1 //===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // An automatic updater for MemorySSA that handles arbitrary insertion,
11 // deletion, and moves.  It performs phi insertion where necessary, and
12 // automatically updates the MemorySSA IR to be correct.
13 // While updating loads or removing instructions is often easy enough to not
14 // need this, updating stores should generally not be attemped outside this
15 // API.
16 //
17 // Basic API usage:
18 // Create the memory access you want for the instruction (this is mainly so
19 // we know where it is, without having to duplicate the entire set of create
20 // functions MemorySSA supports).
21 // Call insertDef or insertUse depending on whether it's a MemoryUse or a
22 // MemoryDef.
23 // That's it.
24 //
25 // For moving, first, move the instruction itself using the normal SSA
26 // instruction moving API, then just call moveBefore, moveAfter,or moveTo with
27 // the right arguments.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H
32 #define LLVM_ANALYSIS_MEMORYSSAUPDATER_H
33 
34 #include "llvm/ADT/SetVector.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/IR/ValueMap.h"
41 #include "llvm/Support/CFGDiff.h"
42 #include <utility>
43 
44 namespace llvm {
45 
46 class BasicBlock;
47 class BranchInst;
48 class DominatorTree;
49 class Instruction;
50 class LoopBlocksRPO;
51 
52 using ValueToValueMapTy = ValueMap<const Value *, WeakTrackingVH>;
53 using PhiToDefMap = SmallDenseMap<MemoryPhi *, MemoryAccess *>;
54 using CFGUpdate = cfg::Update<BasicBlock *>;
55 
56 class MemorySSAUpdater {
57 private:
58   MemorySSA *MSSA;
59 
60   /// We use WeakVH rather than a costly deletion to deal with dangling pointers.
61   /// MemoryPhis are created eagerly and sometimes get zapped shortly afterwards.
62   SmallVector<WeakVH, 16> InsertedPHIs;
63 
64   SmallPtrSet<BasicBlock *, 8> VisitedBlocks;
65   SmallSet<AssertingVH<MemoryPhi>, 8> NonOptPhis;
66 
67 public:
68   MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {}
69 
70   /// Insert a definition into the MemorySSA IR.  RenameUses will rename any use
71   /// below the new def block (and any inserted phis).  RenameUses should be set
72   /// to true if the definition may cause new aliases for loads below it.  This
73   /// is not the case for hoisting or sinking or other forms of code *movement*.
74   /// It *is* the case for straight code insertion.
75   /// For example:
76   /// store a
77   /// if (foo) { }
78   /// load a
79   ///
80   /// Moving the store into the if block, and calling insertDef, does not
81   /// require RenameUses.
82   /// However, changing it to:
83   /// store a
84   /// if (foo) { store b }
85   /// load a
86   /// Where a mayalias b, *does* require RenameUses be set to true.
87   void insertDef(MemoryDef *Def, bool RenameUses = false);
88   void insertUse(MemoryUse *Use, bool RenameUses = false);
89   /// Update the MemoryPhi in `To` following an edge deletion between `From` and
90   /// `To`. If `To` becomes unreachable, a call to removeBlocks should be made.
91   void removeEdge(BasicBlock *From, BasicBlock *To);
92   /// Update the MemoryPhi in `To` to have a single incoming edge from `From`,
93   /// following a CFG change that replaced multiple edges (switch) with a direct
94   /// branch.
95   void removeDuplicatePhiEdgesBetween(const BasicBlock *From,
96                                       const BasicBlock *To);
97   /// Update MemorySSA when inserting a unique backedge block for a loop.
98   void updatePhisWhenInsertingUniqueBackedgeBlock(BasicBlock *LoopHeader,
99                                                   BasicBlock *LoopPreheader,
100                                                   BasicBlock *BackedgeBlock);
101   /// Update MemorySSA after a loop was cloned, given the blocks in RPO order,
102   /// the exit blocks and a 1:1 mapping of all blocks and instructions
103   /// cloned. This involves duplicating all defs and uses in the cloned blocks
104   /// Updating phi nodes in exit block successors is done separately.
105   void updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
106                            ArrayRef<BasicBlock *> ExitBlocks,
107                            const ValueToValueMapTy &VM,
108                            bool IgnoreIncomingWithNoClones = false);
109   // Block BB was fully or partially cloned into its predecessor P1. Map
110   // contains the 1:1 mapping of instructions cloned and VM[BB]=P1.
