1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  A natural loop
11 // has exactly one entry-point, which is called the header. Note that natural
12 // loops may actually be several loops that share the same header node.
13 //
14 // This analysis calculates the nesting structure of loops in a function.  For
15 // each natural loop identified, this analysis identifies natural loops
16 // contained entirely within the loop and the basic blocks the make up the loop.
17 //
18 // It can calculate on the fly various bits of information, for example:
19 //
20 //  * whether there is a preheader for the loop
21 //  * the number of back edges to the header
22 //  * whether or not a particular block branches out of the loop
23 //  * the successor blocks of the loop
24 //  * the loop depth
25 //  * etc...
26 //
27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
28 // in the CFG.  There can be strongly connected components in the CFG which
29 // this analysis will not recognize and that will not be represented by a Loop
30 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
31 // non-loop SCC might contain a sub-SCC which is a Loop.
32 //
33 //===----------------------------------------------------------------------===//
34 
35 #ifndef LLVM_ANALYSIS_LOOPINFO_H
36 #define LLVM_ANALYSIS_LOOPINFO_H
37 
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/DenseSet.h"
40 #include "llvm/ADT/GraphTraits.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/IR/CFG.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Allocator.h"
49 #include <algorithm>
50 #include <utility>
51 
52 namespace llvm {
53 
54 class DominatorTree;
55 class LoopInfo;
56 class Loop;
57 class InductionDescriptor;
58 class MDNode;
59 class MemorySSAUpdater;
60 class PHINode;
61 class ScalarEvolution;
62 class raw_ostream;
63 template <class N, bool IsPostDom> class DominatorTreeBase;
64 template <class N, class M> class LoopInfoBase;
65 template <class N, class M> class LoopBase;
66 
67 //===----------------------------------------------------------------------===//
68 /// Instances of this class are used to represent loops that are detected in the
69 /// flow graph.
70 ///
71 template <class BlockT, class LoopT> class LoopBase {
72   LoopT *ParentLoop;
73   // Loops contained entirely within this one.
74   std::vector<LoopT *> SubLoops;
75 
76   // The list of blocks in this loop. First entry is the header node.
77   std::vector<BlockT *> Blocks;
78 
79   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
80 
81 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
82   /// Indicator that this loop is no longer a valid loop.
83   bool IsInvalid = false;
84 #endif
85 
86   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
87   const LoopBase<BlockT, LoopT> &
88   operator=(const LoopBase<BlockT, LoopT> &) = delete;
89 
90 public:
91   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
92   /// for consistency with loop depth values used for basic blocks, where depth
93   /// 0 is used for blocks not inside any loops.
94   unsigned getLoopDepth() const {
95     assert(!isInvalid() && "Loop not in a valid state!");
96     unsigned D = 1;
97     for (const LoopT *CurLoop = ParentLoop; CurLoop;
98          CurLoop = CurLoop->ParentLoop)
99       ++D;
100     return D;
101   }
102   BlockT *getHeader() const { return getBlocks().front(); }
103   LoopT *getParentLoop() const { return ParentLoop; }
104 
105   /// This is a raw interface for bypassing addChildLoop.
106   void setParentLoop(LoopT *L) {
107     assert(!isInvalid() && "Loop not in a valid state!");
108     ParentLoop = L;
109   }
110 
111   /// Return true if the specified loop is contained within in this loop.
112   bool contains(const LoopT *L) const {
113     assert(!isInvalid() && "Loop not in a valid state!");
114     if (L == this)
115       return true;
116     if (!L)
117       return false;
118     return contains(L->getParentLoop());
119   }
120 
121   /// Return true if the specified basic block is in this loop.
122   bool contains(const BlockT *BB) const {
123     assert(!isInvalid() && "Loop not in a valid state!");
124     return DenseBlockSet.count(BB);
125   }
126 
127   /// Return true if the specified instruction is in this loop.
128   template <class InstT> bool contains(const InstT *Inst) const {
129     return contains(Inst->getParent());
130   }
131 
132   /// Return the loops contained entirely within this loop.
133   const std::vector<LoopT *> &getSubLoops() const {
134     assert(!isInvalid() && "Loop not in a valid state!");
135     return SubLoops;
136   }
137   std::vector<LoopT *> &getSubLoopsVector() {
138     assert(!isInvalid() && "Loop not in a valid state!");
139     return SubLoops;
140   }
141   typedef typename std::vector<LoopT *>::const_iterator iterator;
142   typedef
143       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
144   iterator begin() const { return getSubLoops().begin(); }
145   iterator end() const { return getSubLoops().end(); }
146   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
147   reverse_iterator rend() const { return getSubLoops().rend(); }
148   bool empty() const { return getSubLoops().empty(); }
149 
150   /// Get a list of the basic blocks which make up this loop.
151   ArrayRef<BlockT *> getBlocks() const {
152     assert(!isInvalid() && "Loop not in a valid state!");
153     return Blocks;
154   }
155   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
156   block_iterator block_begin() const { return getBlocks().begin(); }
157   block_iterator block_end() const { return getBlocks().end(); }
158   inline iterator_range<block_iterator> blocks() const {
159     assert(!isInvalid() && "Loop not in a valid state!");
160     return make_range(block_begin(), block_end());
161   }
162 
163   /// Get the number of blocks in this loop in constant time.
164   /// Invalidate the loop, indicating that it is no longer a loop.
165   unsigned getNumBlocks() const {
166     assert(!isInvalid() && "Loop not in a valid state!");
167     return Blocks.size();
168   }
169 
170   /// Return a direct, mutable handle to the blocks vector so that we can
171   /// mutate it efficiently with techniques like `std::remove`.
