1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16 
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/Analysis/LoopAnalysisManager.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/IR/DiagnosticInfo.h"
21 #include "llvm/Pass.h"
22 
23 namespace llvm {
24 
25 class AAResults;
26 class DataLayout;
27 class Loop;
28 class LoopAccessInfo;
29 class OptimizationRemarkEmitter;
30 class raw_ostream;
31 class SCEV;
32 class SCEVUnionPredicate;
33 class Value;
34 
35 /// Collection of parameters shared beetween the Loop Vectorizer and the
36 /// Loop Access Analysis.
37 struct VectorizerParams {
38   /// Maximum SIMD width.
39   static const unsigned MaxVectorWidth;
40 
41   /// VF as overridden by the user.
42   static unsigned VectorizationFactor;
43   /// Interleave factor as overridden by the user.
44   static unsigned VectorizationInterleave;
45   /// True if force-vector-interleave was specified by the user.
46   static bool isInterleaveForced();
47 
48   /// \When performing memory disambiguation checks at runtime do not
49   /// make more than this number of comparisons.
50   static unsigned RuntimeMemoryCheckThreshold;
51 };
52 
53 /// Checks memory dependences among accesses to the same underlying
54 /// object to determine whether there vectorization is legal or not (and at
55 /// which vectorization factor).
56 ///
57 /// Note: This class will compute a conservative dependence for access to
58 /// different underlying pointers. Clients, such as the loop vectorizer, will
59 /// sometimes deal these potential dependencies by emitting runtime checks.
60 ///
61 /// We use the ScalarEvolution framework to symbolically evalutate access
62 /// functions pairs. Since we currently don't restructure the loop we can rely
63 /// on the program order of memory accesses to determine their safety.
64 /// At the moment we will only deem accesses as safe for:
65 ///  * A negative constant distance assuming program order.
66 ///
67 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
68 ///            a[i] = tmp;                y = a[i];
69 ///
70 ///   The latter case is safe because later checks guarantuee that there can't
71 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
72 ///   the same variable: a header phi can only be an induction or a reduction, a
73 ///   reduction can't have a memory sink, an induction can't have a memory
74 ///   source). This is important and must not be violated (or we have to
75 ///   resort to checking for cycles through memory).
76 ///
77 ///  * A positive constant distance assuming program order that is bigger
78 ///    than the biggest memory access.
79 ///
80 ///     tmp = a[i]        OR              b[i] = x
81 ///     a[i+2] = tmp                      y = b[i+2];
82 ///
83 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
84 ///
85 ///  * Zero distances and all accesses have the same size.
86 ///
87 class MemoryDepChecker {
88 public:
89   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
90   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
91   /// Set of potential dependent memory accesses.
92   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
93 
94   /// Type to keep track of the status of the dependence check. The order of
95   /// the elements is important and has to be from most permissive to least
96   /// permissive.
97   enum class VectorizationSafetyStatus {
98     // Can vectorize safely without RT checks. All dependences are known to be
99     // safe.
100     Safe,
101     // Can possibly vectorize with RT checks to overcome unknown dependencies.
102     PossiblySafeWithRtChecks,
103     // Cannot vectorize due to known unsafe dependencies.
104     Unsafe,
105   };
106 
107   /// Dependece between memory access instructions.
108   struct Dependence {
109     /// The type of the dependence.
110     enum DepType {
111       // No dependence.
112       NoDep,
113       // We couldn't determine the direction or the distance.
114       Unknown,
115       // Lexically forward.
116       //
117       // FIXME: If we only have loop-independent forward dependences (e.g. a
118       // read and write of A[i]), LAA will locally deem the dependence "safe"
119       // without querying the MemoryDepChecker.  Therefore we can miss
120       // enumerating loop-independent forward dependences in
121       // getDependences.  Note that as soon as there are different
122       // indices used to access the same array, the MemoryDepChecker *is*
123       // queried and the dependence list is complete.
124       Forward,
125       // Forward, but if vectorized, is likely to prevent store-to-load
126       // forwarding.