111   void updateForClonedBlockIntoPred(BasicBlock *BB, BasicBlock *P1,
112                                     const ValueToValueMapTy &VM);
113   /// Update phi nodes in exit block successors following cloning. Exit blocks
114   /// that were not cloned don't have additional predecessors added.
115   void updateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
116                                      const ValueToValueMapTy &VMap,
117                                      DominatorTree &DT);
118   void updateExitBlocksForClonedLoop(
119       ArrayRef<BasicBlock *> ExitBlocks,
120       ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT);
121 
122   /// Apply CFG updates, analogous with the DT edge updates. By default, the
123   /// DT is assumed to be already up to date. If UpdateDTFirst is true, first
124   /// update the DT with the same updates.
125   void applyUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT,
126                     bool UpdateDTFirst = false);
127   /// Apply CFG insert updates, analogous with the DT edge updates.
128   void applyInsertUpdates(ArrayRef<CFGUpdate> Updates, DominatorTree &DT);
129 
130   void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where);
131   void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where);
132   void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
133                    MemorySSA::InsertionPlace Where);
134   /// `From` block was spliced into `From` and `To`. There is a CFG edge from
135   /// `From` to `To`. Move all accesses from `From` to `To` starting at
136   /// instruction `Start`. `To` is newly created BB, so empty of
137   /// MemorySSA::MemoryAccesses. Edges are already updated, so successors of
138   /// `To` with MPhi nodes need to update incoming block.
139   /// |------|        |------|
140   /// | From |        | From |
141   /// |      |        |------|
142   /// |      |           ||
143   /// |      |   =>      \/
144   /// |      |        |------|  <- Start
145   /// |      |        |  To  |
146   /// |------|        |------|
147   void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To,
148                                 Instruction *Start);
149   /// `From` block was merged into `To`. There is a CFG edge from `To` to
150   /// `From`.`To` still branches to `From`, but all instructions were moved and
151   /// `From` is now an empty block; `From` is about to be deleted. Move all
152   /// accesses from `From` to `To` starting at instruction `Start`. `To` may
153   /// have multiple successors, `From` has a single predecessor. `From` may have
154   /// successors with MPhi nodes, replace their incoming block with `To`.
155   /// |------|        |------|
156   /// |  To  |        |  To  |
157   /// |------|        |      |
158   ///    ||      =>   |      |
159   ///    \/           |      |
160   /// |------|        |      |  <- Start
161   /// | From |        |      |
162   /// |------|        |------|
163   void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
164                                Instruction *Start);
165   /// A new empty BasicBlock (New) now branches directly to Old. Some of
166   /// Old's predecessors (Preds) are now branching to New instead of Old.
167   /// If New is the only predecessor, move Old's Phi, if present, to New.
168   /// Otherwise, add a new Phi in New with appropriate incoming values, and
169   /// update the incoming values in Old's Phi node too, if present.
170   void wireOldPredecessorsToNewImmediatePredecessor(
171       BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
172       bool IdenticalEdgesWereMerged = true);
173   // The below are utility functions. Other than creation of accesses to pass
174   // to insertDef, and removeAccess to remove accesses, you should generally
175   // not attempt to update memoryssa yourself. It is very non-trivial to get
176   // the edge cases right, and the above calls already operate in near-optimal
177   // time bounds.
178 
179   /// Create a MemoryAccess in MemorySSA at a specified point in a block,
180   /// with a specified clobbering definition.
181   ///
182   /// Returns the new MemoryAccess.
183   /// This should be called when a memory instruction is created that is being
184   /// used to replace an existing memory instruction. It will *not* create PHI
185   /// nodes, or verify the clobbering definition. The insertion place is used
186   /// solely to determine where in the memoryssa access lists the instruction
187   /// will be placed. The caller is expected to keep ordering the same as
188   /// instructions.
189   /// It will return the new MemoryAccess.
190   /// Note: If a MemoryAccess already exists for I, this function will make it
191   /// inaccessible and it *must* have removeMemoryAccess called on it.
192   MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
193                                        const BasicBlock *BB,
194                                        MemorySSA::InsertionPlace Point);
195 
196   /// Create a MemoryAccess in MemorySSA before or after an existing
197   /// MemoryAccess.
198   ///
199   /// Returns the new MemoryAccess.
200   /// This should be called when a memory instruction is created that is being
201   /// used to replace an existing memory instruction. It will *not* create PHI
202   /// nodes, or verify the clobbering definition.
203   ///
204   /// Note: If a MemoryAccess already exists for I, this function will make it
205   /// inaccessible and it *must* have removeMemoryAccess called on it.