172   std::vector<BlockT *> &getBlocksVector() {
173     assert(!isInvalid() && "Loop not in a valid state!");
174     return Blocks;
175   }
176   /// Return a direct, mutable handle to the blocks set so that we can
177   /// mutate it efficiently.
178   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
179     assert(!isInvalid() && "Loop not in a valid state!");
180     return DenseBlockSet;
181   }
182 
183   /// Return a direct, immutable handle to the blocks set.
184   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
185     assert(!isInvalid() && "Loop not in a valid state!");
186     return DenseBlockSet;
187   }
188 
189   /// Return true if this loop is no longer valid.  The only valid use of this
190   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
191   /// true by the destructor.  In other words, if this accessor returns true,
192   /// the caller has already triggered UB by calling this accessor; and so it
193   /// can only be called in a context where a return value of true indicates a
194   /// programmer error.
195   bool isInvalid() const {
196 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
197     return IsInvalid;
198 #else
199     return false;
200 #endif
201   }
202 
203   /// True if terminator in the block can branch to another block that is
204   /// outside of the current loop. \p BB must be inside the loop.
205   bool isLoopExiting(const BlockT *BB) const {
206     assert(!isInvalid() && "Loop not in a valid state!");
207     assert(contains(BB) && "Exiting block must be part of the loop");
208     for (const auto &Succ : children<const BlockT *>(BB)) {
209       if (!contains(Succ))
210         return true;
211     }
212     return false;
213   }
214 
215   /// Returns true if \p BB is a loop-latch.
216   /// A latch block is a block that contains a branch back to the header.
217   /// This function is useful when there are multiple latches in a loop
218   /// because \fn getLoopLatch will return nullptr in that case.
219   bool isLoopLatch(const BlockT *BB) const {
220     assert(!isInvalid() && "Loop not in a valid state!");
221     assert(contains(BB) && "block does not belong to the loop");
222 
223     BlockT *Header = getHeader();
224     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
225     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
226     return std::find(PredBegin, PredEnd, BB) != PredEnd;
227   }
228 
229   /// Calculate the number of back edges to the loop header.
230   unsigned getNumBackEdges() const {
231     assert(!isInvalid() && "Loop not in a valid state!");
232     unsigned NumBackEdges = 0;
233     BlockT *H = getHeader();
234 
235     for (const auto Pred : children<Inverse<BlockT *>>(H))
236       if (contains(Pred))
237         ++NumBackEdges;
238 
239     return NumBackEdges;
240   }
241 
242   //===--------------------------------------------------------------------===//
243   // APIs for simple analysis of the loop.
244   //
245   // Note that all of these methods can fail on general loops (ie, there may not
246   // be a preheader, etc).  For best success, the loop simplification and
247   // induction variable canonicalization pass should be used to normalize loops
248   // for easy analysis.  These methods assume canonical loops.
249 
250   /// Return all blocks inside the loop that have successors outside of the
251   /// loop. These are the blocks _inside of the current loop_ which branch out.
252   /// The returned list is always unique.
253   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
254 
255   /// If getExitingBlocks would return exactly one block, return that block.
256   /// Otherwise return null.
257   BlockT *getExitingBlock() const;
258 
259   /// Return all of the successor blocks of this loop. These are the blocks
260   /// _outside of the current loop_ which are branched to.
261   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
262 
263   /// If getExitBlocks would return exactly one block, return that block.
264   /// Otherwise return null.
265   BlockT *getExitBlock() const;
266 
267   /// Return true if no exit block for the loop has a predecessor that is
268   /// outside the loop.
269   bool hasDedicatedExits() const;
270 
271   /// Return all unique successor blocks of this loop.
272   /// These are the blocks _outside of the current loop_ which are branched to.
273   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
274 
275   /// Return all unique successor blocks of this loop except successors from
276   /// Latch block are not considered. If the exit comes from Latch has also
277   /// non Latch predecessor in a loop it will be added to ExitBlocks.
278   /// These are the blocks _outside of the current loop_ which are branched to.
279   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
280 
281   /// If getUniqueExitBlocks would return exactly one block, return that block.
282   /// Otherwise return null.
283   BlockT *getUniqueExitBlock() const;
284 
285   /// Edge type.
286   typedef std::pair<BlockT *, BlockT *> Edge;
287 
288   /// Return all pairs of (_inside_block_,_outside_block_).
289   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
290 
291   /// If there is a preheader for this loop, return it. A loop has a preheader
292   /// if there is only one edge to the header of the loop from outside of the
293   /// loop. If this is the case, the block branching to the header of the loop
294   /// is the preheader node.
295   ///
296   /// This method returns null if there is no preheader for the loop.
297   BlockT *getLoopPreheader() const;
298 
299   /// If the given loop's header has exactly one unique predecessor outside the
300   /// loop, return it. Otherwise return null.
301   ///  This is less strict that the loop "preheader" concept, which requires
302   /// the predecessor to have exactly one successor.
303   BlockT *getLoopPredecessor() const;
304 
305   /// If there is a single latch block for this loop, return it.
306   /// A latch block is a block that contains a branch back to the header.
307   BlockT *getLoopLatch() const;
308 
309   /// Return all loop latch blocks of this loop. A latch block is a block that
310   /// contains a branch back to the header.
311   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
312     assert(!isInvalid() && "Loop not in a valid state!");
313     BlockT *H = getHeader();
314     for (const auto Pred : children<Inverse<BlockT *>>(H))
315       if (contains(Pred))
316         LoopLatches.push_back(Pred);
317   }
318 
319   /// Return all inner loops in the loop nest rooted by the loop in preorder,
320   /// with siblings in forward program order.
