d; Hash: 1
365 /// %add3 = add i64 %e, %f; Hash: 2
366 /// bb1:
367 /// %sub = sub i32 %c, %d; Hash: 3
368 /// %add4 = add i32 %c, %d ; Hash: 1
369 /// \endcode
370 /// And produce a "numeric string representation" like so:
371 /// 1, 1, 2, unique_integer_1, 3, 1, unique_integer_2
372 ///
373 /// TODO: This is very similar to the MachineOutliner, and should be
374 /// consolidated into the same interface.
375 struct IRInstructionMapper {
376   /// The starting illegal instruction number to map to.
377   ///
378   /// Set to -3 for compatibility with DenseMapInfo<unsigned>.
379   unsigned IllegalInstrNumber = static_cast<unsigned>(-3);
380 
381   /// The next available integer to assign to a legal Instruction to.
382   unsigned LegalInstrNumber = 0;
383 
384   /// Correspondence from IRInstructionData to unsigned integers.
385   DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>
386       InstructionIntegerMap;
387 
388   /// A mapping for a basic block in a module to its assigned number/location
389   /// in the module.
390   DenseMap<BasicBlock *, unsigned> BasicBlockToInteger;
391 
392   /// Set if we added an illegal number in the previous step.
393   /// Since each illegal number is unique, we only need one of them between
394   /// each range of legal numbers. This lets us make sure we don't add more
395   /// than one illegal number per range.
396   bool AddedIllegalLastTime = false;
397 
398   /// Marks whether we found a illegal instruction in the previous step.
399   bool CanCombineWithPrevInstr = false;
400 
401   /// Marks whether we have found a set of instructions that is long enough
402   /// to be considered for similarity.
403   bool HaveLegalRange = false;
404 
405   /// Marks whether we should use exact function names, as well as types to
406   /// find similarity between calls.
407   bool EnableMatchCallsByName = false;
408 
409   /// This allocator pointer is in charge of holding on to the IRInstructionData
410   /// so it is not deallocated until whatever external tool is using it is done
411   /// with the information.
412   SpecificBumpPtrAllocator<IRInstructionData> *InstDataAllocator = nullptr;
413 
414   /// This allocator pointer is in charge of creating the IRInstructionDataList
415   /// so it is not deallocated until whatever external tool is using it is done
416   /// with the information.
417   SpecificBumpPtrAllocator<IRInstructionDataList> *IDLAllocator = nullptr;
418 
419   /// Get an allocated IRInstructionData struct using the InstDataAllocator.
420   ///
421   /// \param I - The Instruction to wrap with IRInstructionData.
422   /// \param Legality - A boolean value that is true if the instruction is to
423   /// be considered for similarity, and false if not.
424   /// \param IDL - The InstructionDataList that the IRInstructionData is
425   /// inserted into.
426   /// \returns An allocated IRInstructionData struct.
427   IRInstructionData *allocateIRInstructionData(Instruction &I, bool Legality,
428                                                IRInstructionDataList &IDL);
429 
430   /// Get an empty allocated IRInstructionData struct using the
431   /// InstDataAllocator.
432   ///
433   /// \param IDL - The InstructionDataList that the IRInstructionData is
434   /// inserted into.
435   /// \returns An allocated IRInstructionData struct.
436   IRInstructionData *allocateIRInstructionData(IRInstructionDataList &IDL);
437 
438   /// Get an allocated IRInstructionDataList object using the IDLAllocator.
439   ///
440   /// \returns An allocated IRInstructionDataList object.
441   IRInstructionDataList *allocateIRInstructionDataList();
442 
443   IRInstructionDataList *IDL = nullptr;
444 
445   /// Assigns values to all the basic blocks in function \p F starting from
446   /// integer \p BBNumber.
447   ///
448   /// \param F - The function containing the basic blocks to assign numbers to.
449   /// \param BBNumber - The number to start from.
450   void initializeForBBs(Function &F, unsigned &BBNumber) {
451     for (BasicBlock &BB : F)
452       BasicBlockToInteger.insert(std::make_pair(&BB, BBNumber++));
453   }
454 
455   /// Assigns values to all the basic blocks in Module \p M.
456   /// \param M - The module containing the basic blocks to assign numbers to.
457   void initializeForBBs(Module &M) {
458     unsigned BBNumber = 0;
459     for (Function &F : M)
460       initializeForBBs(F, BBNumber);
461   }
462 
463   /// Maps the Instructions in a BasicBlock \p BB to legal or illegal integers
464   /// determined by \p InstrType. Two Instructions are mapped to the same value
465   /// if they are close as defined by the InstructionData class above.