127       ForwardButPreventsForwarding,
128       // Lexically backward.
129       Backward,
130       // Backward, but the distance allows a vectorization factor of
131       // MaxSafeDepDistBytes.
132       BackwardVectorizable,
133       // Same, but may prevent store-to-load forwarding.
134       BackwardVectorizableButPreventsForwarding
135     };
136 
137     /// String version of the types.
138     static const char *DepName[];
139 
140     /// Index of the source of the dependence in the InstMap vector.
141     unsigned Source;
142     /// Index of the destination of the dependence in the InstMap vector.
143     unsigned Destination;
144     /// The type of the dependence.
145     DepType Type;
146 
147     Dependence(unsigned Source, unsigned Destination, DepType Type)
148         : Source(Source), Destination(Destination), Type(Type) {}
149 
150     /// Return the source instruction of the dependence.
151     Instruction *getSource(const LoopAccessInfo &LAI) const;
152     /// Return the destination instruction of the dependence.
153     Instruction *getDestination(const LoopAccessInfo &LAI) const;
154 
155     /// Dependence types that don't prevent vectorization.
156     static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
157 
158     /// Lexically forward dependence.
159     bool isForward() const;
160     /// Lexically backward dependence.
161     bool isBackward() const;
162 
163     /// May be a lexically backward dependence type (includes Unknown).
164     bool isPossiblyBackward() const;
165 
166     /// Print the dependence.  \p Instr is used to map the instruction
167     /// indices to instructions.
168     void print(raw_ostream &OS, unsigned Depth,
169                const SmallVectorImpl<Instruction *> &Instrs) const;
170   };
171 
172   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
173       : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeDepDistBytes(0),
174         MaxSafeVectorWidthInBits(-1U),
175         FoundNonConstantDistanceDependence(false),
176         Status(VectorizationSafetyStatus::Safe), RecordDependences(true) {}
177 
178   /// Register the location (instructions are given increasing numbers)
179   /// of a write access.
180   void addAccess(StoreInst *SI) {
181     Value *Ptr = SI->getPointerOperand();
182     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
183     InstMap.push_back(SI);
184     ++AccessIdx;
185   }
186 
187   /// Register the location (instructions are given increasing numbers)
188   /// of a write access.
189   void addAccess(LoadInst *LI) {
190     Value *Ptr = LI->getPointerOperand();
191     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
192     InstMap.push_back(LI);
193     ++AccessIdx;
194   }
195 
196   /// Check whether the dependencies between the accesses are safe.
197   ///
198   /// Only checks sets with elements in \p CheckDeps.
199   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
200                    const ValueToValueMap &Strides);
201 
202   /// No memory dependence was encountered that would inhibit
203   /// vectorization.
204   bool isSafeForVectorization() const {
205     return Status == VectorizationSafetyStatus::Safe;
206   }
207 
208   /// Return true if the number of elements that are safe to operate on
209   /// simultaneously is not bounded.
210   bool isSafeForAnyVectorWidth() const {
211     return MaxSafeVectorWidthInBits == UINT_MAX;
212   }
213 
214   /// The maximum number of bytes of a vector register we can vectorize
215   /// the accesses safely with.
216   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
217 
218   /// Return the number of elements that are safe to operate on
219   /// simultaneously, multiplied by the size of the element in bits.
220   uint64_t getMaxSafeVectorWidthInBits() const {
221     return MaxSafeVectorWidthInBits;
222   }
223 
224   /// In same cases when the dependency check fails we can still
225   /// vectorize the loop with a dynamic array access check.
226   bool shouldRetryWithRuntimeCheck() const {
227     return FoundNonConstantDistanceDependence &&
228            Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
229   }
230 
231   /// Returns the memory dependences.  If null is returned we exceeded
232   /// the MaxDependences threshold and this information is not
233   /// available.