321   template <class Type>
322   static void getInnerLoopsInPreorder(const LoopT &L,
323                                       SmallVectorImpl<Type> &PreOrderLoops) {
324     SmallVector<LoopT *, 4> PreOrderWorklist;
325     PreOrderWorklist.append(L.rbegin(), L.rend());
326 
327     while (!PreOrderWorklist.empty()) {
328       LoopT *L = PreOrderWorklist.pop_back_val();
329       // Sub-loops are stored in forward program order, but will process the
330       // worklist backwards so append them in reverse order.
331       PreOrderWorklist.append(L->rbegin(), L->rend());
332       PreOrderLoops.push_back(L);
333     }
334   }
335 
336   /// Return all loops in the loop nest rooted by the loop in preorder, with
337   /// siblings in forward program order.
338   SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
339     SmallVector<const LoopT *, 4> PreOrderLoops;
340     const LoopT *CurLoop = static_cast<const LoopT *>(this);
341     PreOrderLoops.push_back(CurLoop);
342     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
343     return PreOrderLoops;
344   }
345   SmallVector<LoopT *, 4> getLoopsInPreorder() {
346     SmallVector<LoopT *, 4> PreOrderLoops;
347     LoopT *CurLoop = static_cast<LoopT *>(this);
348     PreOrderLoops.push_back(CurLoop);
349     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
350     return PreOrderLoops;
351   }
352 
353   //===--------------------------------------------------------------------===//
354   // APIs for updating loop information after changing the CFG
355   //
356 
357   /// This method is used by other analyses to update loop information.
358   /// NewBB is set to be a new member of the current loop.
359   /// Because of this, it is added as a member of all parent loops, and is added
360   /// to the specified LoopInfo object as being in the current basic block.  It
361   /// is not valid to replace the loop header with this method.
362   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
363 
364   /// This is used when splitting loops up. It replaces the OldChild entry in
365   /// our children list with NewChild, and updates the parent pointer of
366   /// OldChild to be null and the NewChild to be this loop.
367   /// This updates the loop depth of the new child.
368   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
369 
370   /// Add the specified loop to be a child of this loop.
371   /// This updates the loop depth of the new child.
372   void addChildLoop(LoopT *NewChild) {
373     assert(!isInvalid() && "Loop not in a valid state!");
374     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
375     NewChild->ParentLoop = static_cast<LoopT *>(this);
376     SubLoops.push_back(NewChild);
377   }
378 
379   /// This removes the specified child from being a subloop of this loop. The
380   /// loop is not deleted, as it will presumably be inserted into another loop.
381   LoopT *removeChildLoop(iterator I) {
382     assert(!isInvalid() && "Loop not in a valid state!");
383     assert(I != SubLoops.end() && "Cannot remove end iterator!");
384     LoopT *Child = *I;
385     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
386     SubLoops.erase(SubLoops.begin() + (I - begin()));
387     Child->ParentLoop = nullptr;
388     return Child;
389   }
390 
391   /// This removes the specified child from being a subloop of this loop. The
392   /// loop is not deleted, as it will presumably be inserted into another loop.
393   LoopT *removeChildLoop(LoopT *Child) {
394     return removeChildLoop(llvm::find(*this, Child));
395   }
396 
397   /// This adds a basic block directly to the basic block list.
398   /// This should only be used by transformations that create new loops.  Other
399   /// transformations should use addBasicBlockToLoop.
400   void addBlockEntry(BlockT *BB) {
401     assert(!isInvalid() && "Loop not in a valid state!");
402     Blocks.push_back(BB);
403     DenseBlockSet.insert(BB);
404   }
405 
406   /// interface to reverse Blocks[from, end of loop] in this loop
407   void reverseBlock(unsigned from) {
408     assert(!isInvalid() && "Loop not in a valid state!");
409     std::reverse(Blocks.begin() + from, Blocks.end());
410   }
411 
412   /// interface to do reserve() for Blocks
413   void reserveBlocks(unsigned size) {
414     assert(!isInvalid() && "Loop not in a valid state!");
415     Blocks.reserve(size);
416   }
417 
418   /// This method is used to move BB (which must be part of this loop) to be the
419   /// loop header of the loop (the block that dominates all others).
420   void moveToHeader(BlockT *BB) {
421     assert(!isInvalid() && "Loop not in a valid state!");
422     if (Blocks[0] == BB)
423       return;
424     for (unsigned i = 0;; ++i) {
425       assert(i != Blocks.size() && "Loop does not contain BB!");
426       if (Blocks[i] == BB) {
427         Blocks[i] = Blocks[0];
428         Blocks[0] = BB;
429         return;
430       }
431     }
432   }
433 
434   /// This removes the specified basic block from the current loop, updating the
435   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
436   /// class.
437   void removeBlockFromLoop(BlockT *BB) {
438     assert(!isInvalid() && "Loop not in a valid state!");
439     auto I = find(Blocks, BB);
440     assert(I != Blocks.end() && "N is not in this list!");
441     Blocks.erase(I);
442 
443     DenseBlockSet.erase(BB);
444   }
445 
446   /// Verify loop structure
447   void verifyLoop() const;
448 
449   /// Verify loop structure of this loop and all nested loops.
450   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
451 
452   /// Returns true if the loop is annotated parallel.
453   ///
454   /// Derived classes can override this method using static template
455   /// polymorphism.
456   bool isAnnotatedParallel() const { return false; }
457 
458   /// Print loop with all the BBs inside it.
459   void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;
460 
461 protected:
462   friend class LoopInfoBase<BlockT, LoopT>;
463 
464   /// This creates an empty loop.