466   ///
467   /// \param [in] BB - The BasicBlock to be mapped to integers.
468   /// \param [in,out] InstrList - Vector of IRInstructionData to append to.
469   /// \param [in,out] IntegerMapping - Vector of unsigned integers to append to.
470   void convertToUnsignedVec(BasicBlock &BB,
471                             std::vector<IRInstructionData *> &InstrList,
472                             std::vector<unsigned> &IntegerMapping);
473 
474   /// Maps an Instruction to a legal integer.
475   ///
476   /// \param [in] It - The Instruction to be mapped to an integer.
477   /// \param [in,out] IntegerMappingForBB - Vector of unsigned integers to
478   /// append to.
479   /// \param [in,out] InstrListForBB - Vector of InstructionData to append to.
480   /// \returns The integer \p It was mapped to.
481   unsigned mapToLegalUnsigned(BasicBlock::iterator &It,
482                               std::vector<unsigned> &IntegerMappingForBB,
483                               std::vector<IRInstructionData *> &InstrListForBB);
484 
485   /// Maps an Instruction to an illegal integer.
486   ///
487   /// \param [in] It - The \p Instruction to be mapped to an integer.
488   /// \param [in,out] IntegerMappingForBB - Vector of unsigned integers to
489   /// append to.
490   /// \param [in,out] InstrListForBB - Vector of IRInstructionData to append to.
491   /// \param End - true if creating a dummy IRInstructionData at the end of a
492   /// basic block.
493   /// \returns The integer \p It was mapped to.
494   unsigned mapToIllegalUnsigned(
495       BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
496       std::vector<IRInstructionData *> &InstrListForBB, bool End = false);
497 
498   IRInstructionMapper(SpecificBumpPtrAllocator<IRInstructionData> *IDA,
499                       SpecificBumpPtrAllocator<IRInstructionDataList> *IDLA)
500       : InstDataAllocator(IDA), IDLAllocator(IDLA) {
501     // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
502     // changed.
503     assert(DenseMapInfo<unsigned>::getEmptyKey() == static_cast<unsigned>(-1) &&
504            "DenseMapInfo<unsigned>'s empty key isn't -1!");
505     assert(DenseMapInfo<unsigned>::getTombstoneKey() ==
506                static_cast<unsigned>(-2) &&
507            "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
508 
509     IDL = new (IDLAllocator->Allocate())
510         IRInstructionDataList();
511   }
512 
513   /// Custom InstVisitor to classify different instructions for whether it can
514   /// be analyzed for similarity.
515   struct InstructionClassification
516       : public InstVisitor<InstructionClassification, InstrType> {
517     InstructionClassification() = default;
518 
519     // TODO: Determine a scheme to resolve when the label is similar enough.
520     InstrType visitBranchInst(BranchInst &BI) {
521       if (EnableBranches)
522         return Legal;
523       return Illegal;
524     }
525     InstrType visitPHINode(PHINode &PN) {
526       if (EnableBranches)
527         return Legal;
528       return Illegal;
529     }
530     // TODO: Handle allocas.
531     InstrType visitAllocaInst(AllocaInst &AI) { return Illegal; }
532     // We exclude variable argument instructions since variable arguments
533     // requires extra checking of the argument list.
534     InstrType visitVAArgInst(VAArgInst &VI) { return Illegal; }
535     // We exclude all exception handling cases since they are so context
536     // dependent.
537     InstrType visitLandingPadInst(LandingPadInst &LPI) { return Illegal; }
538     InstrType visitFuncletPadInst(FuncletPadInst &FPI) { return Illegal; }
539     // DebugInfo should be included in the regions, but should not be
540     // analyzed for similarity as it has no bearing on the outcome of the
541     // program.
542     InstrType visitDbgInfoIntrinsic(DbgInfoIntrinsic &DII) { return Invisible; }
543     InstrType visitIntrinsicInst(IntrinsicInst &II) {
544       // These are disabled due to complications in the CodeExtractor when
545       // outlining these instructions.  For instance, It is unclear what we
546       // should do when moving only the start or end lifetime instruction into
547       // an outlined function. Also, assume-like intrinsics could be removed
548       // from the region, removing arguments, causing discrepencies in the
549       // number of inputs between different regions.
