1 //===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CCState and CCValAssign classes, used for lowering
10 // and implementing calling conventions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
15 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/Register.h"
19 #include "llvm/CodeGen/TargetCallingConv.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/Support/Alignment.h"
22 
23 namespace llvm {
24 
25 class CCState;
26 class MachineFunction;
27 class MVT;
28 class TargetRegisterInfo;
29 
30 /// CCValAssign - Represent assignment of one arg/retval to a location.
31 class CCValAssign {
32 public:
33   enum LocInfo {
34     Full,      // The value fills the full location.
35     SExt,      // The value is sign extended in the location.
36     ZExt,      // The value is zero extended in the location.
37     AExt,      // The value is extended with undefined upper bits.
38     SExtUpper, // The value is in the upper bits of the location and should be
39                // sign extended when retrieved.
40     ZExtUpper, // The value is in the upper bits of the location and should be
41                // zero extended when retrieved.
42     AExtUpper, // The value is in the upper bits of the location and should be
43                // extended with undefined upper bits when retrieved.
44     BCvt,      // The value is bit-converted in the location.
45     Trunc,     // The value is truncated in the location.
46     VExt,      // The value is vector-widened in the location.
47                // FIXME: Not implemented yet. Code that uses AExt to mean
48                // vector-widen should be fixed to use VExt instead.
49     FPExt,     // The floating-point value is fp-extended in the location.
50     Indirect   // The location contains pointer to the value.
51     // TODO: a subset of the value is in the location.
52   };
53 
54 private:
55   /// ValNo - This is the value number being assigned (e.g. an argument number).
56   unsigned ValNo;
57 
58   /// Loc is either a stack offset or a register number.
59   unsigned Loc;
60 
61   /// isMem - True if this is a memory loc, false if it is a register loc.
62   unsigned isMem : 1;
63 
64   /// isCustom - True if this arg/retval requires special handling.
65   unsigned isCustom : 1;
66 
67   /// Information about how the value is assigned.
68   LocInfo HTP : 6;
69 
70   /// ValVT - The type of the value being assigned.
71   MVT ValVT;
72 
73   /// LocVT - The type of the location being assigned to.
74   MVT LocVT;
75 public:
76 
77   static CCValAssign getReg(unsigned ValNo, MVT ValVT,
78                             unsigned RegNo, MVT LocVT,
79                             LocInfo HTP) {
80     CCValAssign Ret;
81     Ret.ValNo = ValNo;
82     Ret.Loc = RegNo;
83     Ret.isMem = false;
84     Ret.isCustom = false;
85     Ret.HTP = HTP;
86     Ret.ValVT = ValVT;
87     Ret.LocVT = LocVT;
88     return Ret;
89   }
90 
91   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT,
92                                   unsigned RegNo, MVT LocVT,
93                                   LocInfo HTP) {
94     CCValAssign Ret;
95     Ret = getReg(ValNo, ValVT, RegNo, LocVT, HTP);
96     Ret.isCustom = true;
97     return Ret;
98   }
99 
100   static CCValAssign getMem(unsigned ValNo, MVT ValVT,
101                             unsigned Offset, MVT LocVT,
102                             LocInfo HTP) {
103     CCValAssign Ret;
104     Ret.ValNo = ValNo;
105     Ret.Loc = Offset;
106     Ret.isMem = true;
107     Ret.isCustom = false;
108     Ret.HTP = HTP;
109     Ret.ValVT = ValVT;
110     Ret.LocVT = LocVT;
111     return Ret;
112   }
113 
114   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT,
115                                   unsigned Offset, MVT LocVT,
116                                   LocInfo HTP) {
117     CCValAssign Ret;
118     Ret = getMem(ValNo, ValVT, Offset, LocVT, HTP);
119     Ret.isCustom = true;
120     return Ret;
121   }
122 
123   // There is no need to differentiate between a pending CCValAssign and other
124   // kinds, as they are stored in a different list.
