1 //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveRange and LiveInterval classes.  Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_CODEGEN_LIVEINTERVAL_H
21 #define LLVM_CODEGEN_LIVEINTERVAL_H
22 
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/IntEqClasses.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/Register.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/MC/LaneBitmask.h"
31 #include "llvm/Support/Allocator.h"
32 #include "llvm/Support/MathExtras.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <functional>
37 #include <memory>
38 #include <set>
39 #include <tuple>
40 #include <utility>
41 
42 namespace llvm {
43 
44   class CoalescerPair;
45   class LiveIntervals;
46   class MachineRegisterInfo;
47   class raw_ostream;
48 
49   /// VNInfo - Value Number Information.
50   /// This class holds information about a machine level values, including
51   /// definition and use points.
52   ///
53   class VNInfo {
54   public:
55     using Allocator = BumpPtrAllocator;
56 
57     /// The ID number of this value.
58     unsigned id;
59 
60     /// The index of the defining instruction.
61     SlotIndex def;
62 
63     /// VNInfo constructor.
64     VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
65 
66     /// VNInfo constructor, copies values from orig, except for the value number.
67     VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
68 
69     /// Copy from the parameter into this VNInfo.
70     void copyFrom(VNInfo &src) {
71       def = src.def;
72     }
73 
74     /// Returns true if this value is defined by a PHI instruction (or was,
75     /// PHI instructions may have been eliminated).
76     /// PHI-defs begin at a block boundary, all other defs begin at register or
77     /// EC slots.
78     bool isPHIDef() const { return def.isBlock(); }
79 
80     /// Returns true if this value is unused.
81     bool isUnused() const { return !def.isValid(); }
82 
83     /// Mark this value as unused.
84     void markUnused() { def = SlotIndex(); }
85   };
86 
87   /// Result of a LiveRange query. This class hides the implementation details
88   /// of live ranges, and it should be used as the primary interface for
89   /// examining live ranges around instructions.
90   class LiveQueryResult {
91     VNInfo *const EarlyVal;
92     VNInfo *const LateVal;
93     const SlotIndex EndPoint;
94     const bool Kill;
95 
96   public:
97     LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
98                     bool Kill)
99       : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
100     {}
101 
102     /// Return the value that is live-in to the instruction. This is the value
103     /// that will be read by the instruction's use operands. Return NULL if no
104     /// value is live-in.
105     VNInfo *valueIn() const {
106       return EarlyVal;
107     }
108 
109     /// Return true if the live-in value is killed by this instruction. This
110     /// means that either the live range ends at the instruction, or it changes
111     /// value.
112     bool isKill() const {
113       return Kill;
114     }
115 
116     /// Return true if this instruction has a dead def.
117     bool isDeadDef() const {
118       return EndPoint.isDead();
119     }
120 
121     /// Return the value leaving the instruction, if any. This can be a
122     /// live-through value, or a live def. A dead def returns NULL.
123     VNInfo *valueOut() const {
124       return isDeadDef() ? nullptr : LateVal;
125     }
126 
127     /// Returns the value alive at the end of the instruction, if any. This can
128     /// be a live-through value, a live def or a dead def.
129     VNInfo *valueOutOrDead() const {
130       return LateVal;
131     }
132 
133     /// Return the value defined by this instruction, if any. This includes
134     /// dead defs, it is the value created by the instruction's def operands.
135     VNInfo *valueDefined() const {
136       return EarlyVal == LateVal ? nullptr : LateVal;
137     }
138 
139     /// Return the end point of the last live range segment to interact with
140     /// the instruction, if any.
141     ///
142     /// The end point is an invalid SlotIndex only if the live range doesn't
143     /// intersect the instruction at all.
144     ///
145     /// The end point may be at or past the end of the instruction's basic
146     /// block. That means the value was live out of the block.
147     SlotIndex endPoint() const {
148       return EndPoint;
149     }
150   };
151 
152   /// This class represents the liveness of a register, stack slot, etc.
153   /// It manages an ordered list of Segment objects.
154   /// The Segments are organized in a static single assignment form: At places
155   /// where a new value is defined or different values reach a CFG join a new
156   /// segment with a new value number is used.
157   class LiveRange {
158   public:
159     /// This represents a simple continuous liveness interval for a value.
160     /// The start point is inclusive, the end point exclusive. These intervals
161     /// are rendered as [start,end).
162     struct Segment {
163       SlotIndex start;  // Start point of the interval (inclusive)
164       SlotIndex end;    // End point of the interval (exclusive)
165       VNInfo *valno = nullptr; // identifier for the value contained in this
166                                // segment.