550       if (II.isAssumeLikeIntrinsic())
551         return Illegal;
552       return EnableIntrinsics ? Legal : Illegal;
553     }
554     // We only allow call instructions where the function has a name and
555     // is not an indirect call.
556     InstrType visitCallInst(CallInst &CI) {
557       Function *F = CI.getCalledFunction();
558       bool IsIndirectCall = CI.isIndirectCall();
559       if (IsIndirectCall && !EnableIndirectCalls)
560         return Illegal;
561       if (!F && !IsIndirectCall)
562         return Illegal;
563       // Functions marked with the swifttailcc and tailcc calling conventions
564       // require special handling when outlining musttail functions.  The
565       // calling convention must be passed down to the outlined function as
566       // well. Further, there is special handling for musttail calls as well,
567       // requiring a return call directly after.  For now, the outliner does not
568       // support this, so we do not handle matching this case either.
569       if ((CI.getCallingConv() == CallingConv::SwiftTail ||
570            CI.getCallingConv() == CallingConv::Tail) &&
571           !EnableMustTailCalls)
572         return Illegal;
573       if (CI.isMustTailCall() && !EnableMustTailCalls)
574         return Illegal;
575       return Legal;
576     }
577     // TODO: We do not current handle similarity that changes the control flow.
578     InstrType visitInvokeInst(InvokeInst &II) { return Illegal; }
579     // TODO: We do not current handle similarity that changes the control flow.
580     InstrType visitCallBrInst(CallBrInst &CBI) { return Illegal; }
581     // TODO: Handle interblock similarity.
582     InstrType visitTerminator(Instruction &I) { return Illegal; }
583     InstrType visitInstruction(Instruction &I) { return Legal; }
584 
585     // The flag variable that lets the classifier know whether we should
586     // allow branches to be checked for similarity.
587     bool EnableBranches = false;
588 
589     // The flag variable that lets the classifier know whether we should
590     // allow indirect calls to be considered legal instructions.
591     bool EnableIndirectCalls = false;
592 
593     // Flag that lets the classifier know whether we should allow intrinsics to
594     // be checked for similarity.
595     bool EnableIntrinsics = false;
596 
597     // Flag that lets the classifier know whether we should allow tail calls to
598     // be checked for similarity.
599     bool EnableMustTailCalls = false;
600   };
601 
602   /// Maps an Instruction to a member of InstrType.
603   InstructionClassification InstClassifier;
604 };
605 
606 /// This is a class that wraps a range of IRInstructionData from one point to
607 /// another in the vector of IRInstructionData, which is a region of the
608 /// program.  It is also responsible for defining the structure within this
609 /// region of instructions.
610 ///
611 /// The structure of a region is defined through a value numbering system
612 /// assigned to each unique value in a region at the creation of the
613 /// IRSimilarityCandidate.
614 ///
615 /// For example, for each Instruction we add a mapping for each new
616 /// value seen in that Instruction.
617 /// IR:                    Mapping Added:
618 /// %add1 = add i32 %a, c1    %add1 -> 3, %a -> 1, c1 -> 2
619 /// %add2 = add i32 %a, %1    %add2 -> 4
620 /// %add3 = add i32 c2, c1    %add3 -> 6, c2 -> 5
621 ///
622 /// We can compare IRSimilarityCandidates against one another.
623 /// The \ref isSimilar function compares each IRInstructionData against one
624 /// another and if we have the same sequences of IRInstructionData that would
625 /// create the same hash, we have similar IRSimilarityCandidates.
626 ///
627 /// We can also compare the structure of IRSimilarityCandidates. If we can
628 /// create a mapping of registers in the region contained by one
629 /// IRSimilarityCandidate to the region contained by different
630 /// IRSimilarityCandidate, they can be considered structurally similar.
631 ///
632 /// IRSimilarityCandidate1:   IRSimilarityCandidate2:
633 /// %add1 = add i32 %a, %b    %add1 = add i32 %d, %e
634 /// %add2 = add i32 %a, %c    %add2 = add i32 %d, %f
635 /// %add3 = add i32 c1, c2    %add3 = add i32 c3, c4
636 ///
637 /// Can have the following mapping from candidate to candidate of:
638 /// %a -> %d, %b -> %e, %c -> %f, c1 -> c3, c2 -> c4
639 /// and can be considered similar.
