1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  A natural loop
11 // has exactly one entry-point, which is called the header. Note that natural
12 // loops may actually be several loops that share the same header node.
13 //
14 // This analysis calculates the nesting structure of loops in a function.  For
15 // each natural loop identified, this analysis identifies natural loops
16 // contained entirely within the loop and the basic blocks the make up the loop.
17 //
18 // It can calculate on the fly various bits of information, for example:
19 //
20 //  * whether there is a preheader for the loop
21 //  * the number of back edges to the header
22 //  * whether or not a particular block branches out of the loop
23 //  * the successor blocks of the loop
24 //  * the loop depth
25 //  * etc...
26 //
27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
28 // in the CFG.  There can be strongly connected components in the CFG which
29 // this analysis will not recognize and that will not be represented by a Loop
30 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
31 // non-loop SCC might contain a sub-SCC which is a Loop.
32 //
33 // For an overview of terminology used in this API (and thus all of our loop
34 // analyses or transforms), see docs/LoopTerminology.rst.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef LLVM_ANALYSIS_LOOPINFO_H
39 #define LLVM_ANALYSIS_LOOPINFO_H
40 
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/DenseSet.h"
43 #include "llvm/ADT/GraphTraits.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/IR/CFG.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Allocator.h"
52 #include <algorithm>
53 #include <utility>
54 
55 namespace llvm {
56 
57 class DominatorTree;
58 class LoopInfo;
59 class Loop;
60 class InductionDescriptor;
61 class MDNode;
62 class MemorySSAUpdater;
63 class ScalarEvolution;
64 class raw_ostream;
65 template <class N, bool IsPostDom> class DominatorTreeBase;
66 template <class N, class M> class LoopInfoBase;
67 template <class N, class M> class LoopBase;
68 
69 //===----------------------------------------------------------------------===//
70 /// Instances of this class are used to represent loops that are detected in the
71 /// flow graph.
72 ///
73 template <class BlockT, class LoopT> class LoopBase {
74   LoopT *ParentLoop;
75   // Loops contained entirely within this one.
76   std::vector<LoopT *> SubLoops;
77 
78   // The list of blocks in this loop. First entry is the header node.
79   std::vector<BlockT *> Blocks;
80 
81   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
82 
83 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
84   /// Indicator that this loop is no longer a valid loop.
85   bool IsInvalid = false;
86 #endif
87 
88   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
89   const LoopBase<BlockT, LoopT> &
90   operator=(const LoopBase<BlockT, LoopT> &) = delete;
91 
92 public:
93   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
94   /// for consistency with loop depth values used for basic blocks, where depth
95   /// 0 is used for blocks not inside any loops.
96   unsigned getLoopDepth() const {
97     assert(!isInvalid() && "Loop not in a valid state!");
98     unsigned D = 1;
99     for (const LoopT *CurLoop = ParentLoop; CurLoop;
100          CurLoop = CurLoop->ParentLoop)
101       ++D;
102     return D;
103   }
104   BlockT *getHeader() const { return getBlocks().front(); }
105   /// Return the parent loop if it exists or nullptr for top
106   /// level loops.
107 
108   /// A loop is either top-level in a function (that is, it is not
109   /// contained in any other loop) or it is entirely enclosed in
110   /// some other loop.
111   /// If a loop is top-level, it has no parent, otherwise its
112   /// parent is the innermost loop in which it is enclosed.
113   LoopT *getParentLoop() const { return ParentLoop; }
114 
115   /// This is a raw interface for bypassing addChildLoop.
116   void setParentLoop(LoopT *L) {
117     assert(!isInvalid() && "Loop not in a valid state!");
118     ParentLoop = L;
119   }
120 
121   /// Return true if the specified loop is contained within in this loop.
122   bool contains(const LoopT *L) const {
123     assert(!isInvalid() && "Loop not in a valid state!");
124     if (L == this)
125       return true;
126     if (!L)
127       return false;
128     return contains(L->getParentLoop());
129   }
130 
131   /// Return true if the specified basic block is in this loop.
132   bool contains(const BlockT *BB) const {
133     assert(!isInvalid() && "Loop not in a valid state!");
134     return DenseBlockSet.count(BB);
135   }
136 
137   /// Return true if the specified instruction is in this loop.
138   template <class InstT> bool contains(const InstT *Inst) const {
139     return contains(Inst->getParent());
140   }
141 
142   /// Return the loops contained entirely within this loop.
143   const std::vector<LoopT *> &getSubLoops() const {
144     assert(!isInvalid() && "Loop not in a valid state!");
145     return SubLoops;
146   }
147   std::vector<LoopT *> &getSubLoopsVector() {
148     assert(!isInvalid() && "Loop not in a valid state!");
149     return SubLoops;
150   }
151   typedef typename std::vector<LoopT *>::const_iterator iterator;
152   typedef
153       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
154   iterator begin() const { return getSubLoops().begin(); }
155   iterator end() const { return getSubLoops().end(); }
156   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
157   reverse_iterator rend() const { return getSubLoops().rend(); }
158 
159   // LoopInfo does not detect irreducible control flow, just natural
160   // loops. That is, it is possible that there is cyclic control
161   // flow within the "innermost loop" or around the "outermost
162   // loop".
163 
164   /// Return true if the loop does not contain any (natural) loops.
165   bool isInnermost() const { return getSubLoops().empty(); }
166   /// Return true if the loop does not have a parent (natural) loop
167   // (i.e. it is outermost, which is the same as top-level).
168   bool isOutermost() const { return getParentLoop() == nullptr; }
169 
170   /// Get a list of the basic blocks which make up this loop.
171   ArrayRef<BlockT *> getBlocks() const {
172     assert(!isInvalid() && "Loop not in a valid state!");
173     return Blocks;
174   }
175   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
176   block_iterator block_begin() const { return getBlocks().begin(); }
177   block_iterator block_end() const { return getBlocks().end(); }
178   inline iterator_range<block_iterator> blocks() const {
179     assert(!isInvalid() && "Loop not in a valid state!");
180     return make_range(block_begin(), block_end());
181   }
182 
183   /// Get the number of blocks in this loop in constant time.
184   /// Invalidate the loop, indicating that it is no longer a loop.