465   LoopBase() : ParentLoop(nullptr) {}
466 
467   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
468     Blocks.push_back(BB);
469     DenseBlockSet.insert(BB);
470   }
471 
472   // Since loop passes like SCEV are allowed to key analysis results off of
473   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
474   // This means loop passes should not be `delete` ing `Loop` objects directly
475   // (and risk a later `Loop` allocation re-using the address of a previous one)
476   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
477   // pointer till the end of the lifetime of the `LoopInfo` object.
478   //
479   // To make it easier to follow this rule, we mark the destructor as
480   // non-public.
481   ~LoopBase() {
482     for (auto *SubLoop : SubLoops)
483       SubLoop->~LoopT();
484 
485 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
486     IsInvalid = true;
487 #endif
488     SubLoops.clear();
489     Blocks.clear();
490     DenseBlockSet.clear();
491     ParentLoop = nullptr;
492   }
493 };
494 
495 template <class BlockT, class LoopT>
496 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
497   Loop.print(OS);
498   return OS;
499 }
500 
501 // Implementation in LoopInfoImpl.h
502 extern template class LoopBase<BasicBlock, Loop>;
503 
504 /// Represents a single loop in the control flow graph.  Note that not all SCCs
505 /// in the CFG are necessarily loops.
506 class Loop : public LoopBase<BasicBlock, Loop> {
507 public:
508   /// A range representing the start and end location of a loop.
509   class LocRange {
510     DebugLoc Start;
511     DebugLoc End;
512 
513   public:
514     LocRange() {}
515     LocRange(DebugLoc Start) : Start(Start), End(Start) {}
516     LocRange(DebugLoc Start, DebugLoc End)
517         : Start(std::move(Start)), End(std::move(End)) {}
518 
519     const DebugLoc &getStart() const { return Start; }
520     const DebugLoc &getEnd() const { return End; }
521 
522     /// Check for null.
523     ///
524     explicit operator bool() const { return Start && End; }
525   };
526 
527   /// Return true if the specified value is loop invariant.
528   bool isLoopInvariant(const Value *V) const;
529 
530   /// Return true if all the operands of the specified instruction are loop
531   /// invariant.
532   bool hasLoopInvariantOperands(const Instruction *I) const;
533 
534   /// If the given value is an instruction inside of the loop and it can be
535   /// hoisted, do so to make it trivially loop-invariant.
536   /// Return true if the value after any hoisting is loop invariant. This
537   /// function can be used as a slightly more aggressive replacement for
538   /// isLoopInvariant.
539   ///
540   /// If InsertPt is specified, it is the point to hoist instructions to.
541   /// If null, the terminator of the loop preheader is used.
542   bool makeLoopInvariant(Value *V, bool &Changed,
543                          Instruction *InsertPt = nullptr,
544                          MemorySSAUpdater *MSSAU = nullptr) const;
545 
546   /// If the given instruction is inside of the loop and it can be hoisted, do
547   /// so to make it trivially loop-invariant.
548   /// Return true if the instruction after any hoisting is loop invariant. This
549   /// function can be used as a slightly more aggressive replacement for
550   /// isLoopInvariant.
551   ///
552   /// If InsertPt is specified, it is the point to hoist instructions to.
553   /// If null, the terminator of the loop preheader is used.
554   ///
555   bool makeLoopInvariant(Instruction *I, bool &Changed,
556                          Instruction *InsertPt = nullptr,
557                          MemorySSAUpdater *MSSAU = nullptr) const;
558 
559   /// Check to see if the loop has a canonical induction variable: an integer
560   /// recurrence that starts at 0 and increments by one each time through the
561   /// loop. If so, return the phi node that corresponds to it.
562   ///
563   /// The IndVarSimplify pass transforms loops to have a canonical induction
564   /// variable.
565   ///
566   PHINode *getCanonicalInductionVariable() const;
567 
568   /// Obtain the unique incoming and back edge. Return false if they are
569   /// non-unique or the loop is dead; otherwise, return true.
570   bool getIncomingAndBackEdge(BasicBlock *&Incoming,
571                               BasicBlock *&Backedge) const;
572 
573   /// Below are some utilities to get loop bounds and induction variable, and
574   /// check if a given phinode is an auxiliary induction variable, as well as
575   /// checking if the loop is canonical.
576   ///
577   /// Here is an example:
578   /// \code
579   /// for (int i = lb; i < ub; i+=step)
580   ///   <loop body>
581   /// --- pseudo LLVMIR ---
582   /// beforeloop:
583   ///   guardcmp = (lb < ub)
584   ///   if (guardcmp) goto preheader; else goto afterloop
585   /// preheader:
586   /// loop:
587   ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
588   ///   <loop body>
589   ///   i_2 = i_1 + step
590   /// latch:
591   ///   cmp = (i_2 < ub)
592   ///   if (cmp) goto loop
593   /// exit:
594   /// afterloop:
595   /// \endcode
596   ///
597   /// - getBounds
598   ///   - getInitialIVValue      --> lb
599   ///   - getStepInst            --> i_2 = i_1 + step
600   ///   - getStepValue           --> step
601   ///   - getFinalIVValue        --> ub
602   ///   - getCanonicalPredicate  --> '<'
603   ///   - getDirection           --> Increasing
604   ///
605   /// - getInductionVariable            --> i_1
606   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
607   /// - isCanonical                     --> false
608   struct LoopBounds {
609     /// Return the LoopBounds object if
610     /// - the given \p IndVar is an induction variable
611     /// - the initial value of the induction variable can be found
612     /// - the step instruction of the induction variable can be found
613     /// - the final value of the induction variable can be found
614     ///
615     /// Else None.