125   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
126                                 LocInfo HTP, unsigned ExtraInfo = 0) {
127     return getReg(ValNo, ValVT, ExtraInfo, LocVT, HTP);
128   }
129 
130   void convertToReg(unsigned RegNo) {
131     Loc = RegNo;
132     isMem = false;
133   }
134 
135   void convertToMem(unsigned Offset) {
136     Loc = Offset;
137     isMem = true;
138   }
139 
140   unsigned getValNo() const { return ValNo; }
141   MVT getValVT() const { return ValVT; }
142 
143   bool isRegLoc() const { return !isMem; }
144   bool isMemLoc() const { return isMem; }
145 
146   bool needsCustom() const { return isCustom; }
147 
148   Register getLocReg() const { assert(isRegLoc()); return Loc; }
149   unsigned getLocMemOffset() const { assert(isMemLoc()); return Loc; }
150   unsigned getExtraInfo() const { return Loc; }
151   MVT getLocVT() const { return LocVT; }
152 
153   LocInfo getLocInfo() const { return HTP; }
154   bool isExtInLoc() const {
155     return (HTP == AExt || HTP == SExt || HTP == ZExt);
156   }
157 
158   bool isUpperBitsInLoc() const {
159     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
160   }
161 };
162 
163 /// Describes a register that needs to be forwarded from the prologue to a
164 /// musttail call.
165 struct ForwardedRegister {
166   ForwardedRegister(Register VReg, MCPhysReg PReg, MVT VT)
167       : VReg(VReg), PReg(PReg), VT(VT) {}
168   Register VReg;
169   MCPhysReg PReg;
170   MVT VT;
171 };
172 
173 /// CCAssignFn - This function assigns a location for Val, updating State to
174 /// reflect the change.  It returns 'true' if it failed to handle Val.
175 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
176                         MVT LocVT, CCValAssign::LocInfo LocInfo,
177                         ISD::ArgFlagsTy ArgFlags, CCState &State);
178 
179 /// CCCustomFn - This function assigns a location for Val, possibly updating
180 /// all args to reflect changes and indicates if it handled it. It must set
181 /// isCustom if it handles the arg and returns true.
182 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
183                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
184                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
185 
186 /// CCState - This class holds information needed while lowering arguments and
187 /// return values.  It captures which registers are already assigned and which
188 /// stack slots are used.  It provides accessors to allocate these values.
189 class CCState {
190 private:
191   CallingConv::ID CallingConv;
192   bool IsVarArg;
193   bool AnalyzingMustTailForwardedRegs = false;
194   MachineFunction &MF;
195   const TargetRegisterInfo &TRI;
196   SmallVectorImpl<CCValAssign> &Locs;
197   LLVMContext &Context;
198 
199   unsigned StackOffset;
200   Align MaxStackArgAlign;
201   SmallVector<uint32_t, 16> UsedRegs;
202   SmallVector<CCValAssign, 4> PendingLocs;
203   SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;
204 
205   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
206   //
207   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
208   // tracking.
209   // Or, in another words it tracks byval parameters that are stored in
210   // general purpose registers.
211   //
212   // For 4 byte stack alignment,
213   // instance index means byval parameter number in formal
214   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
215   // then, for function "foo":
216   //
217   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
218   //
219   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
220   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
221   //
222   // In case of 8 bytes stack alignment,
223   // In function shown above, r3 would be wasted according to AAPCS rules.
224   // ByValRegs vector size still would be 2,
225   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
226   //
227   // Supposed use-case for this collection:
228   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
229   // 2. HandleByVal fills up ByValRegs.
230   // 3. Argument analysis (LowerFormatArguments, for example). After
231   // some byval argument was analyzed, InRegsParamsProcessed is increased.
232   struct ByValInfo {
233     ByValInfo(unsigned B, unsigned E) : Begin(B), End(E) {}
234 
235     // First register allocated for current parameter.