185   unsigned getNumBlocks() const {
186     assert(!isInvalid() && "Loop not in a valid state!");
187     return Blocks.size();
188   }
189 
190   /// Return a direct, mutable handle to the blocks vector so that we can
191   /// mutate it efficiently with techniques like `std::remove`.
192   std::vector<BlockT *> &getBlocksVector() {
193     assert(!isInvalid() && "Loop not in a valid state!");
194     return Blocks;
195   }
196   /// Return a direct, mutable handle to the blocks set so that we can
197   /// mutate it efficiently.
198   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
199     assert(!isInvalid() && "Loop not in a valid state!");
200     return DenseBlockSet;
201   }
202 
203   /// Return a direct, immutable handle to the blocks set.
204   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
205     assert(!isInvalid() && "Loop not in a valid state!");
206     return DenseBlockSet;
207   }
208 
209   /// Return true if this loop is no longer valid.  The only valid use of this
210   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
211   /// true by the destructor.  In other words, if this accessor returns true,
212   /// the caller has already triggered UB by calling this accessor; and so it
213   /// can only be called in a context where a return value of true indicates a
214   /// programmer error.
215   bool isInvalid() const {
216 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
217     return IsInvalid;
218 #else
219     return false;
220 #endif
221   }
222 
223   /// True if terminator in the block can branch to another block that is
224   /// outside of the current loop. \p BB must be inside the loop.
225   bool isLoopExiting(const BlockT *BB) const {
226     assert(!isInvalid() && "Loop not in a valid state!");
227     assert(contains(BB) && "Exiting block must be part of the loop");
228     for (const auto *Succ : children<const BlockT *>(BB)) {
229       if (!contains(Succ))
230         return true;
231     }
232     return false;
233   }
234 
235   /// Returns true if \p BB is a loop-latch.
236   /// A latch block is a block that contains a branch back to the header.
237   /// This function is useful when there are multiple latches in a loop
238   /// because \fn getLoopLatch will return nullptr in that case.
239   bool isLoopLatch(const BlockT *BB) const {
240     assert(!isInvalid() && "Loop not in a valid state!");
241     assert(contains(BB) && "block does not belong to the loop");
242 
243     BlockT *Header = getHeader();
244     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
245     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
246     return std::find(PredBegin, PredEnd, BB) != PredEnd;
247   }
248 
249   /// Calculate the number of back edges to the loop header.
250   unsigned getNumBackEdges() const {
251     assert(!isInvalid() && "Loop not in a valid state!");
252     unsigned NumBackEdges = 0;
253     BlockT *H = getHeader();
254 
255     for (const auto Pred : children<Inverse<BlockT *>>(H))
256       if (contains(Pred))
257         ++NumBackEdges;
258 
259     return NumBackEdges;
260   }
261 
262   //===--------------------------------------------------------------------===//
263   // APIs for simple analysis of the loop.
264   //
265   // Note that all of these methods can fail on general loops (ie, there may not
266   // be a preheader, etc).  For best success, the loop simplification and
267   // induction variable canonicalization pass should be used to normalize loops
268   // for easy analysis.  These methods assume canonical loops.
269 
270   /// Return all blocks inside the loop that have successors outside of the
271   /// loop. These are the blocks _inside of the current loop_ which branch out.
272   /// The returned list is always unique.
273   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
274 
275   /// If getExitingBlocks would return exactly one block, return that block.
276   /// Otherwise return null.
277   BlockT *getExitingBlock() const;
278 
279   /// Return all of the successor blocks of this loop. These are the blocks
280   /// _outside of the current loop_ which are branched to.
281   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
282 
283   /// If getExitBlocks would return exactly one block, return that block.
284   /// Otherwise return null.
285   BlockT *getExitBlock() const;
286 
287   /// Return true if no exit block for the loop has a predecessor that is
288   /// outside the loop.
289   bool hasDedicatedExits() const;
290 
291   /// Return all unique successor blocks of this loop.
292   /// These are the blocks _outside of the current loop_ which are branched to.
293   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
294 
295   /// Return all unique successor blocks of this loop except successors from
296   /// Latch block are not considered. If the exit comes from Latch has also
297   /// non Latch predecessor in a loop it will be added to ExitBlocks.
298   /// These are the blocks _outside of the current loop_ which are branched to.
299   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
300 
301   /// If getUniqueExitBlocks would return exactly one block, return that block.
302   /// Otherwise return null.
303   BlockT *getUniqueExitBlock() const;
304 
305   /// Return true if this loop does not have any exit blocks.
306   bool hasNoExitBlocks() const;
307 
308   /// Edge type.
309   typedef std::pair<BlockT *, BlockT *> Edge;
310 
311   /// Return all pairs of (_inside_block_,_outside_block_).
312   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
313 
314   /// If there is a preheader for this loop, return it. A loop has a preheader
315   /// if there is only one edge to the header of the loop from outside of the
316   /// loop. If this is the case, the block branching to the header of the loop
317   /// is the preheader node.
318   ///
319   /// This method returns null if there is no preheader for the loop.
320   BlockT *getLoopPreheader() const;
321 
322   /// If the given loop's header has exactly one unique predecessor outside the
323   /// loop, return it. Otherwise return null.
324   ///  This is less strict that the loop "preheader" concept, which requires
325   /// the predecessor to have exactly one successor.
326   BlockT *getLoopPredecessor() const;
327 
328   /// If there is a single latch block for this loop, return it.
329   /// A latch block is a block that contains a branch back to the header.
330   BlockT *getLoopLatch() const;
331 
332   /// Return all loop latch blocks of this loop. A latch block is a block that
333   /// contains a branch back to the header.
334   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
335     assert(!isInvalid() && "Loop not in a valid state!");
336     BlockT *H = getHeader();
337     for (const auto Pred : children<Inverse<BlockT *>>(H))
338       if (contains(Pred))
339         LoopLatches.push_back(Pred);
340   }
341 
342   /// Return all inner loops in the loop nest rooted by the loop in preorder,
343   /// with siblings in forward program order.