616     static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
617                                                 ScalarEvolution &SE);
618 
619     /// Get the initial value of the loop induction variable.
620     Value &getInitialIVValue() const { return InitialIVValue; }
621 
622     /// Get the instruction that updates the loop induction variable.
623     Instruction &getStepInst() const { return StepInst; }
624 
625     /// Get the step that the loop induction variable gets updated by in each
626     /// loop iteration. Return nullptr if not found.
627     Value *getStepValue() const { return StepValue; }
628 
629     /// Get the final value of the loop induction variable.
630     Value &getFinalIVValue() const { return FinalIVValue; }
631 
632     /// Return the canonical predicate for the latch compare instruction, if
633     /// able to be calcuated. Else BAD_ICMP_PREDICATE.
634     ///
635     /// A predicate is considered as canonical if requirements below are all
636     /// satisfied:
637     /// 1. The first successor of the latch branch is the loop header
638     ///    If not, inverse the predicate.
639     /// 2. One of the operands of the latch comparison is StepInst
640     ///    If not, and
641     ///    - if the current calcuated predicate is not ne or eq, flip the
642     ///      predicate.
643     ///    - else if the loop is increasing, return slt
644     ///      (notice that it is safe to change from ne or eq to sign compare)
645     ///    - else if the loop is decreasing, return sgt
646     ///      (notice that it is safe to change from ne or eq to sign compare)
647     ///
648     /// Here is an example when both (1) and (2) are not satisfied:
649     /// \code
650     /// loop.header:
651     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
652     ///  %inc = add %iv, %step
653     ///  %cmp = slt %iv, %finaliv
654     ///  br %cmp, %loop.exit, %loop.header
655     /// loop.exit:
656     /// \endcode
657     /// - The second successor of the latch branch is the loop header instead
658     ///   of the first successor (slt -> sge)
659     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
660     ///   instead of the StepInst (%inc) (sge -> sgt)
661     ///
662     /// The predicate would be sgt if both (1) and (2) are satisfied.
663     /// getCanonicalPredicate() returns sgt for this example.
664     /// Note: The IR is not changed.
665     ICmpInst::Predicate getCanonicalPredicate() const;
666 
667     /// An enum for the direction of the loop
668     /// - for (int i = 0; i < ub; ++i)  --> Increasing
669     /// - for (int i = ub; i > 0; --i)  --> Descresing
670     /// - for (int i = x; i != y; i+=z) --> Unknown
671     enum class Direction { Increasing, Decreasing, Unknown };
672 
673     /// Get the direction of the loop.
674     Direction getDirection() const;
675 
676   private:
677     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
678                ScalarEvolution &SE)
679         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
680           FinalIVValue(F), SE(SE) {}
681 
682     const Loop &L;
683 
684     // The initial value of the loop induction variable
685     Value &InitialIVValue;
686 
687     // The instruction that updates the loop induction variable
688     Instruction &StepInst;
689 
690     // The value that the loop induction variable gets updated by in each loop
691     // iteration
692     Value *StepValue;
693 
694     // The final value of the loop induction variable
695     Value &FinalIVValue;
696 
697     ScalarEvolution &SE;
698   };
699 
700   /// Return the struct LoopBounds collected if all struct members are found,
701   /// else None.
702   Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
703 
704   /// Return the loop induction variable if found, else return nullptr.
705   /// An instruction is considered as the loop induction variable if
706   /// - it is an induction variable of the loop; and
707   /// - it is used to determine the condition of the branch in the loop latch
708   ///
709   /// Note: the induction variable doesn't need to be canonical, i.e. starts at
710   /// zero and increments by one each time through the loop (but it can be).
711   PHINode *getInductionVariable(ScalarEvolution &SE) const;
712 
713   /// Get the loop induction descriptor for the loop induction variable. Return
714   /// true if the loop induction variable is found.
715   bool getInductionDescriptor(ScalarEvolution &SE,
716                               InductionDescriptor &IndDesc) const;
717 
718   /// Return true if the given PHINode \p AuxIndVar is
719   /// - in the loop header
720   /// - not used outside of the loop
721   /// - incremented by a loop invariant step for each loop iteration
722   /// - step instruction opcode should be add or sub
723   /// Note: auxiliary induction variable is not required to be used in the
724   ///       conditional branch in the loop latch. (but it can be)
725   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
726                                     ScalarEvolution &SE) const;
727 
728   /// Return true if the loop induction variable starts at zero and increments
729   /// by one each time through the loop.
730   bool isCanonical(ScalarEvolution &SE) const;
731 
732   /// Return true if the Loop is in LCSSA form.
733   bool isLCSSAForm(DominatorTree &DT) const;
734 
735   /// Return true if this Loop and all inner subloops are in LCSSA form.
736   bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const;
737 
738   /// Return true if the Loop is in the form that the LoopSimplify form
739   /// transforms loops to, which is sometimes called normal form.
740   bool isLoopSimplifyForm() const;
741 
742   /// Return true if the loop body is safe to clone in practice.
743   bool isSafeToClone() const;
744 
745   /// Returns true if the loop is annotated parallel.
746   ///
747   /// A parallel loop can be assumed to not contain any dependencies between
748   /// iterations by the compiler. That is, any loop-carried dependency checking
749   /// can be skipped completely when parallelizing the loop on the target
750   /// machine. Thus, if the parallel loop information originates from the
751   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
752   /// programmer's responsibility to ensure there are no loop-carried
753   /// dependencies. The final execution order of the instructions across
754   /// iterations is not guaranteed, thus, the end result might or might not
755   /// implement actual concurrent execution of instructions across multiple
756   /// iterations.
757   bool isAnnotatedParallel() const;
758 
759   /// Return the llvm.loop loop id metadata node for this loop if it is present.