234   const SmallVectorImpl<Dependence> *getDependences() const {
235     return RecordDependences ? &Dependences : nullptr;
236   }
237 
238   void clearDependences() { Dependences.clear(); }
239 
240   /// The vector of memory access instructions.  The indices are used as
241   /// instruction identifiers in the Dependence class.
242   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
243     return InstMap;
244   }
245 
246   /// Generate a mapping between the memory instructions and their
247   /// indices according to program order.
248   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
249     DenseMap<Instruction *, unsigned> OrderMap;
250 
251     for (unsigned I = 0; I < InstMap.size(); ++I)
252       OrderMap[InstMap[I]] = I;
253 
254     return OrderMap;
255   }
256 
257   /// Find the set of instructions that read or write via \p Ptr.
258   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
259                                                          bool isWrite) const;
260 
261 private:
262   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
263   /// applies dynamic knowledge to simplify SCEV expressions and convert them
264   /// to a more usable form. We need this in case assumptions about SCEV
265   /// expressions need to be made in order to avoid unknown dependences. For
266   /// example we might assume a unit stride for a pointer in order to prove
267   /// that a memory access is strided and doesn't wrap.
268   PredicatedScalarEvolution &PSE;
269   const Loop *InnermostLoop;
270 
271   /// Maps access locations (ptr, read/write) to program order.
272   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
273 
274   /// Memory access instructions in program order.
275   SmallVector<Instruction *, 16> InstMap;
276 
277   /// The program order index to be used for the next instruction.
278   unsigned AccessIdx;
279 
280   // We can access this many bytes in parallel safely.
281   uint64_t MaxSafeDepDistBytes;
282 
283   /// Number of elements (from consecutive iterations) that are safe to
284   /// operate on simultaneously, multiplied by the size of the element in bits.
285   /// The size of the element is taken from the memory access that is most
286   /// restrictive.
287   uint64_t MaxSafeVectorWidthInBits;
288 
289   /// If we see a non-constant dependence distance we can still try to
290   /// vectorize this loop with runtime checks.
291   bool FoundNonConstantDistanceDependence;
292 
293   /// Result of the dependence checks, indicating whether the checked
294   /// dependences are safe for vectorization, require RT checks or are known to
295   /// be unsafe.
296   VectorizationSafetyStatus Status;
297 
298   //// True if Dependences reflects the dependences in the
299   //// loop.  If false we exceeded MaxDependences and
300   //// Dependences is invalid.
301   bool RecordDependences;
302 
303   /// Memory dependences collected during the analysis.  Only valid if
304   /// RecordDependences is true.
305   SmallVector<Dependence, 8> Dependences;
306 
307   /// Check whether there is a plausible dependence between the two
308   /// accesses.
309   ///
310   /// Access \p A must happen before \p B in program order. The two indices
311   /// identify the index into the program order map.
312   ///
313   /// This function checks  whether there is a plausible dependence (or the
314   /// absence of such can't be proved) between the two accesses. If there is a
315   /// plausible dependence but the dependence distance is bigger than one
316   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
317   /// distance is smaller than any other distance encountered so far).
318   /// Otherwise, this function returns true signaling a possible dependence.
319   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
320                                   const MemAccessInfo &B, unsigned BIdx,
321                                   const ValueToValueMap &Strides);
322 
323   /// Check whether the data dependence could prevent store-load
324   /// forwarding.
325   ///
326   /// \return false if we shouldn't vectorize at all or avoid larger
327   /// vectorization factors by limiting MaxSafeDepDistBytes.
328   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
329 
330   /// Updates the current safety status with \p S. We can go from Safe to
331   /// either PossiblySafeWithRtChecks or Unsafe and from
332   /// PossiblySafeWithRtChecks to Unsafe.
333   void mergeInStatus(VectorizationSafetyStatus S);
334 };
335 
336 class RuntimePointerChecking;
337 /// A grouping of pointers. A single memcheck is required between
338 /// two groups.
339 struct RuntimeCheckingPtrGroup {
340   /// Create a new pointer checking group containing a single
341   /// pointer, with index \p Index in RtCheck.