344   template <class Type>
345   static void getInnerLoopsInPreorder(const LoopT &L,
346                                       SmallVectorImpl<Type> &PreOrderLoops) {
347     SmallVector<LoopT *, 4> PreOrderWorklist;
348     PreOrderWorklist.append(L.rbegin(), L.rend());
349 
350     while (!PreOrderWorklist.empty()) {
351       LoopT *L = PreOrderWorklist.pop_back_val();
352       // Sub-loops are stored in forward program order, but will process the
353       // worklist backwards so append them in reverse order.
354       PreOrderWorklist.append(L->rbegin(), L->rend());
355       PreOrderLoops.push_back(L);
356     }
357   }
358 
359   /// Return all loops in the loop nest rooted by the loop in preorder, with
360   /// siblings in forward program order.
361   SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
362     SmallVector<const LoopT *, 4> PreOrderLoops;
363     const LoopT *CurLoop = static_cast<const LoopT *>(this);
364     PreOrderLoops.push_back(CurLoop);
365     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
366     return PreOrderLoops;
367   }
368   SmallVector<LoopT *, 4> getLoopsInPreorder() {
369     SmallVector<LoopT *, 4> PreOrderLoops;
370     LoopT *CurLoop = static_cast<LoopT *>(this);
371     PreOrderLoops.push_back(CurLoop);
372     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
373     return PreOrderLoops;
374   }
375 
376   //===--------------------------------------------------------------------===//
377   // APIs for updating loop information after changing the CFG
378   //
379 
380   /// This method is used by other analyses to update loop information.
381   /// NewBB is set to be a new member of the current loop.
382   /// Because of this, it is added as a member of all parent loops, and is added
383   /// to the specified LoopInfo object as being in the current basic block.  It
384   /// is not valid to replace the loop header with this method.
385   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
386 
387   /// This is used when splitting loops up. It replaces the OldChild entry in
388   /// our children list with NewChild, and updates the parent pointer of
389   /// OldChild to be null and the NewChild to be this loop.
390   /// This updates the loop depth of the new child.
391   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
392 
393   /// Add the specified loop to be a child of this loop.
394   /// This updates the loop depth of the new child.
395   void addChildLoop(LoopT *NewChild) {
396     assert(!isInvalid() && "Loop not in a valid state!");
397     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
398     NewChild->ParentLoop = static_cast<LoopT *>(this);
399     SubLoops.push_back(NewChild);
400   }
401 
402   /// This removes the specified child from being a subloop of this loop. The
403   /// loop is not deleted, as it will presumably be inserted into another loop.
404   LoopT *removeChildLoop(iterator I) {
405     assert(!isInvalid() && "Loop not in a valid state!");
406     assert(I != SubLoops.end() && "Cannot remove end iterator!");
407     LoopT *Child = *I;
408     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
409     SubLoops.erase(SubLoops.begin() + (I - begin()));
410     Child->ParentLoop = nullptr;
411     return Child;
412   }
413 
414   /// This removes the specified child from being a subloop of this loop. The
415   /// loop is not deleted, as it will presumably be inserted into another loop.
416   LoopT *removeChildLoop(LoopT *Child) {
417     return removeChildLoop(llvm::find(*this, Child));
418   }
419 
420   /// This adds a basic block directly to the basic block list.
421   /// This should only be used by transformations that create new loops.  Other
422   /// transformations should use addBasicBlockToLoop.
423   void addBlockEntry(BlockT *BB) {
424     assert(!isInvalid() && "Loop not in a valid state!");
425     Blocks.push_back(BB);
426     DenseBlockSet.insert(BB);
427   }
428 
429   /// interface to reverse Blocks[from, end of loop] in this loop
430   void reverseBlock(unsigned from) {
431     assert(!isInvalid() && "Loop not in a valid state!");
432     std::reverse(Blocks.begin() + from, Blocks.end());
433   }
434 
435   /// interface to do reserve() for Blocks
436   void reserveBlocks(unsigned size) {
437     assert(!isInvalid() && "Loop not in a valid state!");
438     Blocks.reserve(size);
439   }
440 
441   /// This method is used to move BB (which must be part of this loop) to be the
442   /// loop header of the loop (the block that dominates all others).
443   void moveToHeader(BlockT *BB) {
444     assert(!isInvalid() && "Loop not in a valid state!");
445     if (Blocks[0] == BB)
446       return;
447     for (unsigned i = 0;; ++i) {
448       assert(i != Blocks.size() && "Loop does not contain BB!");
449       if (Blocks[i] == BB) {
450         Blocks[i] = Blocks[0];
451         Blocks[0] = BB;
452         return;
453       }
454     }
455   }
456 
457   /// This removes the specified basic block from the current loop, updating the
458   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
459   /// class.
460   void removeBlockFromLoop(BlockT *BB) {
461     assert(!isInvalid() && "Loop not in a valid state!");
462     auto I = find(Blocks, BB);
463     assert(I != Blocks.end() && "N is not in this list!");
464     Blocks.erase(I);
465 
466     DenseBlockSet.erase(BB);
467   }
468 
469   /// Verify loop structure
470   void verifyLoop() const;
471 
472   /// Verify loop structure of this loop and all nested loops.
473   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
474 
475   /// Returns true if the loop is annotated parallel.
476   ///
477   /// Derived classes can override this method using static template
478   /// polymorphism.
479   bool isAnnotatedParallel() const { return false; }
480 
481   /// Print loop with all the BBs inside it.
482   void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
483              unsigned Depth = 0) const;
484 
485 protected:
486   friend class LoopInfoBase<BlockT, LoopT>;
487 
488   /// This creates an empty loop.
489   LoopBase() : ParentLoop(nullptr) {}
490 
491   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
492     Blocks.push_back(BB);
493     DenseBlockSet.insert(BB);
494   }
495 
496   // Since loop passes like SCEV are allowed to key analysis results off of
497   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
498   // This means loop passes should not be `delete` ing `Loop` objects directly
499   // (and risk a later `Loop` allocation re-using the address of a previous one)
500   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
501   // pointer till the end of the lifetime of the `LoopInfo` object.
502   //
503   // To make it easier to follow this rule, we mark the destructor as
504   // non-public.