236     unsigned Begin;
237 
238     // First after last register allocated for current parameter.
239     unsigned End;
240   };
241   SmallVector<ByValInfo, 4 > ByValRegs;
242 
243   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
244   // during argument analysis.
245   unsigned InRegsParamsProcessed;
246 
247 public:
248   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
249           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
250 
251   void addLoc(const CCValAssign &V) {
252     Locs.push_back(V);
253   }
254 
255   LLVMContext &getContext() const { return Context; }
256   MachineFunction &getMachineFunction() const { return MF; }
257   CallingConv::ID getCallingConv() const { return CallingConv; }
258   bool isVarArg() const { return IsVarArg; }
259 
260   /// getNextStackOffset - Return the next stack offset such that all stack
261   /// slots satisfy their alignment requirements.
262   unsigned getNextStackOffset() const {
263     return StackOffset;
264   }
265 
266   /// getAlignedCallFrameSize - Return the size of the call frame needed to
267   /// be able to store all arguments and such that the alignment requirement
268   /// of each of the arguments is satisfied.
269   unsigned getAlignedCallFrameSize() const {
270     return alignTo(StackOffset, MaxStackArgAlign);
271   }
272 
273   /// isAllocated - Return true if the specified register (or an alias) is
274   /// allocated.
275   bool isAllocated(MCRegister Reg) const {
276     return UsedRegs[Reg / 32] & (1 << (Reg & 31));
277   }
278 
279   /// AnalyzeFormalArguments - Analyze an array of argument values,
280   /// incorporating info about the formals into this state.
281   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
282                               CCAssignFn Fn);
283 
284   /// The function will invoke AnalyzeFormalArguments.
285   void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
286                         CCAssignFn Fn) {
287     AnalyzeFormalArguments(Ins, Fn);
288   }
289 
290   /// AnalyzeReturn - Analyze the returned values of a return,
291   /// incorporating info about the result values into this state.
292   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
293                      CCAssignFn Fn);
294 
295   /// CheckReturn - Analyze the return values of a function, returning
296   /// true if the return can be performed without sret-demotion, and
297   /// false otherwise.
298   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
299                    CCAssignFn Fn);
300 
301   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
302   /// incorporating info about the passed values into this state.
303   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
304                            CCAssignFn Fn);
305 
306   /// AnalyzeCallOperands - Same as above except it takes vectors of types
307   /// and argument flags.
308   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
309                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
310                            CCAssignFn Fn);
311 
312   /// The function will invoke AnalyzeCallOperands.
313   void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
314                         CCAssignFn Fn) {
315     AnalyzeCallOperands(Outs, Fn);
316   }
317 
318   /// AnalyzeCallResult - Analyze the return values of a call,
319   /// incorporating info about the passed values into this state.
320   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
321                          CCAssignFn Fn);
322 
323   /// A shadow allocated register is a register that was allocated
324   /// but wasn't added to the location list (Locs).
325   /// \returns true if the register was allocated as shadow or false otherwise.
326   bool IsShadowAllocatedReg(MCRegister Reg) const;
327 
328   /// AnalyzeCallResult - Same as above except it's specialized for calls which
329   /// produce a single value.
330   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
331 
332   /// getFirstUnallocated - Return the index of the first unallocated register
333   /// in the set, or Regs.size() if they are all allocated.
334   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
335     for (unsigned i = 0; i < Regs.size(); ++i)
336       if (!isAllocated(Regs[i]))
337         return i;
338     return Regs.size();
339   }
340 
341   void DeallocateReg(MCPhysReg Reg) {
342     assert(isAllocated(Reg) && "Trying to deallocate an unallocated register");
343     MarkUnallocated(Reg);
344   }
345 
346   /// AllocateReg - Attempt to allocate one register.  If it is not available,
347   /// return zero.  Otherwise, return the register, marking it and any aliases
348   /// as allocated.