342   RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
343 
344   /// Tries to add the pointer recorded in RtCheck at index
345   /// \p Index to this pointer checking group. We can only add a pointer
346   /// to a checking group if we will still be able to get
347   /// the upper and lower bounds of the check. Returns true in case
348   /// of success, false otherwise.
349   bool addPointer(unsigned Index);
350 
351   /// Constitutes the context of this pointer checking group. For each
352   /// pointer that is a member of this group we will retain the index
353   /// at which it appears in RtCheck.
354   RuntimePointerChecking &RtCheck;
355   /// The SCEV expression which represents the upper bound of all the
356   /// pointers in this group.
357   const SCEV *High;
358   /// The SCEV expression which represents the lower bound of all the
359   /// pointers in this group.
360   const SCEV *Low;
361   /// Indices of all the pointers that constitute this grouping.
362   SmallVector<unsigned, 2> Members;
363 };
364 
365 /// A memcheck which made up of a pair of grouped pointers.
366 typedef std::pair<const RuntimeCheckingPtrGroup *,
367                   const RuntimeCheckingPtrGroup *>
368     RuntimePointerCheck;
369 
370 /// Holds information about the memory runtime legality checks to verify
371 /// that a group of pointers do not overlap.
372 class RuntimePointerChecking {
373   friend struct RuntimeCheckingPtrGroup;
374 
375 public:
376   struct PointerInfo {
377     /// Holds the pointer value that we need to check.
378     TrackingVH<Value> PointerValue;
379     /// Holds the smallest byte address accessed by the pointer throughout all
380     /// iterations of the loop.
381     const SCEV *Start;
382     /// Holds the largest byte address accessed by the pointer throughout all
383     /// iterations of the loop, plus 1.
384     const SCEV *End;
385     /// Holds the information if this pointer is used for writing to memory.
386     bool IsWritePtr;
387     /// Holds the id of the set of pointers that could be dependent because of a
388     /// shared underlying object.
389     unsigned DependencySetId;
390     /// Holds the id of the disjoint alias set to which this pointer belongs.
391     unsigned AliasSetId;
392     /// SCEV for the access.
393     const SCEV *Expr;
394 
395     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
396                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
397                 const SCEV *Expr)
398         : PointerValue(PointerValue), Start(Start), End(End),
399           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
400           AliasSetId(AliasSetId), Expr(Expr) {}
401   };
402 
403   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
404 
405   /// Reset the state of the pointer runtime information.
406   void reset() {
407     Need = false;
408     Pointers.clear();
409     Checks.clear();
410   }
411 
412   /// Insert a pointer and calculate the start and end SCEVs.
413   /// We need \p PSE in order to compute the SCEV expression of the pointer
414   /// according to the assumptions that we've made during the analysis.
415   /// The method might also version the pointer stride according to \p Strides,
416   /// and add new predicates to \p PSE.
417   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
418               unsigned ASId, const ValueToValueMap &Strides,
419               PredicatedScalarEvolution &PSE);
420 
421   /// No run-time memory checking is necessary.
422   bool empty() const { return Pointers.empty(); }
423 
424   /// Generate the checks and store it.  This also performs the grouping
425   /// of pointers to reduce the number of memchecks necessary.
426   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
427                       bool UseDependencies);
428 
429   /// Returns the checks that generateChecks created.
430   const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
431     return Checks;
432   }
433 
434   /// Decide if we need to add a check between two groups of pointers,
435   /// according to needsChecking.
436   bool needsChecking(const RuntimeCheckingPtrGroup &M,
437                      const RuntimeCheckingPtrGroup &N) const;
438 
439   /// Returns the number of run-time checks required according to
440   /// needsChecking.
441   unsigned getNumberOfChecks() const { return Checks.size(); }
442 
443   /// Print the list run-time memory checks necessary.
444   void print(raw_ostream &OS, unsigned Depth = 0) const;
445 
446   /// Print \p Checks.