505   ~LoopBase() {
506     for (auto *SubLoop : SubLoops)
507       SubLoop->~LoopT();
508 
509 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
510     IsInvalid = true;
511 #endif
512     SubLoops.clear();
513     Blocks.clear();
514     DenseBlockSet.clear();
515     ParentLoop = nullptr;
516   }
517 };
518 
519 template <class BlockT, class LoopT>
520 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
521   Loop.print(OS);
522   return OS;
523 }
524 
525 // Implementation in LoopInfoImpl.h
526 extern template class LoopBase<BasicBlock, Loop>;
527 
528 /// Represents a single loop in the control flow graph.  Note that not all SCCs
529 /// in the CFG are necessarily loops.
530 class LLVM_EXTERNAL_VISIBILITY Loop : public LoopBase<BasicBlock, Loop> {
531 public:
532   /// A range representing the start and end location of a loop.
533   class LocRange {
534     DebugLoc Start;
535     DebugLoc End;
536 
537   public:
538     LocRange() {}
539     LocRange(DebugLoc Start) : Start(Start), End(Start) {}
540     LocRange(DebugLoc Start, DebugLoc End)
541         : Start(std::move(Start)), End(std::move(End)) {}
542 
543     const DebugLoc &getStart() const { return Start; }
544     const DebugLoc &getEnd() const { return End; }
545 
546     /// Check for null.
547     ///
548     explicit operator bool() const { return Start && End; }
549   };
550 
551   /// Return true if the specified value is loop invariant.
552   bool isLoopInvariant(const Value *V) const;
553 
554   /// Return true if all the operands of the specified instruction are loop
555   /// invariant.
556   bool hasLoopInvariantOperands(const Instruction *I) const;
557 
558   /// If the given value is an instruction inside of the loop and it can be
559   /// hoisted, do so to make it trivially loop-invariant.
560   /// Return true if the value after any hoisting is loop invariant. This
561   /// function can be used as a slightly more aggressive replacement for
562   /// isLoopInvariant.
563   ///
564   /// If InsertPt is specified, it is the point to hoist instructions to.
565   /// If null, the terminator of the loop preheader is used.
566   bool makeLoopInvariant(Value *V, bool &Changed,
567                          Instruction *InsertPt = nullptr,
568                          MemorySSAUpdater *MSSAU = nullptr) const;
569 
570   /// If the given instruction is inside of the loop and it can be hoisted, do
571   /// so to make it trivially loop-invariant.
572   /// Return true if the instruction after any hoisting is loop invariant. This
573   /// function can be used as a slightly more aggressive replacement for
574   /// isLoopInvariant.
575   ///
576   /// If InsertPt is specified, it is the point to hoist instructions to.
577   /// If null, the terminator of the loop preheader is used.
578   ///
579   bool makeLoopInvariant(Instruction *I, bool &Changed,
580                          Instruction *InsertPt = nullptr,
581                          MemorySSAUpdater *MSSAU = nullptr) const;
582 
583   /// Check to see if the loop has a canonical induction variable: an integer
584   /// recurrence that starts at 0 and increments by one each time through the
585   /// loop. If so, return the phi node that corresponds to it.
586   ///
587   /// The IndVarSimplify pass transforms loops to have a canonical induction
588   /// variable.
589   ///
590   PHINode *getCanonicalInductionVariable() const;
591 
592   /// Get the latch condition instruction.
593   ICmpInst *getLatchCmpInst() const;
594 
595   /// Obtain the unique incoming and back edge. Return false if they are
596   /// non-unique or the loop is dead; otherwise, return true.
597   bool getIncomingAndBackEdge(BasicBlock *&Incoming,
598                               BasicBlock *&Backedge) const;
599 
600   /// Below are some utilities to get the loop guard, loop bounds and induction
601   /// variable, and to check if a given phinode is an auxiliary induction
602   /// variable, if the loop is guarded, and if the loop is canonical.
603   ///
604   /// Here is an example:
605   /// \code
606   /// for (int i = lb; i < ub; i+=step)
607   ///   <loop body>
608   /// --- pseudo LLVMIR ---
609   /// beforeloop:
610   ///   guardcmp = (lb < ub)
611   ///   if (guardcmp) goto preheader; else goto afterloop
612   /// preheader:
613   /// loop:
614   ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
615   ///   <loop body>
616   ///   i_2 = i_1 + step
617   /// latch:
618   ///   cmp = (i_2 < ub)
619   ///   if (cmp) goto loop
620   /// exit:
621   /// afterloop:
622   /// \endcode
623   ///
624   /// - getBounds
625   ///   - getInitialIVValue      --> lb
626   ///   - getStepInst            --> i_2 = i_1 + step
627   ///   - getStepValue           --> step
628   ///   - getFinalIVValue        --> ub
629   ///   - getCanonicalPredicate  --> '<'
630   ///   - getDirection           --> Increasing
631   ///
632   /// - getInductionVariable            --> i_1
633   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
634   /// - getLoopGuardBranch()
635   ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
636   /// - isGuarded()                     --> true
637   /// - isCanonical                     --> false
638   struct LoopBounds {
639     /// Return the LoopBounds object if
640     /// - the given \p IndVar is an induction variable
641     /// - the initial value of the induction variable can be found
642     /// - the step instruction of the induction variable can be found
643     /// - the final value of the induction variable can be found
644     ///
645     /// Else None.
646     static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
647                                                 ScalarEvolution &SE);
648 
649     /// Get the initial value of the loop induction variable.
650     Value &getInitialIVValue() const { return InitialIVValue; }
651 
652     /// Get the instruction that updates the loop induction variable.
653     Instruction &getStepInst() const { return StepInst; }
654 
655     /// Get the step that the loop induction variable gets updated by in each
656     /// loop iteration. Return nullptr if not found.
657     Value *getStepValue() const { return StepValue; }
658 
659     /// Get the final value of the loop induction variable.
660     Value &getFinalIVValue() const { return FinalIVValue; }
661 
662     /// Return the canonical predicate for the latch compare instruction, if
663     /// able to be calcuated. Else BAD_ICMP_PREDICATE.
664     ///
665     /// A predicate is considered as canonical if requirements below are all
666     /// satisfied:
667     /// 1. The first successor of the latch branch is the loop header
668     ///    If not, inverse the predicate.