640 ///
641 /// IRSimilarityCandidate1:   IRSimilarityCandidate2:
642 /// %add1 = add i32 %a, %b    %add1 = add i32 %d, c4
643 /// %add2 = add i32 %a, %c    %add2 = add i32 %d, %f
644 /// %add3 = add i32 c1, c2    %add3 = add i32 c3, c4
645 ///
646 /// We cannot create the same mapping since the use of c4 is not used in the
647 /// same way as %b or c2.
648 class IRSimilarityCandidate {
649 private:
650   /// The start index of this IRSimilarityCandidate in the instruction list.
651   unsigned StartIdx = 0;
652 
653   /// The number of instructions in this IRSimilarityCandidate.
654   unsigned Len = 0;
655 
656   /// The first instruction in this IRSimilarityCandidate.
657   IRInstructionData *FirstInst = nullptr;
658 
659   /// The last instruction in this IRSimilarityCandidate.
660   IRInstructionData *LastInst = nullptr;
661 
662   /// Global Value Numbering structures
663   /// @{
664   /// Stores the mapping of the value to the number assigned to it in the
665   /// IRSimilarityCandidate.
666   DenseMap<Value *, unsigned> ValueToNumber;
667   /// Stores the mapping of the number to the value assigned this number.
668   DenseMap<unsigned, Value *> NumberToValue;
669   /// Stores the mapping of a value's number to canonical numbering in the
670   /// candidate's respective similarity group.
671   DenseMap<unsigned, unsigned> NumberToCanonNum;
672   /// Stores the mapping of canonical number in the candidate's respective
673   /// similarity group to a value number.
674   DenseMap<unsigned, unsigned> CanonNumToNumber;
675   /// @}
676 
677 public:
678   /// \param StartIdx - The starting location of the region.
679   /// \param Len - The length of the region.
680   /// \param FirstInstIt - The starting IRInstructionData of the region.
681   /// \param LastInstIt - The ending IRInstructionData of the region.
682   IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
683                         IRInstructionData *FirstInstIt,
684                         IRInstructionData *LastInstIt);
685 
686   /// \param A - The first IRInstructionCandidate to compare.
687   /// \param B - The second IRInstructionCandidate to compare.
688   /// \returns True when every IRInstructionData in \p A is similar to every
689   /// IRInstructionData in \p B.
690   static bool isSimilar(const IRSimilarityCandidate &A,
691                         const IRSimilarityCandidate &B);
692 
693   /// \param [in] A - The first IRInstructionCandidate to compare.
694   /// \param [in] B - The second IRInstructionCandidate to compare.
695   /// \returns True when every IRInstructionData in \p A is structurally similar
696   /// to \p B.
697   static bool compareStructure(const IRSimilarityCandidate &A,
698                                const IRSimilarityCandidate &B);
699 
700   /// \param [in] A - The first IRInstructionCandidate to compare.
701   /// \param [in] B - The second IRInstructionCandidate to compare.
702   /// \param [in,out] ValueNumberMappingA - A mapping of value numbers from
703   /// candidate \p A to candidate \B.
704   /// \param [in,out] ValueNumberMappingB - A mapping of value numbers from
705   /// candidate \p B to candidate \A.
706   /// \returns True when every IRInstructionData in \p A is structurally similar
707   /// to \p B.
708   static bool
709   compareStructure(const IRSimilarityCandidate &A,
710                    const IRSimilarityCandidate &B,
711                    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
712                    DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB);
713 
714   struct OperandMapping {
715     /// The IRSimilarityCandidate that holds the instruction the OperVals were
716     /// pulled from.
717     const IRSimilarityCandidate &IRSC;
718 
719     /// The operand values to be analyzed.
720     ArrayRef<Value *> &OperVals;
721 
722     /// The current mapping of global value numbers from one IRSimilarityCandidate
723     /// to another IRSimilarityCandidate.
724     DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMapping;
725   };
726 
727   /// A helper struct to hold the candidate, for a branch instruction, the
728   /// relative location of a label, and the label itself.  This is mostly to
729   /// group the values together before passing them as a bundle to a function.
730   struct RelativeLocMapping {
731     /// The IRSimilarityCandidate that holds the instruction the relative
732     /// location was pulled from.
733     const IRSimilarityCandidate &IRSC;
734 
735     /// The relative location to be analyzed.
736     int RelativeLocation;
737 
738     /// The corresponding value.
739     Value *OperVal;
740   };
741 
742   /// Compare the operands in \p A and \p B and check that the current mapping
743   /// of global value numbers from \p A to \p B and \p B to \A is consistent.
744   ///
745   /// \param A - The first IRInstructionCandidate, operand values, and current
746   /// operand mappings to compare.