447   void printChecks(raw_ostream &OS,
448                    const SmallVectorImpl<RuntimePointerCheck> &Checks,
449                    unsigned Depth = 0) const;
450 
451   /// This flag indicates if we need to add the runtime check.
452   bool Need;
453 
454   /// Information about the pointers that may require checking.
455   SmallVector<PointerInfo, 2> Pointers;
456 
457   /// Holds a partitioning of pointers into "check groups".
458   SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
459 
460   /// Check if pointers are in the same partition
461   ///
462   /// \p PtrToPartition contains the partition number for pointers (-1 if the
463   /// pointer belongs to multiple partitions).
464   static bool
465   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
466                              unsigned PtrIdx1, unsigned PtrIdx2);
467 
468   /// Decide whether we need to issue a run-time check for pointer at
469   /// index \p I and \p J to prove their independence.
470   bool needsChecking(unsigned I, unsigned J) const;
471 
472   /// Return PointerInfo for pointer at index \p PtrIdx.
473   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
474     return Pointers[PtrIdx];
475   }
476 
477   ScalarEvolution *getSE() const { return SE; }
478 
479 private:
480   /// Groups pointers such that a single memcheck is required
481   /// between two different groups. This will clear the CheckingGroups vector
482   /// and re-compute it. We will only group dependecies if \p UseDependencies
483   /// is true, otherwise we will create a separate group for each pointer.
484   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
485                    bool UseDependencies);
486 
487   /// Generate the checks and return them.
488   SmallVector<RuntimePointerCheck, 4> generateChecks() const;
489 
490   /// Holds a pointer to the ScalarEvolution analysis.
491   ScalarEvolution *SE;
492 
493   /// Set of run-time checks required to establish independence of
494   /// otherwise may-aliasing pointers in the loop.
495   SmallVector<RuntimePointerCheck, 4> Checks;
496 };
497 
498 /// Drive the analysis of memory accesses in the loop
499 ///
500 /// This class is responsible for analyzing the memory accesses of a loop.  It
501 /// collects the accesses and then its main helper the AccessAnalysis class
502 /// finds and categorizes the dependences in buildDependenceSets.
503 ///
504 /// For memory dependences that can be analyzed at compile time, it determines
505 /// whether the dependence is part of cycle inhibiting vectorization.  This work
506 /// is delegated to the MemoryDepChecker class.
507 ///
508 /// For memory dependences that cannot be determined at compile time, it
509 /// generates run-time checks to prove independence.  This is done by
510 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
511 /// RuntimePointerCheck class.
512 ///
513 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
514 /// ScalarEvolution, we will generate run-time checks by emitting a
515 /// SCEVUnionPredicate.
516 ///
517 /// Checks for both memory dependences and the SCEV predicates contained in the
518 /// PSE must be emitted in order for the results of this analysis to be valid.
519 class LoopAccessInfo {
520 public:
521   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
522                  AAResults *AA, DominatorTree *DT, LoopInfo *LI);
523 
524   /// Return true we can analyze the memory accesses in the loop and there are
525   /// no memory dependence cycles.
526   bool canVectorizeMemory() const { return CanVecMem; }
527 
528   /// Return true if there is a convergent operation in the loop. There may
529   /// still be reported runtime pointer checks that would be required, but it is
530   /// not legal to insert them.
531   bool hasConvergentOp() const { return HasConvergentOp; }
532 
533   const RuntimePointerChecking *getRuntimePointerChecking() const {
534     return PtrRtChecking.get();
535   }
536 
537   /// Number of memchecks required to prove independence of otherwise
538   /// may-alias pointers.
539   unsigned getNumRuntimePointerChecks() const {
540     return PtrRtChecking->getNumberOfChecks();
541   }
542 
543   /// Return true if the block BB needs to be predicated in order for the loop
544   /// to be vectorized.
545   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
546                                     DominatorTree *DT);
547 
548   /// Returns true if the value V is uniform within the loop.