760   ///
761   /// If this loop contains the same llvm.loop metadata on each branch to the
762   /// header then the node is returned. If any latch instruction does not
763   /// contain llvm.loop or if multiple latches contain different nodes then
764   /// 0 is returned.
765   MDNode *getLoopID() const;
766   /// Set the llvm.loop loop id metadata for this loop.
767   ///
768   /// The LoopID metadata node will be added to each terminator instruction in
769   /// the loop that branches to the loop header.
770   ///
771   /// The LoopID metadata node should have one or more operands and the first
772   /// operand should be the node itself.
773   void setLoopID(MDNode *LoopID) const;
774 
775   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
776   ///
777   /// Remove existing unroll metadata and add unroll disable metadata to
778   /// indicate the loop has already been unrolled.  This prevents a loop
779   /// from being unrolled more than is directed by a pragma if the loop
780   /// unrolling pass is run more than once (which it generally is).
781   void setLoopAlreadyUnrolled();
782 
783   void dump() const;
784   void dumpVerbose() const;
785 
786   /// Return the debug location of the start of this loop.
787   /// This looks for a BB terminating instruction with a known debug
788   /// location by looking at the preheader and header blocks. If it
789   /// cannot find a terminating instruction with location information,
790   /// it returns an unknown location.
791   DebugLoc getStartLoc() const;
792 
793   /// Return the source code span of the loop.
794   LocRange getLocRange() const;
795 
796   StringRef getName() const {
797     if (BasicBlock *Header = getHeader())
798       if (Header->hasName())
799         return Header->getName();
800     return "<unnamed loop>";
801   }
802 
803 private:
804   Loop() = default;
805 
806   friend class LoopInfoBase<BasicBlock, Loop>;
807   friend class LoopBase<BasicBlock, Loop>;
808   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
809   ~Loop() = default;
810 };
811 
812 //===----------------------------------------------------------------------===//
813 /// This class builds and contains all of the top-level loop
814 /// structures in the specified function.
815 ///
816 
817 template <class BlockT, class LoopT> class LoopInfoBase {
818   // BBMap - Mapping of basic blocks to the inner most loop they occur in
819   DenseMap<const BlockT *, LoopT *> BBMap;
820   std::vector<LoopT *> TopLevelLoops;
821   BumpPtrAllocator LoopAllocator;
822 
823   friend class LoopBase<BlockT, LoopT>;
824   friend class LoopInfo;
825 
826   void operator=(const LoopInfoBase &) = delete;
827   LoopInfoBase(const LoopInfoBase &) = delete;
828 
829 public:
830   LoopInfoBase() {}
831   ~LoopInfoBase() { releaseMemory(); }
832 
833   LoopInfoBase(LoopInfoBase &&Arg)
834       : BBMap(std::move(Arg.BBMap)),
835         TopLevelLoops(std::move(Arg.TopLevelLoops)),
836         LoopAllocator(std::move(Arg.LoopAllocator)) {
837     // We have to clear the arguments top level loops as we've taken ownership.
838     Arg.TopLevelLoops.clear();
839   }
840   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
841     BBMap = std::move(RHS.BBMap);
842 
843     for (auto *L : TopLevelLoops)
844       L->~LoopT();
845 
846     TopLevelLoops = std::move(RHS.TopLevelLoops);
847     LoopAllocator = std::move(RHS.LoopAllocator);
848     RHS.TopLevelLoops.clear();
849     return *this;
850   }
851 
852   void releaseMemory() {
853     BBMap.clear();
854 
855     for (auto *L : TopLevelLoops)
856       L->~LoopT();
857     TopLevelLoops.clear();
858     LoopAllocator.Reset();
859   }
860 
861   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
862     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
863     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
864   }
865 
866   /// iterator/begin/end - The interface to the top-level loops in the current
867   /// function.
868   ///
869   typedef typename std::vector<LoopT *>::const_iterator iterator;
870   typedef
871       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
872   iterator begin() const { return TopLevelLoops.begin(); }
873   iterator end() const { return TopLevelLoops.end(); }
874   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
875   reverse_iterator rend() const { return TopLevelLoops.rend(); }
876   bool empty() const { return TopLevelLoops.empty(); }
877 
878   /// Return all of the loops in the function in preorder across the loop
879   /// nests, with siblings in forward program order.
880   ///
881   /// Note that because loops form a forest of trees, preorder is equivalent to
882   /// reverse postorder.
883   SmallVector<LoopT *, 4> getLoopsInPreorder();
884 
885   /// Return all of the loops in the function in preorder across the loop
886   /// nests, with siblings in *reverse* program order.
887   ///
888   /// Note that because loops form a forest of trees, preorder is equivalent to
889   /// reverse postorder.
890   ///
891   /// Also note that this is *not* a reverse preorder. Only the siblings are in
892   /// reverse program order.
893   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
894 
895   /// Return the inner most loop that BB lives in. If a basic block is in no
896   /// loop (for example the entry node), null is returned.
897   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
898 
899   /// Same as getLoopFor.
900   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
901 
902   /// Return the loop nesting level of the specified block. A depth of 0 means
903   /// the block is not inside any loop.
904   unsigned getLoopDepth(const BlockT *BB) const {
905     const LoopT *L = getLoopFor(BB);
906     return L ? L->getLoopDepth() : 0;
907   }
908 
909   // True if the block is a loop header node
910   bool isLoopHeader(const BlockT *BB) const {
911     const LoopT *L = getLoopFor(BB);
912     return L && L->getHeader() == BB;
913   }
914 
915   /// This removes the specified top-level loop from this loop info object.