669     /// 2. One of the operands of the latch comparison is StepInst
670     ///    If not, and
671     ///    - if the current calcuated predicate is not ne or eq, flip the
672     ///      predicate.
673     ///    - else if the loop is increasing, return slt
674     ///      (notice that it is safe to change from ne or eq to sign compare)
675     ///    - else if the loop is decreasing, return sgt
676     ///      (notice that it is safe to change from ne or eq to sign compare)
677     ///
678     /// Here is an example when both (1) and (2) are not satisfied:
679     /// \code
680     /// loop.header:
681     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
682     ///  %inc = add %iv, %step
683     ///  %cmp = slt %iv, %finaliv
684     ///  br %cmp, %loop.exit, %loop.header
685     /// loop.exit:
686     /// \endcode
687     /// - The second successor of the latch branch is the loop header instead
688     ///   of the first successor (slt -> sge)
689     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
690     ///   instead of the StepInst (%inc) (sge -> sgt)
691     ///
692     /// The predicate would be sgt if both (1) and (2) are satisfied.
693     /// getCanonicalPredicate() returns sgt for this example.
694     /// Note: The IR is not changed.
695     ICmpInst::Predicate getCanonicalPredicate() const;
696 
697     /// An enum for the direction of the loop
698     /// - for (int i = 0; i < ub; ++i)  --> Increasing
699     /// - for (int i = ub; i > 0; --i)  --> Descresing
700     /// - for (int i = x; i != y; i+=z) --> Unknown
701     enum class Direction { Increasing, Decreasing, Unknown };
702 
703     /// Get the direction of the loop.
704     Direction getDirection() const;
705 
706   private:
707     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
708                ScalarEvolution &SE)
709         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
710           FinalIVValue(F), SE(SE) {}
711 
712     const Loop &L;
713 
714     // The initial value of the loop induction variable
715     Value &InitialIVValue;
716 
717     // The instruction that updates the loop induction variable
718     Instruction &StepInst;
719 
720     // The value that the loop induction variable gets updated by in each loop
721     // iteration
722     Value *StepValue;
723 
724     // The final value of the loop induction variable
725     Value &FinalIVValue;
726 
727     ScalarEvolution &SE;
728   };
729 
730   /// Return the struct LoopBounds collected if all struct members are found,
731   /// else None.
732   Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
733 
734   /// Return the loop induction variable if found, else return nullptr.
735   /// An instruction is considered as the loop induction variable if
736   /// - it is an induction variable of the loop; and
737   /// - it is used to determine the condition of the branch in the loop latch
738   ///
739   /// Note: the induction variable doesn't need to be canonical, i.e. starts at
740   /// zero and increments by one each time through the loop (but it can be).
741   PHINode *getInductionVariable(ScalarEvolution &SE) const;
742 
743   /// Get the loop induction descriptor for the loop induction variable. Return
744   /// true if the loop induction variable is found.
745   bool getInductionDescriptor(ScalarEvolution &SE,
746                               InductionDescriptor &IndDesc) const;
747 
748   /// Return true if the given PHINode \p AuxIndVar is
749   /// - in the loop header
750   /// - not used outside of the loop
751   /// - incremented by a loop invariant step for each loop iteration
752   /// - step instruction opcode should be add or sub
753   /// Note: auxiliary induction variable is not required to be used in the
754   ///       conditional branch in the loop latch. (but it can be)
755   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
756                                     ScalarEvolution &SE) const;
757 
758   /// Return the loop guard branch, if it exists.
759   ///
760   /// This currently only works on simplified loop, as it requires a preheader
761   /// and a latch to identify the guard. It will work on loops of the form:
762   /// \code
763   /// GuardBB:
764   ///   br cond1, Preheader, ExitSucc <== GuardBranch
765   /// Preheader:
766   ///   br Header
767   /// Header:
768   ///  ...
769   ///   br Latch
770   /// Latch:
771   ///   br cond2, Header, ExitBlock
772   /// ExitBlock:
773   ///   br ExitSucc
774   /// ExitSucc:
775   /// \endcode
776   BranchInst *getLoopGuardBranch() const;
777 
778   /// Return true iff the loop is
779   /// - in simplify rotated form, and
780   /// - guarded by a loop guard branch.
781   bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
782 
783   /// Return true if the loop is in rotated form.
784   ///
785   /// This does not check if the loop was rotated by loop rotation, instead it
786   /// only checks if the loop is in rotated form (has a valid latch that exists
787   /// the loop).
788   bool isRotatedForm() const {
789     assert(!isInvalid() && "Loop not in a valid state!");
790     BasicBlock *Latch = getLoopLatch();
791     return Latch && isLoopExiting(Latch);
792   }
793 
794   /// Return true if the loop induction variable starts at zero and increments
795   /// by one each time through the loop.
796   bool isCanonical(ScalarEvolution &SE) const;
797 
798   /// Return true if the Loop is in LCSSA form.
799   bool isLCSSAForm(const DominatorTree &DT) const;
800 
801   /// Return true if this Loop and all inner subloops are in LCSSA form.
802   bool isRecursivelyLCSSAForm(const DominatorTree &DT,
803                               const LoopInfo &LI) const;
804 
805   /// Return true if the Loop is in the form that the LoopSimplify form
806   /// transforms loops to, which is sometimes called normal form.
807   bool isLoopSimplifyForm() const;
808 
809   /// Return true if the loop body is safe to clone in practice.
810   bool isSafeToClone() const;
811 
812   /// Returns true if the loop is annotated parallel.
813   ///
814   /// A parallel loop can be assumed to not contain any dependencies between
815   /// iterations by the compiler. That is, any loop-carried dependency checking
816   /// can be skipped completely when parallelizing the loop on the target
817   /// machine. Thus, if the parallel loop information originates from the
818   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
819   /// programmer's responsibility to ensure there are no loop-carried
820   /// dependencies. The final execution order of the instructions across
821   /// iterations is not guaranteed, thus, the end result might or might not
822   /// implement actual concurrent execution of instructions across multiple
823   /// iterations.
824   bool isAnnotatedParallel() const;
825 
826   /// Return the llvm.loop loop id metadata node for this loop if it is present.