549   bool isUniform(Value *V) const;
550 
551   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
552   unsigned getNumStores() const { return NumStores; }
553   unsigned getNumLoads() const { return NumLoads;}
554 
555   /// The diagnostics report generated for the analysis.  E.g. why we
556   /// couldn't analyze the loop.
557   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
558 
559   /// the Memory Dependence Checker which can determine the
560   /// loop-independent and loop-carried dependences between memory accesses.
561   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
562 
563   /// Return the list of instructions that use \p Ptr to read or write
564   /// memory.
565   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
566                                                          bool isWrite) const {
567     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
568   }
569 
570   /// If an access has a symbolic strides, this maps the pointer value to
571   /// the stride symbol.
572   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
573 
574   /// Pointer has a symbolic stride.
575   bool hasStride(Value *V) const { return StrideSet.count(V); }
576 
577   /// Print the information about the memory accesses in the loop.
578   void print(raw_ostream &OS, unsigned Depth = 0) const;
579 
580   /// If the loop has memory dependence involving an invariant address, i.e. two
581   /// stores or a store and a load, then return true, else return false.
582   bool hasDependenceInvolvingLoopInvariantAddress() const {
583     return HasDependenceInvolvingLoopInvariantAddress;
584   }
585 
586   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
587   /// them to a more usable form.  All SCEV expressions during the analysis
588   /// should be re-written (and therefore simplified) according to PSE.
589   /// A user of LoopAccessAnalysis will need to emit the runtime checks
590   /// associated with this predicate.
591   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
592 
593 private:
594   /// Analyze the loop.
595   void analyzeLoop(AAResults *AA, LoopInfo *LI,
596                    const TargetLibraryInfo *TLI, DominatorTree *DT);
597 
598   /// Check if the structure of the loop allows it to be analyzed by this
599   /// pass.
600   bool canAnalyzeLoop();
601 
602   /// Save the analysis remark.
603   ///
604   /// LAA does not directly emits the remarks.  Instead it stores it which the
605   /// client can retrieve and presents as its own analysis
606   /// (e.g. -Rpass-analysis=loop-vectorize).
607   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
608                                              Instruction *Instr = nullptr);
609 
610   /// Collect memory access with loop invariant strides.
611   ///
612   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
613   /// invariant.
614   void collectStridedAccess(Value *LoadOrStoreInst);
615 
616   std::unique_ptr<PredicatedScalarEvolution> PSE;
617 
618   /// We need to check that all of the pointers in this list are disjoint
619   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
620   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
621 
622   /// the Memory Dependence Checker which can determine the
623   /// loop-independent and loop-carried dependences between memory accesses.
624   std::unique_ptr<MemoryDepChecker> DepChecker;
625 
626   Loop *TheLoop;
627 
628   unsigned NumLoads;
629   unsigned NumStores;
630 
631   uint64_t MaxSafeDepDistBytes;
632 
633   /// Cache the result of analyzeLoop.
634   bool CanVecMem;
635   bool HasConvergentOp;
636 
637   /// Indicator that there are non vectorizable stores to a uniform address.
638   bool HasDependenceInvolvingLoopInvariantAddress;
639 
640   /// The diagnostics report generated for the analysis.  E.g. why we
641   /// couldn't analyze the loop.
642   std::unique_ptr<OptimizationRemarkAnalysis> Report;
643 
644   /// If an access has a symbolic strides, this maps the pointer value to
645   /// the stride symbol.
646   ValueToValueMap SymbolicStrides;
647 
648   /// Set of symbolic strides values.
649   SmallPtrSet<Value *, 8> StrideSet;
650 };
651 
652 Value *stripIntegerCast(Value *V);
653 
654 /// Return the SCEV corresponding to a pointer with the symbolic stride
655 /// replaced with constant one, assuming the SCEV predicate associated with
656 /// \p PSE is true.
657 ///
658 /// If necessary this method will version the stride of the pointer according
659 /// to \p PtrToStride and therefore add further predicates to \p PSE.