916   /// The loop is not deleted, as it will presumably be inserted into
917   /// another loop.
918   LoopT *removeLoop(iterator I) {
919     assert(I != end() && "Cannot remove end iterator!");
920     LoopT *L = *I;
921     assert(!L->getParentLoop() && "Not a top-level loop!");
922     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
923     return L;
924   }
925 
926   /// Change the top-level loop that contains BB to the specified loop.
927   /// This should be used by transformations that restructure the loop hierarchy
928   /// tree.
929   void changeLoopFor(BlockT *BB, LoopT *L) {
930     if (!L) {
931       BBMap.erase(BB);
932       return;
933     }
934     BBMap[BB] = L;
935   }
936 
937   /// Replace the specified loop in the top-level loops list with the indicated
938   /// loop.
939   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
940     auto I = find(TopLevelLoops, OldLoop);
941     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
942     *I = NewLoop;
943     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
944            "Loops already embedded into a subloop!");
945   }
946 
947   /// This adds the specified loop to the collection of top-level loops.
948   void addTopLevelLoop(LoopT *New) {
949     assert(!New->getParentLoop() && "Loop already in subloop!");
950     TopLevelLoops.push_back(New);
951   }
952 
953   /// This method completely removes BB from all data structures,
954   /// including all of the Loop objects it is nested in and our mapping from
955   /// BasicBlocks to loops.
956   void removeBlock(BlockT *BB) {
957     auto I = BBMap.find(BB);
958     if (I != BBMap.end()) {
959       for (LoopT *L = I->second; L; L = L->getParentLoop())
960         L->removeBlockFromLoop(BB);
961 
962       BBMap.erase(I);
963     }
964   }
965 
966   // Internals
967 
968   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
969                                       const LoopT *ParentLoop) {
970     if (!SubLoop)
971       return true;
972     if (SubLoop == ParentLoop)
973       return false;
974     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
975   }
976 
977   /// Create the loop forest using a stable algorithm.
978   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
979 
980   // Debugging
981   void print(raw_ostream &OS) const;
982 
983   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
984 
985   /// Destroy a loop that has been removed from the `LoopInfo` nest.
986   ///
987   /// This runs the destructor of the loop object making it invalid to
988   /// reference afterward. The memory is retained so that the *pointer* to the
989   /// loop remains valid.
990   ///
991   /// The caller is responsible for removing this loop from the loop nest and
992   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
993   /// Callers that don't naturally handle this themselves should probably call
994   /// `erase' instead.
995   void destroy(LoopT *L) {
996     L->~LoopT();
997 
998     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
999     // \c L, but the pointer remains valid for non-dereferencing uses.
1000     LoopAllocator.Deallocate(L);
1001   }
1002 };
1003 
1004 // Implementation in LoopInfoImpl.h
1005 extern template class LoopInfoBase<BasicBlock, Loop>;
1006 
1007 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1008   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1009 
1010   friend class LoopBase<BasicBlock, Loop>;
1011 
1012   void operator=(const LoopInfo &) = delete;
1013   LoopInfo(const LoopInfo &) = delete;
1014 
1015 public:
1016   LoopInfo() {}
1017   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1018 
1019   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1020   LoopInfo &operator=(LoopInfo &&RHS) {
1021     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1022     return *this;
1023   }
1024 
1025   /// Handle invalidation explicitly.
1026   bool invalidate(Function &F, const PreservedAnalyses &PA,
1027                   FunctionAnalysisManager::Invalidator &);
1028 
1029   // Most of the public interface is provided via LoopInfoBase.
1030 
1031   /// Update LoopInfo after removing the last backedge from a loop. This updates
1032   /// the loop forest and parent loops for each block so that \c L is no longer
1033   /// referenced, but does not actually delete \c L immediately. The pointer
1034   /// will remain valid until this LoopInfo's memory is released.
1035   void erase(Loop *L);
1036 
1037   /// Returns true if replacing From with To everywhere is guaranteed to
1038   /// preserve LCSSA form.
1039   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1040     // Preserving LCSSA form is only problematic if the replacing value is an
1041     // instruction.
1042     Instruction *I = dyn_cast<Instruction>(To);
1043     if (!I)
1044       return true;
1045     // If both instructions are defined in the same basic block then replacement
1046     // cannot break LCSSA form.
1047     if (I->getParent() == From->getParent())
1048       return true;
1049     // If the instruction is not defined in a loop then it can safely replace
1050     // anything.
1051     Loop *ToLoop = getLoopFor(I->getParent());
1052     if (!ToLoop)
1053       return true;
1054     // If the replacing instruction is defined in the same loop as the original
1055     // instruction, or in a loop that contains it as an inner loop, then using
1056     // it as a replacement will not break LCSSA form.
1057     return ToLoop->contains(getLoopFor(From->getParent()));
1058   }
1059 
1060   /// Checks if moving a specific instruction can break LCSSA in any loop.
1061   ///
1062   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1063   /// assuming that the function containing \p Inst and \p NewLoc is currently
1064   /// in LCSSA form.
1065   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1066     assert(Inst->getFunction() == NewLoc->getFunction() &&
1067            "Can't reason about IPO!");
1068 
1069     auto *OldBB = Inst->getParent();
1070     auto *NewBB = NewLoc->getParent();
1071 
1072     // Movement within the same loop does not break LCSSA (the equality check is
1073     // to avoid doing a hashtable lookup in case of intra-block movement).
1074     if (OldBB == NewBB)
1075       return true;
1076 
1077     auto *OldLoop = getLoopFor(OldBB);
1078     auto *NewLoop = getLoopFor(NewBB);
1079 
1080     if (OldLoop == NewLoop)
1081       return true;
1082 
1083     // Check if Outer contains Inner; with the null loop counting as the
1084     // "outermost" loop.