167 
168       Segment() = default;
169 
170       Segment(SlotIndex S, SlotIndex E, VNInfo *V)
171         : start(S), end(E), valno(V) {
172         assert(S < E && "Cannot create empty or backwards segment");
173       }
174 
175       /// Return true if the index is covered by this segment.
176       bool contains(SlotIndex I) const {
177         return start <= I && I < end;
178       }
179 
180       /// Return true if the given interval, [S, E), is covered by this segment.
181       bool containsInterval(SlotIndex S, SlotIndex E) const {
182         assert((S < E) && "Backwards interval?");
183         return (start <= S && S < end) && (start < E && E <= end);
184       }
185 
186       bool operator<(const Segment &Other) const {
187         return std::tie(start, end) < std::tie(Other.start, Other.end);
188       }
189       bool operator==(const Segment &Other) const {
190         return start == Other.start && end == Other.end;
191       }
192 
193       bool operator!=(const Segment &Other) const {
194         return !(*this == Other);
195       }
196 
197       void dump() const;
198     };
199 
200     using Segments = SmallVector<Segment, 2>;
201     using VNInfoList = SmallVector<VNInfo *, 2>;
202 
203     Segments segments;   // the liveness segments
204     VNInfoList valnos;   // value#'s
205 
206     // The segment set is used temporarily to accelerate initial computation
207     // of live ranges of physical registers in computeRegUnitRange.
208     // After that the set is flushed to the segment vector and deleted.
209     using SegmentSet = std::set<Segment>;
210     std::unique_ptr<SegmentSet> segmentSet;
211 
212     using iterator = Segments::iterator;
213     using const_iterator = Segments::const_iterator;
214 
215     iterator begin() { return segments.begin(); }
216     iterator end()   { return segments.end(); }
217 
218     const_iterator begin() const { return segments.begin(); }
219     const_iterator end() const  { return segments.end(); }
220 
221     using vni_iterator = VNInfoList::iterator;
222     using const_vni_iterator = VNInfoList::const_iterator;
223 
224     vni_iterator vni_begin() { return valnos.begin(); }
225     vni_iterator vni_end()   { return valnos.end(); }
226 
227     const_vni_iterator vni_begin() const { return valnos.begin(); }
228     const_vni_iterator vni_end() const   { return valnos.end(); }
229 
230     /// Constructs a new LiveRange object.
231     LiveRange(bool UseSegmentSet = false)
232         : segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
233                                    : nullptr) {}
234 
235     /// Constructs a new LiveRange object by copying segments and valnos from
236     /// another LiveRange.
237     LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
238       assert(Other.segmentSet == nullptr &&
239              "Copying of LiveRanges with active SegmentSets is not supported");
240       assign(Other, Allocator);
241     }
242 
243     /// Copies values numbers and live segments from \p Other into this range.
244     void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
245       if (this == &Other)
246         return;
247 
248       assert(Other.segmentSet == nullptr &&
249              "Copying of LiveRanges with active SegmentSets is not supported");
250       // Duplicate valnos.
251       for (const VNInfo *VNI : Other.valnos)
252         createValueCopy(VNI, Allocator);
253       // Now we can copy segments and remap their valnos.
254       for (const Segment &S : Other.segments)
255         segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
256     }
257 
258     /// advanceTo - Advance the specified iterator to point to the Segment
259     /// containing the specified position, or end() if the position is past the
260     /// end of the range.  If no Segment contains this position, but the
261     /// position is in a hole, this method returns an iterator pointing to the
262     /// Segment immediately after the hole.
263     iterator advanceTo(iterator I, SlotIndex Pos) {
264       assert(I != end());
265       if (Pos >= endIndex())
266         return end();
267       while (I->end <= Pos) ++I;
268       return I;
269     }
270 
271     const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
272       assert(I != end());
273       if (Pos >= endIndex())
274         return end();
275       while (I->end <= Pos) ++I;
276       return I;
277     }
278 
279     /// find - Return an iterator pointing to the first segment that ends after
280     /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
281     /// when searching large ranges.
282     ///
283     /// If Pos is contained in a Segment, that segment is returned.
284     /// If Pos is in a hole, the following Segment is returned.
285     /// If Pos is beyond endIndex, end() is returned.