827   ///
828   /// If this loop contains the same llvm.loop metadata on each branch to the
829   /// header then the node is returned. If any latch instruction does not
830   /// contain llvm.loop or if multiple latches contain different nodes then
831   /// 0 is returned.
832   MDNode *getLoopID() const;
833   /// Set the llvm.loop loop id metadata for this loop.
834   ///
835   /// The LoopID metadata node will be added to each terminator instruction in
836   /// the loop that branches to the loop header.
837   ///
838   /// The LoopID metadata node should have one or more operands and the first
839   /// operand should be the node itself.
840   void setLoopID(MDNode *LoopID) const;
841 
842   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
843   ///
844   /// Remove existing unroll metadata and add unroll disable metadata to
845   /// indicate the loop has already been unrolled.  This prevents a loop
846   /// from being unrolled more than is directed by a pragma if the loop
847   /// unrolling pass is run more than once (which it generally is).
848   void setLoopAlreadyUnrolled();
849 
850   /// Add llvm.loop.mustprogress to this loop's loop id metadata.
851   void setLoopMustProgress();
852 
853   void dump() const;
854   void dumpVerbose() const;
855 
856   /// Return the debug location of the start of this loop.
857   /// This looks for a BB terminating instruction with a known debug
858   /// location by looking at the preheader and header blocks. If it
859   /// cannot find a terminating instruction with location information,
860   /// it returns an unknown location.
861   DebugLoc getStartLoc() const;
862 
863   /// Return the source code span of the loop.
864   LocRange getLocRange() const;
865 
866   StringRef getName() const {
867     if (BasicBlock *Header = getHeader())
868       if (Header->hasName())
869         return Header->getName();
870     return "<unnamed loop>";
871   }
872 
873 private:
874   Loop() = default;
875 
876   friend class LoopInfoBase<BasicBlock, Loop>;
877   friend class LoopBase<BasicBlock, Loop>;
878   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
879   ~Loop() = default;
880 };
881 
882 //===----------------------------------------------------------------------===//
883 /// This class builds and contains all of the top-level loop
884 /// structures in the specified function.
885 ///
886 
887 template <class BlockT, class LoopT> class LoopInfoBase {
888   // BBMap - Mapping of basic blocks to the inner most loop they occur in
889   DenseMap<const BlockT *, LoopT *> BBMap;
890   std::vector<LoopT *> TopLevelLoops;
891   BumpPtrAllocator LoopAllocator;
892 
893   friend class LoopBase<BlockT, LoopT>;
894   friend class LoopInfo;
895 
896   void operator=(const LoopInfoBase &) = delete;
897   LoopInfoBase(const LoopInfoBase &) = delete;
898 
899 public:
900   LoopInfoBase() {}
901   ~LoopInfoBase() { releaseMemory(); }
902 
903   LoopInfoBase(LoopInfoBase &&Arg)
904       : BBMap(std::move(Arg.BBMap)),
905         TopLevelLoops(std::move(Arg.TopLevelLoops)),
906         LoopAllocator(std::move(Arg.LoopAllocator)) {
907     // We have to clear the arguments top level loops as we've taken ownership.
908     Arg.TopLevelLoops.clear();
909   }
910   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
911     BBMap = std::move(RHS.BBMap);
912 
913     for (auto *L : TopLevelLoops)
914       L->~LoopT();
915 
916     TopLevelLoops = std::move(RHS.TopLevelLoops);
917     LoopAllocator = std::move(RHS.LoopAllocator);
918     RHS.TopLevelLoops.clear();
919     return *this;
920   }
921 
922   void releaseMemory() {
923     BBMap.clear();
924 
925     for (auto *L : TopLevelLoops)
926       L->~LoopT();
927     TopLevelLoops.clear();
928     LoopAllocator.Reset();
929   }
930 
931   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
932     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
933     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
934   }
935 
936   /// iterator/begin/end - The interface to the top-level loops in the current
937   /// function.
938   ///
939   typedef typename std::vector<LoopT *>::const_iterator iterator;
940   typedef
941       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
942   iterator begin() const { return TopLevelLoops.begin(); }
943   iterator end() const { return TopLevelLoops.end(); }
944   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
945   reverse_iterator rend() const { return TopLevelLoops.rend(); }
946   bool empty() const { return TopLevelLoops.empty(); }
947 
948   /// Return all of the loops in the function in preorder across the loop
949   /// nests, with siblings in forward program order.
950   ///
951   /// Note that because loops form a forest of trees, preorder is equivalent to
952   /// reverse postorder.
953   SmallVector<LoopT *, 4> getLoopsInPreorder();
954 
955   /// Return all of the loops in the function in preorder across the loop
956   /// nests, with siblings in *reverse* program order.
957   ///
958   /// Note that because loops form a forest of trees, preorder is equivalent to
959   /// reverse postorder.
960   ///
961   /// Also note that this is *not* a reverse preorder. Only the siblings are in
962   /// reverse program order.
963   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
964 
965   /// Return the inner most loop that BB lives in. If a basic block is in no
966   /// loop (for example the entry node), null is returned.
967   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
968 
969   /// Same as getLoopFor.
970   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
971 
972   /// Return the loop nesting level of the specified block. A depth of 0 means
973   /// the block is not inside any loop.
974   unsigned getLoopDepth(const BlockT *BB) const {
975     const LoopT *L = getLoopFor(BB);
976     return L ? L->getLoopDepth() : 0;
977   }
978 
979   // True if the block is a loop header node
980   bool isLoopHeader(const BlockT *BB) const {
981     const LoopT *L = getLoopFor(BB);
982     return L && L->getHeader() == BB;
983   }
984 
985   /// Return the top-level loops.
986   const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
987 
988   /// Return the top-level loops.
989   std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
990 
991   /// This removes the specified top-level loop from this loop info object.
992   /// The loop is not deleted, as it will presumably be inserted into
993   /// another loop.
994   LoopT *removeLoop(iterator I) {
995     assert(I != end() && "Cannot remove end iterator!");
996     LoopT *L = *I;
997     assert(L->isOutermost() && "Not a top-level loop!");
998     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
999     return L;
1000   }
1001 
1002   /// Change the top-level loop that contains BB to the specified loop.