349   MCRegister AllocateReg(MCPhysReg Reg) {
350     if (isAllocated(Reg))
351       return MCRegister();
352     MarkAllocated(Reg);
353     return Reg;
354   }
355 
356   /// Version of AllocateReg with extra register to be shadowed.
357   MCRegister AllocateReg(MCPhysReg Reg, MCPhysReg ShadowReg) {
358     if (isAllocated(Reg))
359       return MCRegister();
360     MarkAllocated(Reg);
361     MarkAllocated(ShadowReg);
362     return Reg;
363   }
364 
365   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
366   /// are available, return zero.  Otherwise, return the first one available,
367   /// marking it and any aliases as allocated.
368   MCPhysReg AllocateReg(ArrayRef<MCPhysReg> Regs) {
369     unsigned FirstUnalloc = getFirstUnallocated(Regs);
370     if (FirstUnalloc == Regs.size())
371       return MCRegister();    // Didn't find the reg.
372 
373     // Mark the register and any aliases as allocated.
374     MCPhysReg Reg = Regs[FirstUnalloc];
375     MarkAllocated(Reg);
376     return Reg;
377   }
378 
379   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
380   /// registers. If this is not possible, return zero. Otherwise, return the first
381   /// register of the block that were allocated, marking the entire block as allocated.
382   MCPhysReg AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
383     if (RegsRequired > Regs.size())
384       return 0;
385 
386     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
387          ++StartIdx) {
388       bool BlockAvailable = true;
389       // Check for already-allocated regs in this block
390       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
391         if (isAllocated(Regs[StartIdx + BlockIdx])) {
392           BlockAvailable = false;
393           break;
394         }
395       }
396       if (BlockAvailable) {
397         // Mark the entire block as allocated
398         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
399           MarkAllocated(Regs[StartIdx + BlockIdx]);
400         }
401         return Regs[StartIdx];
402       }
403     }
404     // No block was available
405     return 0;
406   }
407 
408   /// Version of AllocateReg with list of registers to be shadowed.
409   MCRegister AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
410     unsigned FirstUnalloc = getFirstUnallocated(Regs);
411     if (FirstUnalloc == Regs.size())
412       return MCRegister();    // Didn't find the reg.
413 
414     // Mark the register and any aliases as allocated.
415     MCRegister Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
416     MarkAllocated(Reg);
417     MarkAllocated(ShadowReg);
418     return Reg;
419   }
420 
421   /// AllocateStack - Allocate a chunk of stack space with the specified size
422   /// and alignment.
423   unsigned AllocateStack(unsigned Size, Align Alignment) {
424     StackOffset = alignTo(StackOffset, Alignment);
425     unsigned Result = StackOffset;
426     StackOffset += Size;
427     MaxStackArgAlign = std::max(Alignment, MaxStackArgAlign);
428     ensureMaxAlignment(Alignment);
429     return Result;
430   }
431 
432   void ensureMaxAlignment(Align Alignment);
433 
434   /// Version of AllocateStack with list of extra registers to be shadowed.
435   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
436   unsigned AllocateStack(unsigned Size, Align Alignment,
437                          ArrayRef<MCPhysReg> ShadowRegs) {
438     for (MCPhysReg Reg : ShadowRegs)
439       MarkAllocated(Reg);
440     return AllocateStack(Size, Alignment);
441   }
442 
443   // HandleByVal - Allocate a stack slot large enough to pass an argument by
444   // value. The size and alignment information of the argument is encoded in its
445   // parameter attribute.
446   void HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
447                    CCValAssign::LocInfo LocInfo, int MinSize, Align MinAlign,
448                    ISD::ArgFlagsTy ArgFlags);
449 
450   // Returns count of byval arguments that are to be stored (even partly)
451   // in registers.
452   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
453 
454   // Returns count of byval in-regs arguments processed.