747   /// \param B - The second IRInstructionCandidate, operand values, and current
748   /// operand mappings to compare.
749   /// \returns true if the IRSimilarityCandidates operands are compatible.
750   static bool compareNonCommutativeOperandMapping(OperandMapping A,
751                                                   OperandMapping B);
752 
753   /// Compare the operands in \p A and \p B and check that the current mapping
754   /// of global value numbers from \p A to \p B and \p B to \A is consistent
755   /// given that the operands are commutative.
756   ///
757   /// \param A - The first IRInstructionCandidate, operand values, and current
758   /// operand mappings to compare.
759   /// \param B - The second IRInstructionCandidate, operand values, and current
760   /// operand mappings to compare.
761   /// \returns true if the IRSimilarityCandidates operands are compatible.
762   static bool compareCommutativeOperandMapping(OperandMapping A,
763                                                OperandMapping B);
764 
765   /// Compare the relative locations in \p A and \p B and check that the
766   /// distances match if both locations are contained in the region, and that
767   /// the branches both point outside the region if they do not.
768   /// Example Region:
769   /// \code
770   /// entry:
771   ///   br i1 %0, label %block_1, label %block_3
772   /// block_0:
773   ///   br i1 %0, label %block_1, label %block_2
774   /// block_1:
775   ///   br i1 %0, label %block_2, label %block_3
776   /// block_2:
777   ///   br i1 %1, label %block_1, label %block_4
778   /// block_3:
779   ///   br i1 %2, label %block_2, label %block_5
780   /// \endcode
781   /// If we compare the branches in block_0 and block_1 the relative values are
782   /// 1 and 2 for both, so we consider this a match.
783   ///
784   /// If we compare the branches in entry and block_0 the relative values are
785   /// 2 and 3, and 1 and 2 respectively.  Since these are not the same we do not
786   /// consider them a match.
787   ///
788   /// If we compare the branches in block_1 and block_2 the relative values are
789   /// 1 and 2, and -1 and None respectively.  As a result we do not consider
790   /// these to be the same
791   ///
792   /// If we compare the branches in block_2 and block_3 the relative values are
793   /// -1 and None for both.  We do consider these to be a match.
794   ///
795   /// \param A - The first IRInstructionCandidate, relative location value,
796   /// and incoming block.
797   /// \param B - The second IRInstructionCandidate, relative location value,
798   /// and incoming block.
799   /// \returns true if the relative locations match.
800   static bool checkRelativeLocations(RelativeLocMapping A,
801                                      RelativeLocMapping B);
802 
803   /// Create a mapping from the value numbering to a different separate set of
804   /// numbers. This will serve as a guide for relating one candidate to another.
805   /// The canonical number gives use the ability identify which global value
806   /// number in one candidate relates to the global value number in the other.
807   ///
808   /// \param [in, out] CurrCand - The IRSimilarityCandidate to create a
809   /// canonical numbering for.
810   static void createCanonicalMappingFor(IRSimilarityCandidate &CurrCand);
811 
812   /// Create a mapping for the value numbering of the calling
813   /// IRSimilarityCandidate, to a different separate set of numbers, based on
814   /// the canonical ordering in \p SourceCand. These are defined based on the
815   /// found mappings in \p ToSourceMapping and \p FromSourceMapping.  Both of
816   /// these relationships should have the same information, just in opposite
817   /// directions.
818   ///
819   /// \param [in, out] SourceCand - The IRSimilarityCandidate to create a
820   /// canonical numbering from.
821   /// \param ToSourceMapping - The mapping of value numbers from this candidate
822   /// to \p SourceCand.
823   /// \param FromSourceMapping - The mapping of value numbers from \p SoureCand
824   /// to this candidate.
825   void createCanonicalRelationFrom(
826       IRSimilarityCandidate &SourceCand,
827       DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
828       DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping);
829 
830   /// \param [in,out] BBSet - The set to track the basic blocks.
831   void getBasicBlocks(DenseSet<BasicBlock *> &BBSet) const {
832     for (IRInstructionData &ID : *this) {
833       BasicBlock *BB = ID.Inst->getParent();
834       BBSet.insert(BB);
835     }
836   }
837 
838   /// \param [in,out] BBSet - The set to track the basic blocks.
839   /// \param [in,out] BBList - A list in order of use to track the basic blocks.