1003   /// This should be used by transformations that restructure the loop hierarchy
1004   /// tree.
1005   void changeLoopFor(BlockT *BB, LoopT *L) {
1006     if (!L) {
1007       BBMap.erase(BB);
1008       return;
1009     }
1010     BBMap[BB] = L;
1011   }
1012 
1013   /// Replace the specified loop in the top-level loops list with the indicated
1014   /// loop.
1015   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
1016     auto I = find(TopLevelLoops, OldLoop);
1017     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
1018     *I = NewLoop;
1019     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
1020            "Loops already embedded into a subloop!");
1021   }
1022 
1023   /// This adds the specified loop to the collection of top-level loops.
1024   void addTopLevelLoop(LoopT *New) {
1025     assert(New->isOutermost() && "Loop already in subloop!");
1026     TopLevelLoops.push_back(New);
1027   }
1028 
1029   /// This method completely removes BB from all data structures,
1030   /// including all of the Loop objects it is nested in and our mapping from
1031   /// BasicBlocks to loops.
1032   void removeBlock(BlockT *BB) {
1033     auto I = BBMap.find(BB);
1034     if (I != BBMap.end()) {
1035       for (LoopT *L = I->second; L; L = L->getParentLoop())
1036         L->removeBlockFromLoop(BB);
1037 
1038       BBMap.erase(I);
1039     }
1040   }
1041 
1042   // Internals
1043 
1044   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
1045                                       const LoopT *ParentLoop) {
1046     if (!SubLoop)
1047       return true;
1048     if (SubLoop == ParentLoop)
1049       return false;
1050     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
1051   }
1052 
1053   /// Create the loop forest using a stable algorithm.
1054   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
1055 
1056   // Debugging
1057   void print(raw_ostream &OS) const;
1058 
1059   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
1060 
1061   /// Destroy a loop that has been removed from the `LoopInfo` nest.
1062   ///
1063   /// This runs the destructor of the loop object making it invalid to
1064   /// reference afterward. The memory is retained so that the *pointer* to the
1065   /// loop remains valid.
1066   ///
1067   /// The caller is responsible for removing this loop from the loop nest and
1068   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
1069   /// Callers that don't naturally handle this themselves should probably call
1070   /// `erase' instead.
1071   void destroy(LoopT *L) {
1072     L->~LoopT();
1073 
1074     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
1075     // \c L, but the pointer remains valid for non-dereferencing uses.
1076     LoopAllocator.Deallocate(L);
1077   }
1078 };
1079 
1080 // Implementation in LoopInfoImpl.h
1081 extern template class LoopInfoBase<BasicBlock, Loop>;
1082 
1083 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1084   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1085 
1086   friend class LoopBase<BasicBlock, Loop>;
1087 
1088   void operator=(const LoopInfo &) = delete;
1089   LoopInfo(const LoopInfo &) = delete;
1090 
1091 public:
1092   LoopInfo() {}
1093   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1094 
1095   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1096   LoopInfo &operator=(LoopInfo &&RHS) {
1097     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1098     return *this;
1099   }
1100 
1101   /// Handle invalidation explicitly.
1102   bool invalidate(Function &F, const PreservedAnalyses &PA,
1103                   FunctionAnalysisManager::Invalidator &);
1104 
1105   // Most of the public interface is provided via LoopInfoBase.
1106 
1107   /// Update LoopInfo after removing the last backedge from a loop. This updates
1108   /// the loop forest and parent loops for each block so that \c L is no longer
1109   /// referenced, but does not actually delete \c L immediately. The pointer
1110   /// will remain valid until this LoopInfo's memory is released.
1111   void erase(Loop *L);
1112 
1113   /// Returns true if replacing From with To everywhere is guaranteed to
1114   /// preserve LCSSA form.
1115   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1116     // Preserving LCSSA form is only problematic if the replacing value is an
1117     // instruction.
1118     Instruction *I = dyn_cast<Instruction>(To);
1119     if (!I)
1120       return true;
1121     // If both instructions are defined in the same basic block then replacement
1122     // cannot break LCSSA form.
1123     if (I->getParent() == From->getParent())
1124       return true;
1125     // If the instruction is not defined in a loop then it can safely replace
1126     // anything.
1127     Loop *ToLoop = getLoopFor(I->getParent());
1128     if (!ToLoop)
1129       return true;
1130     // If the replacing instruction is defined in the same loop as the original
1131     // instruction, or in a loop that contains it as an inner loop, then using
1132     // it as a replacement will not break LCSSA form.
1133     return ToLoop->contains(getLoopFor(From->getParent()));
1134   }
1135 
1136   /// Checks if moving a specific instruction can break LCSSA in any loop.
1137   ///
1138   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1139   /// assuming that the function containing \p Inst and \p NewLoc is currently
1140   /// in LCSSA form.
1141   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1142     assert(Inst->getFunction() == NewLoc->getFunction() &&
1143            "Can't reason about IPO!");
1144 
1145     auto *OldBB = Inst->getParent();
1146     auto *NewBB = NewLoc->getParent();
1147 
1148     // Movement within the same loop does not break LCSSA (the equality check is
1149     // to avoid doing a hashtable lookup in case of intra-block movement).
1150     if (OldBB == NewBB)
1151       return true;
1152 
1153     auto *OldLoop = getLoopFor(OldBB);
1154     auto *NewLoop = getLoopFor(NewBB);
1155 
1156     if (OldLoop == NewLoop)
1157       return true;
1158 
1159     // Check if Outer contains Inner; with the null loop counting as the
1160     // "outermost" loop.
1161     auto Contains = [](const Loop *Outer, const Loop *Inner) {
1162       return !Outer || Outer->contains(Inner);
1163     };
1164 
1165     // To check that the movement of Inst to before NewLoc does not break LCSSA,
1166     // we need to check two sets of uses for possible LCSSA violations at
1167     // NewLoc: the users of NewInst, and the operands of NewInst.
1168 
1169     // If we know we're hoisting Inst out of an inner loop to an outer loop,
1170     // then the uses *of* Inst don't need to be checked.