660 ///
661 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
662 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
663 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
664 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
665                                       const ValueToValueMap &PtrToStride,
666                                       Value *Ptr, Value *OrigPtr = nullptr);
667 
668 /// If the pointer has a constant stride return it in units of its
669 /// element size.  Otherwise return zero.
670 ///
671 /// Ensure that it does not wrap in the address space, assuming the predicate
672 /// associated with \p PSE is true.
673 ///
674 /// If necessary this method will version the stride of the pointer according
675 /// to \p PtrToStride and therefore add further predicates to \p PSE.
676 /// The \p Assume parameter indicates if we are allowed to make additional
677 /// run-time assumptions.
678 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
679                      const ValueToValueMap &StridesMap = ValueToValueMap(),
680                      bool Assume = false, bool ShouldCheckWrap = true);
681 
682 /// Attempt to sort the pointers in \p VL and return the sorted indices
683 /// in \p SortedIndices, if reordering is required.
684 ///
685 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
686 ///
687 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
688 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
689 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
690 /// saves the mask for actual memory accesses in program order in
691 /// \p SortedIndices as <1,2,0,3>
692 bool sortPtrAccesses(ArrayRef<Value *> VL, const DataLayout &DL,
693                      ScalarEvolution &SE,
694                      SmallVectorImpl<unsigned> &SortedIndices);
695 
696 /// Returns true if the memory operations \p A and \p B are consecutive.
697 /// This is a simple API that does not depend on the analysis pass.
698 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
699                          ScalarEvolution &SE, bool CheckType = true);
700 
701 /// This analysis provides dependence information for the memory accesses
702 /// of a loop.
703 ///
704 /// It runs the analysis for a loop on demand.  This can be initiated by
705 /// querying the loop access info via LAA::getInfo.  getInfo return a
706 /// LoopAccessInfo object.  See this class for the specifics of what information
707 /// is provided.
708 class LoopAccessLegacyAnalysis : public FunctionPass {
709 public:
710   static char ID;
711 
712   LoopAccessLegacyAnalysis();
713 
714   bool runOnFunction(Function &F) override;
715 
716   void getAnalysisUsage(AnalysisUsage &AU) const override;
717 
718   /// Query the result of the loop access information for the loop \p L.
719   ///
720   /// If there is no cached result available run the analysis.
721   const LoopAccessInfo &getInfo(Loop *L);
722 
723   void releaseMemory() override {
724     // Invalidate the cache when the pass is freed.
725     LoopAccessInfoMap.clear();
726   }
727 
728   /// Print the result of the analysis when invoked with -analyze.
729   void print(raw_ostream &OS, const Module *M = nullptr) const override;
730 
731 private:
732   /// The cache.
733   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
734 
735   // The used analysis passes.
736   ScalarEvolution *SE = nullptr;
737   const TargetLibraryInfo *TLI = nullptr;
738   AAResults *AA = nullptr;
739   DominatorTree *DT = nullptr;
740   LoopInfo *LI = nullptr;
741 };
742 
743 /// This analysis provides dependence information for the memory
744 /// accesses of a loop.
745 ///
746 /// It runs the analysis for a loop on demand.  This can be initiated by
747 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
748 /// getResult return a LoopAccessInfo object.  See this class for the
749 /// specifics of what information is provided.
750 class LoopAccessAnalysis
751     : public AnalysisInfoMixin<LoopAccessAnalysis> {
752   friend AnalysisInfoMixin<LoopAccessAnalysis>;
753   static AnalysisKey Key;
754 
755 public:
756   typedef LoopAccessInfo Result;
757 
758   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
759 };
760 
761 inline Instruction *MemoryDepChecker::Dependence::getSource(
762     const LoopAccessInfo &LAI) const {
763   return LAI.getDepChecker().getMemoryInstructions()[Source];
764 }
765 
766 inline Instruction *MemoryDepChecker::Dependence::getDestination(
767     const LoopAccessInfo &LAI) const {
768   return LAI.getDepChecker().getMemoryInstructions()[Destination];
769 }
770 
771 } // End llvm namespace
772 
773 #endif
774