455   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
456 
457   // Get information about N-th byval parameter that is stored in registers.
458   // Here "ByValParamIndex" is N.
459   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
460                           unsigned& BeginReg, unsigned& EndReg) const {
461     assert(InRegsParamRecordIndex < ByValRegs.size() &&
462            "Wrong ByVal parameter index");
463 
464     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
465     BeginReg = info.Begin;
466     EndReg = info.End;
467   }
468 
469   // Add information about parameter that is kept in registers.
470   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
471     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
472   }
473 
474   // Goes either to next byval parameter (excluding "waste" record), or
475   // to the end of collection.
476   // Returns false, if end is reached.
477   bool nextInRegsParam() {
478     unsigned e = ByValRegs.size();
479     if (InRegsParamsProcessed < e)
480       ++InRegsParamsProcessed;
481     return InRegsParamsProcessed < e;
482   }
483 
484   // Clear byval registers tracking info.
485   void clearByValRegsInfo() {
486     InRegsParamsProcessed = 0;
487     ByValRegs.clear();
488   }
489 
490   // Rewind byval registers tracking info.
491   void rewindByValRegsInfo() {
492     InRegsParamsProcessed = 0;
493   }
494 
495   // Get list of pending assignments
496   SmallVectorImpl<CCValAssign> &getPendingLocs() {
497     return PendingLocs;
498   }
499 
500   // Get a list of argflags for pending assignments.
501   SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
502     return PendingArgFlags;
503   }
504 
505   /// Compute the remaining unused register parameters that would be used for
506   /// the given value type. This is useful when varargs are passed in the
507   /// registers that normal prototyped parameters would be passed in, or for
508   /// implementing perfect forwarding.
509   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
510                                    CCAssignFn Fn);
511 
512   /// Compute the set of registers that need to be preserved and forwarded to
513   /// any musttail calls.
514   void analyzeMustTailForwardedRegisters(
515       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
516       CCAssignFn Fn);
517 
518   /// Returns true if the results of the two calling conventions are compatible.
519   /// This is usually part of the check for tailcall eligibility.
520   static bool resultsCompatible(CallingConv::ID CalleeCC,
521                                 CallingConv::ID CallerCC, MachineFunction &MF,
522                                 LLVMContext &C,
523                                 const SmallVectorImpl<ISD::InputArg> &Ins,
524                                 CCAssignFn CalleeFn, CCAssignFn CallerFn);
525 
526   /// The function runs an additional analysis pass over function arguments.
527   /// It will mark each argument with the attribute flag SecArgPass.
528   /// After running, it will sort the locs list.
529   template <class T>
530   void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
531                                   CCAssignFn Fn) {
532     unsigned NumFirstPassLocs = Locs.size();
533 
534     /// Creates similar argument list to \p Args in which each argument is
535     /// marked using SecArgPass flag.
536     SmallVector<T, 16> SecPassArg;
537     // SmallVector<ISD::InputArg, 16> SecPassArg;
538     for (auto Arg : Args) {
539       Arg.Flags.setSecArgPass();
540       SecPassArg.push_back(Arg);
541     }
542 
543     // Run the second argument pass
544     AnalyzeArguments(SecPassArg, Fn);
545 
546     // Sort the locations of the arguments according to their original position.
547     SmallVector<CCValAssign, 16> TmpArgLocs;
548     TmpArgLocs.swap(Locs);
549     auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
550     std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
551                std::back_inserter(Locs),
552                [](const CCValAssign &A, const CCValAssign &B) -> bool {
553                  return A.getValNo() < B.getValNo();
554                });
555   }
556 
557 private:
558   /// MarkAllocated - Mark a register and all of its aliases as allocated.
559   void MarkAllocated(MCPhysReg Reg);
560 
561   void MarkUnallocated(MCPhysReg Reg);
562 };
563 
564 } // end namespace llvm
565 
566 #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H
567