1171 
1172     if (!Contains(NewLoop, OldLoop)) {
1173       for (Use &U : Inst->uses()) {
1174         auto *UI = cast<Instruction>(U.getUser());
1175         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1176                                      : UI->getParent();
1177         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1178           return false;
1179       }
1180     }
1181 
1182     // If we know we're sinking Inst from an outer loop into an inner loop, then
1183     // the *operands* of Inst don't need to be checked.
1184 
1185     if (!Contains(OldLoop, NewLoop)) {
1186       // See below on why we can't handle phi nodes here.
1187       if (isa<PHINode>(Inst))
1188         return false;
1189 
1190       for (Use &U : Inst->operands()) {
1191         auto *DefI = dyn_cast<Instruction>(U.get());
1192         if (!DefI)
1193           return false;
1194 
1195         // This would need adjustment if we allow Inst to be a phi node -- the
1196         // new use block won't simply be NewBB.
1197 
1198         auto *DefBlock = DefI->getParent();
1199         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1200           return false;
1201       }
1202     }
1203 
1204     return true;
1205   }
1206 
1207   // Return true if a new use of V added in ExitBB would require an LCSSA PHI
1208   // to be inserted at the begining of the block.  Note that V is assumed to
1209   // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
1210   // IR is assumed to be in LCSSA form before the planned insertion.
1211   bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
1212                                          const BasicBlock *ExitBB) const;
1213 
1214 };
1215 
1216 // Allow clients to walk the list of nested loops...
1217 template <> struct GraphTraits<const Loop *> {
1218   typedef const Loop *NodeRef;
1219   typedef LoopInfo::iterator ChildIteratorType;
1220 
1221   static NodeRef getEntryNode(const Loop *L) { return L; }
1222   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1223   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1224 };
1225 
1226 template <> struct GraphTraits<Loop *> {
1227   typedef Loop *NodeRef;
1228   typedef LoopInfo::iterator ChildIteratorType;
1229 
1230   static NodeRef getEntryNode(Loop *L) { return L; }
1231   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1232   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1233 };
1234 
1235 /// Analysis pass that exposes the \c LoopInfo for a function.
1236 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1237   friend AnalysisInfoMixin<LoopAnalysis>;
1238   static AnalysisKey Key;
1239 
1240 public:
1241   typedef LoopInfo Result;
1242 
1243   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1244 };
1245 
1246 /// Printer pass for the \c LoopAnalysis results.
1247 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1248   raw_ostream &OS;
1249 
1250 public:
1251   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1252   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1253 };
1254 
1255 /// Verifier pass for the \c LoopAnalysis results.
1256 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1257   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1258 };
1259 
1260 /// The legacy pass manager's analysis pass to compute loop information.
1261 class LoopInfoWrapperPass : public FunctionPass {
1262   LoopInfo LI;
1263 
1264 public:
1265   static char ID; // Pass identification, replacement for typeid
1266 
1267   LoopInfoWrapperPass();
1268 
1269   LoopInfo &getLoopInfo() { return LI; }
1270   const LoopInfo &getLoopInfo() const { return LI; }
1271 
1272   /// Calculate the natural loop information for a given function.
1273   bool runOnFunction(Function &F) override;
1274 
1275   void verifyAnalysis() const override;
1276 
1277   void releaseMemory() override { LI.releaseMemory(); }
1278 
1279   void print(raw_ostream &O, const Module *M = nullptr) const override;
1280 
1281   void getAnalysisUsage(AnalysisUsage &AU) const override;
1282 };
1283 
1284 /// Function to print a loop's contents as LLVM's text IR assembly.
1285 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1286 
1287 /// Find and return the loop attribute node for the attribute @p Name in
1288 /// @p LoopID. Return nullptr if there is no such attribute.
1289 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1290 
1291 /// Find string metadata for a loop.
1292 ///
1293 /// Returns the MDNode where the first operand is the metadata's name. The
1294 /// following operands are the metadata's values. If no metadata with @p Name is
1295 /// found, return nullptr.
1296 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1297 
1298 Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
1299                                             StringRef Name);
1300 
1301 /// Returns true if Name is applied to TheLoop and enabled.
1302 bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name);
1303 
1304 /// Find named metadata for a loop with an integer value.
1305 llvm::Optional<int>
1306 getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name);
1307 
1308 /// Find string metadata for loop
1309 ///
1310 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1311 /// operand or null otherwise.  If the string metadata is not found return
1312 /// Optional's not-a-value.
1313 Optional<const MDOperand *> findStringMetadataForLoop(const Loop *TheLoop,
1314                                                       StringRef Name);
1315 
1316 /// Look for the loop attribute that requires progress within the loop.
1317 /// Note: Most consumers probably want "isMustProgress" which checks
1318 /// the containing function attribute too.
1319 bool hasMustProgress(const Loop *L);
1320 
1321 /// Return true if this loop can be assumed to make progress.  (i.e. can't
1322 /// be infinite without side effects without also being undefined)
1323 bool isMustProgress(const Loop *L);
1324 
1325 /// Return whether an MDNode might represent an access group.
1326 ///
1327 /// Access group metadata nodes have to be distinct and empty. Being
1328 /// always-empty ensures that it never needs to be changed (which -- because
1329 /// MDNodes are designed immutable -- would require creating a new MDNode). Note
1330 /// that this is not a sufficient condition: not every distinct and empty NDNode
1331 /// is representing an access group.
1332 bool isValidAsAccessGroup(MDNode *AccGroup);
1333 
1334 /// Create a new LoopID after the loop has been transformed.
1335 ///
1336 /// This can be used when no follow-up loop attributes are defined
1337 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1338 /// applied again.
1339 ///
1340 /// @param Context        The LLVMContext in which to create the new LoopID.
1341 /// @param OrigLoopID     The original LoopID; can be nullptr if the original
1342 ///                       loop has no LoopID.
1343 /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1344 ///                       Use to remove metadata of the transformation that has
1345 ///                       been applied.
1346 /// @param AddAttrs       Add these loop attributes to the new LoopID.
1347 ///
1348 /// @return A new LoopID that can be applied using Loop::setLoopID().
1349 llvm::MDNode *
1350 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1351                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1352                                llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1353 
1354 } // End llvm namespace
1355 
1356 #endif
1357