840   void getBasicBlocks(DenseSet<BasicBlock *> &BBSet,
841                       SmallVector<BasicBlock *> &BBList) const {
842     for (IRInstructionData &ID : *this) {
843       BasicBlock *BB = ID.Inst->getParent();
844       if (BBSet.insert(BB).second)
845         BBList.push_back(BB);
846     }
847   }
848 
849   /// Compare the start and end indices of the two IRSimilarityCandidates for
850   /// whether they overlap. If the start instruction of one
851   /// IRSimilarityCandidate is less than the end instruction of the other, and
852   /// the start instruction of one is greater than the start instruction of the
853   /// other, they overlap.
854   ///
855   /// \returns true if the IRSimilarityCandidates do not have overlapping
856   /// instructions.
857   static bool overlap(const IRSimilarityCandidate &A,
858                       const IRSimilarityCandidate &B);
859 
860   /// \returns the number of instructions in this Candidate.
861   unsigned getLength() const { return Len; }
862 
863   /// \returns the start index of this IRSimilarityCandidate.
864   unsigned getStartIdx() const { return StartIdx; }
865 
866   /// \returns the end index of this IRSimilarityCandidate.
867   unsigned getEndIdx() const { return StartIdx + Len - 1; }
868 
869   /// \returns The first IRInstructionData.
870   IRInstructionData *front() const { return FirstInst; }
871   /// \returns The last IRInstructionData.
872   IRInstructionData *back() const { return LastInst; }
873 
874   /// \returns The first Instruction.
875   Instruction *frontInstruction() { return FirstInst->Inst; }
876   /// \returns The last Instruction
877   Instruction *backInstruction() { return LastInst->Inst; }
878 
879   /// \returns The BasicBlock the IRSimilarityCandidate starts in.
880   BasicBlock *getStartBB() { return FirstInst->Inst->getParent(); }
881   /// \returns The BasicBlock the IRSimilarityCandidate ends in.
882   BasicBlock *getEndBB() { return LastInst->Inst->getParent(); }
883 
884   /// \returns The Function that the IRSimilarityCandidate is located in.
885   Function *getFunction() { return getStartBB()->getParent(); }
886 
887   /// Finds the positive number associated with \p V if it has been mapped.
888   /// \param [in] V - the Value to find.
889   /// \returns The positive number corresponding to the value.
890   /// \returns None if not present.
891   Optional<unsigned> getGVN(Value *V) {
892     assert(V != nullptr && "Value is a nullptr?");
893     DenseMap<Value *, unsigned>::iterator VNIt = ValueToNumber.find(V);
894     if (VNIt == ValueToNumber.end())
895       return None;
896     return VNIt->second;
897   }
898 
899   /// Finds the Value associate with \p Num if it exists.
900   /// \param [in] Num - the number to find.
901   /// \returns The Value associated with the number.
902   /// \returns None if not present.
903   Optional<Value *> fromGVN(unsigned Num) {
904     DenseMap<unsigned, Value *>::iterator VNIt = NumberToValue.find(Num);
905     if (VNIt == NumberToValue.end())
906       return None;
907     assert(VNIt->second != nullptr && "Found value is a nullptr!");
908     return VNIt->second;
909   }
910 
911   /// Find the canonical number from the global value number \p N stored in the
912   /// candidate.
913   ///
914   /// \param N - The global value number to find the canonical number for.
915   /// \returns An optional containing the value, and None if it could not be
916   /// found.
917   Optional<unsigned> getCanonicalNum(unsigned N) {
918     DenseMap<unsigned, unsigned>::iterator NCIt = NumberToCanonNum.find(N);
919     if (NCIt == NumberToCanonNum.end())
920       return None;
921     return NCIt->second;
922   }
923 
924   /// Find the global value number from the canonical number \p N stored in the
925   /// candidate.
926   ///
927   /// \param N - The canonical number to find the global vlaue number for.
928   /// \returns An optional containing the value, and None if it could not be
929   /// found.
930   Optional<unsigned> fromCanonicalNum(unsigned N) {
931     DenseMap<unsigned, unsigned>::iterator CNIt = CanonNumToNumber.find(N);
932     if (CNIt == CanonNumToNumber.end())
933       return None;
934     return CNIt->second;
935   }
936 
937   /// \param RHS -The IRSimilarityCandidate to compare against
938   /// \returns true if the IRSimilarityCandidate is occurs after the
939   /// IRSimilarityCandidate in the program.