1085     auto Contains = [](const Loop *Outer, const Loop *Inner) {
1086       return !Outer || Outer->contains(Inner);
1087     };
1088 
1089     // To check that the movement of Inst to before NewLoc does not break LCSSA,
1090     // we need to check two sets of uses for possible LCSSA violations at
1091     // NewLoc: the users of NewInst, and the operands of NewInst.
1092 
1093     // If we know we're hoisting Inst out of an inner loop to an outer loop,
1094     // then the uses *of* Inst don't need to be checked.
1095 
1096     if (!Contains(NewLoop, OldLoop)) {
1097       for (Use &U : Inst->uses()) {
1098         auto *UI = cast<Instruction>(U.getUser());
1099         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1100                                      : UI->getParent();
1101         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1102           return false;
1103       }
1104     }
1105 
1106     // If we know we're sinking Inst from an outer loop into an inner loop, then
1107     // the *operands* of Inst don't need to be checked.
1108 
1109     if (!Contains(OldLoop, NewLoop)) {
1110       // See below on why we can't handle phi nodes here.
1111       if (isa<PHINode>(Inst))
1112         return false;
1113 
1114       for (Use &U : Inst->operands()) {
1115         auto *DefI = dyn_cast<Instruction>(U.get());
1116         if (!DefI)
1117           return false;
1118 
1119         // This would need adjustment if we allow Inst to be a phi node -- the
1120         // new use block won't simply be NewBB.
1121 
1122         auto *DefBlock = DefI->getParent();
1123         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1124           return false;
1125       }
1126     }
1127 
1128     return true;
1129   }
1130 };
1131 
1132 // Allow clients to walk the list of nested loops...
1133 template <> struct GraphTraits<const Loop *> {
1134   typedef const Loop *NodeRef;
1135   typedef LoopInfo::iterator ChildIteratorType;
1136 
1137   static NodeRef getEntryNode(const Loop *L) { return L; }
1138   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1139   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1140 };
1141 
1142 template <> struct GraphTraits<Loop *> {
1143   typedef Loop *NodeRef;
1144   typedef LoopInfo::iterator ChildIteratorType;
1145 
1146   static NodeRef getEntryNode(Loop *L) { return L; }
1147   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1148   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1149 };
1150 
1151 /// Analysis pass that exposes the \c LoopInfo for a function.
1152 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1153   friend AnalysisInfoMixin<LoopAnalysis>;
1154   static AnalysisKey Key;
1155 
1156 public:
1157   typedef LoopInfo Result;
1158 
1159   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1160 };
1161 
1162 /// Printer pass for the \c LoopAnalysis results.
1163 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1164   raw_ostream &OS;
1165 
1166 public:
1167   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1168   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1169 };
1170 
1171 /// Verifier pass for the \c LoopAnalysis results.
1172 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1173   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1174 };
1175 
1176 /// The legacy pass manager's analysis pass to compute loop information.
1177 class LoopInfoWrapperPass : public FunctionPass {
1178   LoopInfo LI;
1179 
1180 public:
1181   static char ID; // Pass identification, replacement for typeid
1182 
1183   LoopInfoWrapperPass() : FunctionPass(ID) {
1184     initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1185   }
1186 
1187   LoopInfo &getLoopInfo() { return LI; }
1188   const LoopInfo &getLoopInfo() const { return LI; }
1189 
1190   /// Calculate the natural loop information for a given function.
1191   bool runOnFunction(Function &F) override;
1192 
1193   void verifyAnalysis() const override;
1194 
1195   void releaseMemory() override { LI.releaseMemory(); }
1196 
1197   void print(raw_ostream &O, const Module *M = nullptr) const override;
1198 
1199   void getAnalysisUsage(AnalysisUsage &AU) const override;
1200 };
1201 
1202 /// Function to print a loop's contents as LLVM's text IR assembly.
1203 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1204 
1205 /// Find and return the loop attribute node for the attribute @p Name in
1206 /// @p LoopID. Return nullptr if there is no such attribute.
1207 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1208 
1209 /// Find string metadata for a loop.
1210 ///
1211 /// Returns the MDNode where the first operand is the metadata's name. The
1212 /// following operands are the metadata's values. If no metadata with @p Name is
1213 /// found, return nullptr.
1214 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1215 
1216 /// Return whether an MDNode might represent an access group.
1217 ///
1218 /// Access group metadata nodes have to be distinct and empty. Being
1219 /// always-empty ensures that it never needs to be changed (which -- because
1220 /// MDNodes are designed immutable -- would require creating a new MDNode). Note
1221 /// that this is not a sufficient condition: not every distinct and empty NDNode
1222 /// is representing an access group.
1223 bool isValidAsAccessGroup(MDNode *AccGroup);
1224 
1225 /// Create a new LoopID after the loop has been transformed.
1226 ///
1227 /// This can be used when no follow-up loop attributes are defined
1228 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1229 /// applied again.
1230 ///
1231 /// @param Context        The LLVMContext in which to create the new LoopID.
1232 /// @param OrigLoopID     The original LoopID; can be nullptr if the original
1233 ///                       loop has no LoopID.
1234 /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1235 ///                       Use to remove metadata of the transformation that has
1236 ///                       been applied.
1237 /// @param AddAttrs       Add these loop attributes to the new LoopID.
1238 ///
1239 /// @return A new LoopID that can be applied using Loop::setLoopID().
1240 llvm::MDNode *
1241 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1242                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1243                                llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1244 
1245 } // End llvm namespace
1246 
1247 #endif
1248