206   MemoryUseOrDef *createMemoryAccessBefore(Instruction *I,
207                                            MemoryAccess *Definition,
208                                            MemoryUseOrDef *InsertPt);
209   MemoryUseOrDef *createMemoryAccessAfter(Instruction *I,
210                                           MemoryAccess *Definition,
211                                           MemoryAccess *InsertPt);
212 
213   /// Remove a MemoryAccess from MemorySSA, including updating all
214   /// definitions and uses.
215   /// This should be called when a memory instruction that has a MemoryAccess
216   /// associated with it is erased from the program.  For example, if a store or
217   /// load is simply erased (not replaced), removeMemoryAccess should be called
218   /// on the MemoryAccess for that store/load.
219   void removeMemoryAccess(MemoryAccess *, bool OptimizePhis = false);
220 
221   /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists.
222   /// This should be called when an instruction (load/store) is deleted from
223   /// the program.
224   void removeMemoryAccess(const Instruction *I, bool OptimizePhis = false) {
225     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
226       removeMemoryAccess(MA, OptimizePhis);
227   }
228 
229   /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted.
230   /// Assumption we make here: all uses of deleted defs and phi must either
231   /// occur in blocks about to be deleted (thus will be deleted as well), or
232   /// they occur in phis that will simply lose an incoming value.
233   /// Deleted blocks still have successor info, but their predecessor edges and
234   /// Phi nodes may already be updated. Instructions in DeadBlocks should be
235   /// deleted after this call.
236   void removeBlocks(const SmallSetVector<BasicBlock *, 8> &DeadBlocks);
237 
238   /// Instruction I will be changed to an unreachable. Remove all accesses in
239   /// I's block that follow I (inclusive), and update the Phis in the blocks'
240   /// successors.
241   void changeToUnreachable(const Instruction *I);
242 
243   /// Get handle on MemorySSA.
244   MemorySSA* getMemorySSA() const { return MSSA; }
245 
246 private:
247   // Move What before Where in the MemorySSA IR.
248   template <class WhereType>
249   void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where);
250   // Move all memory accesses from `From` to `To` starting at `Start`.
251   // Restrictions apply, see public wrappers of this method.
252   void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start);
253   MemoryAccess *getPreviousDef(MemoryAccess *);
254   MemoryAccess *getPreviousDefInBlock(MemoryAccess *);
255   MemoryAccess *
256   getPreviousDefFromEnd(BasicBlock *,
257                         DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
258   MemoryAccess *
259   getPreviousDefRecursive(BasicBlock *,
260                           DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &);
261   MemoryAccess *recursePhi(MemoryAccess *Phi);
262   MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi);
263   template <class RangeType>
264   MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands);
265   void tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs);
266   void fixupDefs(const SmallVectorImpl<WeakVH> &);
267   // Clone all uses and defs from BB to NewBB given a 1:1 map of all
268   // instructions and blocks cloned, and a map of MemoryPhi : Definition
269   // (MemoryAccess Phi or Def). VMap maps old instructions to cloned
270   // instructions and old blocks to cloned blocks. MPhiMap, is created in the
271   // caller of this private method, and maps existing MemoryPhis to new
272   // definitions that new MemoryAccesses must point to. These definitions may
273   // not necessarily be MemoryPhis themselves, they may be MemoryDefs. As such,
274   // the map is between MemoryPhis and MemoryAccesses, where the MemoryAccesses
275   // may be MemoryPhis or MemoryDefs and not MemoryUses.
276   // If CloneWasSimplified = true, the clone was exact. Otherwise, assume that
277   // the clone involved simplifications that may have: (1) turned a MemoryUse
278   // into an instruction that MemorySSA has no representation for, or (2) turned
279   // a MemoryDef into a MemoryUse or an instruction that MemorySSA has no
280   // representation for. No other cases are supported.
281   void cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
282                         const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap,
283                         bool CloneWasSimplified = false);
284   template <typename Iter>
285   void privateUpdateExitBlocksForClonedLoop(ArrayRef<BasicBlock *> ExitBlocks,
286                                             Iter ValuesBegin, Iter ValuesEnd,
287                                             DominatorTree &DT);
288   void applyInsertUpdates(ArrayRef<CFGUpdate>, DominatorTree &DT,
289                           const GraphDiff<BasicBlock *> *GD);
290 };
291 } // end namespace llvm
292 
293 #endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H
294