940   bool operator<(const IRSimilarityCandidate &RHS) const {
941     return getStartIdx() > RHS.getStartIdx();
942   }
943 
944   using iterator = IRInstructionDataList::iterator;
945   iterator begin() const { return iterator(front()); }
946   iterator end() const { return std::next(iterator(back())); }
947 };
948 
949 typedef DenseMap<IRSimilarityCandidate *,
950                  DenseMap<unsigned, DenseSet<unsigned>>>
951     CandidateGVNMapping;
952 typedef std::vector<IRSimilarityCandidate> SimilarityGroup;
953 typedef std::vector<SimilarityGroup> SimilarityGroupList;
954 
955 /// This class puts all the pieces of the IRInstructionData,
956 /// IRInstructionMapper, IRSimilarityCandidate together.
957 ///
958 /// It first feeds the Module or vector of Modules into the IRInstructionMapper,
959 /// and puts all the mapped instructions into a single long list of
960 /// IRInstructionData.
961 ///
962 /// The list of unsigned integers is given to the Suffix Tree or similar data
963 /// structure to find repeated subsequences.  We construct an
964 /// IRSimilarityCandidate for each instance of the subsequence.  We compare them
965 /// against one another since  These repeated subsequences can have different
966 /// structure.  For each different kind of structure found, we create a
967 /// similarity group.
968 ///
969 /// If we had four IRSimilarityCandidates A, B, C, and D where A, B and D are
970 /// structurally similar to one another, while C is different we would have two
971 /// SimilarityGroups:
972 ///
973 /// SimilarityGroup 1:  SimilarityGroup 2
974 /// A, B, D             C
975 ///
976 /// A list of the different similarity groups is then returned after
977 /// analyzing the module.
978 class IRSimilarityIdentifier {
979 public:
980   IRSimilarityIdentifier(bool MatchBranches = true,
981                          bool MatchIndirectCalls = true,
982                          bool MatchCallsWithName = false,
983                          bool MatchIntrinsics = true,
984                          bool MatchMustTailCalls = true)
985       : Mapper(&InstDataAllocator, &InstDataListAllocator),
986         EnableBranches(MatchBranches), EnableIndirectCalls(MatchIndirectCalls),
987         EnableMatchingCallsByName(MatchCallsWithName),
988         EnableIntrinsics(MatchIntrinsics),
989         EnableMustTailCalls(MatchMustTailCalls) {}
990 
991 private:
992   /// Map the instructions in the module to unsigned integers, using mapping
993   /// already present in the Mapper if possible.
994   ///
995   /// \param [in] M Module - To map to integers.
996   /// \param [in,out] InstrList - The vector to append IRInstructionData to.
997   /// \param [in,out] IntegerMapping - The vector to append integers to.
998   void populateMapper(Module &M, std::vector<IRInstructionData *> &InstrList,
999                       std::vector<unsigned> &IntegerMapping);
1000 
1001   /// Map the instructions in the modules vector to unsigned integers, using
1002   /// mapping already present in the mapper if possible.
1003   ///
1004   /// \param [in] Modules - The list of modules to use to populate the mapper
1005   /// \param [in,out] InstrList - The vector to append IRInstructionData to.
1006   /// \param [in,out] IntegerMapping - The vector to append integers to.
1007   void populateMapper(ArrayRef<std::unique_ptr<Module>> &Modules,
1008                       std::vector<IRInstructionData *> &InstrList,
1009                       std::vector<unsigned> &IntegerMapping);
1010 
1011   /// Find the similarity candidates in \p InstrList and corresponding
1012   /// \p UnsignedVec
1013   ///
1014   /// \param [in,out] InstrList - The vector to append IRInstructionData to.
1015   /// \param [in,out] IntegerMapping - The vector to append integers to.
1016   /// candidates found in the program.
1017   void findCandidates(std::vector<IRInstructionData *> &InstrList,
1018                       std::vector<unsigned> &IntegerMapping);
1019 
1020 public:
1021   // Find the IRSimilarityCandidates in the \p Modules and group by structural
1022   // similarity in a SimilarityGroup, each group is returned in a
1023   // SimilarityGroupList.
1024   //
1025   // \param [in] Modules - the modules to analyze.
1026   // \returns The groups of similarity ranges found in the modules.
1027   SimilarityGroupList &
1028   findSimilarity(ArrayRef<std::unique_ptr<Module>> Modules);
1029 
1030   // Find the IRSimilarityCandidates in the given Module grouped by structural
1031   // similarity in a SimilarityGroup, contained inside a SimilarityGroupList.
1032   //
1033   // \param [in] M - the module to analyze.
1034   // \returns The groups of similarity ranges found in the module.
1035   SimilarityGroupList &findSimilarity(Module &M);
1036 
1037   // Clears \ref SimilarityCandidates if it is already filled by a previous run.
1038   void resetSimilarityCandidates() {
1039     // If we've already analyzed a Module or set of Modules, so we must clear
1040     // the SimilarityCandidates to make sure we do not have only old values
1041     // hanging around.
1042     if (SimilarityCandidates)
1043       SimilarityCandidates->clear();
1044     else
1045       SimilarityCandidates = SimilarityGroupList();
1046   }
1047 
1048   // \returns The groups of similarity ranges found in the most recently passed
1049   // set of modules.
1050   Optional<SimilarityGroupList> &getSimilarity() {
1051     return SimilarityCandidates;
1052   }
1053 
1054 private:
1055   /// The allocator for IRInstructionData.
1056   SpecificBumpPtrAllocator<IRInstructionData> InstDataAllocator;
1057 
1058   /// The allocator for IRInstructionDataLists.
1059   SpecificBumpPtrAllocator<IRInstructionDataList> InstDataListAllocator;
1060 
1061   /// Map Instructions to unsigned integers and wraps the Instruction in an
1062   /// instance of IRInstructionData.
1063   IRInstructionMapper Mapper;
1064 
1065   /// The flag variable that marks whether we should check branches for
1066   /// similarity, or only look within basic blocks.
1067   bool EnableBranches = true;
1068 
1069   /// The flag variable that marks whether we allow indirect calls to be checked
1070   /// for similarity, or exclude them as a legal instruction.
1071   bool EnableIndirectCalls = true;
1072 
1073   /// The flag variable that marks whether we allow calls to be marked as
1074   /// similar if they do not have the same name, only the same calling
1075   /// convention, attributes and type signature.
1076   bool EnableMatchingCallsByName = true;
1077 
1078   /// The flag variable that marks whether we should check intrinsics for
1079   /// similarity.
1080   bool EnableIntrinsics = true;
1081 
1082   // The flag variable that marks whether we should allow tailcalls
1083   // to be checked for similarity.
1084   bool EnableMustTailCalls = false;
1085 
1086   /// The SimilarityGroups found with the most recent run of \ref
1087   /// findSimilarity. None if there is no recent run.
1088   Optional<SimilarityGroupList> SimilarityCandidates;
1089 };
1090 
1091 } // end namespace IRSimilarity
1092 
1093 /// An analysis pass based on legacy pass manager that runs and returns
1094 /// IRSimilarityIdentifier run on the Module.
1095 class IRSimilarityIdentifierWrapperPass : public ModulePass {
1096   std::unique_ptr<IRSimilarity::IRSimilarityIdentifier> IRSI;
1097 
1098 public:
1099   static char ID;
1100   IRSimilarityIdentifierWrapperPass();
1101 
1102   IRSimilarity::IRSimilarityIdentifier &getIRSI() { return *IRSI; }
1103   const IRSimilarity::IRSimilarityIdentifier &getIRSI() const { return *IRSI; }
1104 
1105   bool doInitialization(Module &M) override;
1106   bool doFinalization(Module &M) override;
1107   bool runOnModule(Module &M) override;
1108   void getAnalysisUsage(AnalysisUsage &AU) const override {
1109     AU.setPreservesAll();
1110   }
1111 };
1112 
1113 /// An analysis pass that runs and returns the IRSimilarityIdentifier run on the
1114 /// Module.
1115 class IRSimilarityAnalysis : public AnalysisInfoMixin<IRSimilarityAnalysis> {
1116 public:
1117   typedef IRSimilarity::IRSimilarityIdentifier Result;
1118 
1119   Result run(Module &M, ModuleAnalysisManager &);
1120 
1121 private:
1122   friend AnalysisInfoMixin<IRSimilarityAnalysis>;
1123   static AnalysisKey Key;
1124 };
1125 
1126 /// Printer pass that uses \c IRSimilarityAnalysis.
1127 class IRSimilarityAnalysisPrinterPass
1128     : public PassInfoMixin<IRSimilarityAnalysisPrinterPass> {
1129   raw_ostream &OS;
1130 
1131 public:
1132   explicit IRSimilarityAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
1133   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
1134 };
1135 
1136 } // end namespace llvm
1137 
1138 #endif // LLVM_ANALYSIS_IRSIMILARITYIDENTIFIER_H
1139