286     iterator find(SlotIndex Pos);
287 
288     const_iterator find(SlotIndex Pos) const {
289       return const_cast<LiveRange*>(this)->find(Pos);
290     }
291 
292     void clear() {
293       valnos.clear();
294       segments.clear();
295     }
296 
297     size_t size() const {
298       return segments.size();
299     }
300 
301     bool hasAtLeastOneValue() const { return !valnos.empty(); }
302 
303     bool containsOneValue() const { return valnos.size() == 1; }
304 
305     unsigned getNumValNums() const { return (unsigned)valnos.size(); }
306 
307     /// getValNumInfo - Returns pointer to the specified val#.
308     ///
309     inline VNInfo *getValNumInfo(unsigned ValNo) {
310       return valnos[ValNo];
311     }
312     inline const VNInfo *getValNumInfo(unsigned ValNo) const {
313       return valnos[ValNo];
314     }
315 
316     /// containsValue - Returns true if VNI belongs to this range.
317     bool containsValue(const VNInfo *VNI) const {
318       return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
319     }
320 
321     /// getNextValue - Create a new value number and return it.  MIIdx specifies
322     /// the instruction that defines the value number.
323     VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
324       VNInfo *VNI =
325         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
326       valnos.push_back(VNI);
327       return VNI;
328     }
329 
330     /// createDeadDef - Make sure the range has a value defined at Def.
331     /// If one already exists, return it. Otherwise allocate a new value and
332     /// add liveness for a dead def.
333     VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
334 
335     /// Create a def of value @p VNI. Return @p VNI. If there already exists
336     /// a definition at VNI->def, the value defined there must be @p VNI.
337     VNInfo *createDeadDef(VNInfo *VNI);
338 
339     /// Create a copy of the given value. The new value will be identical except
340     /// for the Value number.
341     VNInfo *createValueCopy(const VNInfo *orig,
342                             VNInfo::Allocator &VNInfoAllocator) {
343       VNInfo *VNI =
344         new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
345       valnos.push_back(VNI);
346       return VNI;
347     }
348 
349     /// RenumberValues - Renumber all values in order of appearance and remove
350     /// unused values.
351     void RenumberValues();
352 
353     /// MergeValueNumberInto - This method is called when two value numbers
354     /// are found to be equivalent.  This eliminates V1, replacing all
355     /// segments with the V1 value number with the V2 value number.  This can
356     /// cause merging of V1/V2 values numbers and compaction of the value space.
357     VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
358 
359     /// Merge all of the live segments of a specific val# in RHS into this live
360     /// range as the specified value number. The segments in RHS are allowed
361     /// to overlap with segments in the current range, it will replace the
362     /// value numbers of the overlaped live segments with the specified value
363     /// number.
364     void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
365 
366     /// MergeValueInAsValue - Merge all of the segments of a specific val#
367     /// in RHS into this live range as the specified value number.
368     /// The segments in RHS are allowed to overlap with segments in the
369     /// current range, but only if the overlapping segments have the
370     /// specified value number.
371     void MergeValueInAsValue(const LiveRange &RHS,
372                              const VNInfo *RHSValNo, VNInfo *LHSValNo);
373 
374     bool empty() const { return segments.empty(); }
375 
376     /// beginIndex - Return the lowest numbered slot covered.
377     SlotIndex beginIndex() const {
378       assert(!empty() && "Call to beginIndex() on empty range.");
379       return segments.front().start;
380     }
381 
382     /// endNumber - return the maximum point of the range of the whole,
383     /// exclusive.
384     SlotIndex endIndex() const {
385       assert(!empty() && "Call to endIndex() on empty range.");
386       return segments.back().end;
387     }
388 
389     bool expiredAt(SlotIndex index) const {
390       return index >= endIndex();
391     }
392 
393     bool liveAt(SlotIndex index) const {
394       const_iterator r = find(index);
395       return r != end() && r->start <= index;
396     }
397 
398     /// Return the segment that contains the specified index, or null if there
399     /// is none.
400     const Segment *getSegmentContaining(SlotIndex Idx) const {
401       const_iterator I = FindSegmentContaining(Idx);
402       return I == end() ? nullptr : &*I;
403     }
404 
405     /// Return the live segment that contains the specified index, or null if
406     /// there is none.
407     Segment *getSegmentContaining(SlotIndex Idx) {
408       iterator I = FindSegmentContaining(Idx);
409       return I == end() ? nullptr : &*I;
410     }
411 
412     /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
413     VNInfo *getVNInfoAt(SlotIndex Idx) const {
414       const_iterator I = FindSegmentContaining(Idx);
415       return I == end() ? nullptr : I->valno;
416     }
417 
418     /// getVNInfoBefore - Return the VNInfo that is live up to but not
419     /// necessarilly including Idx, or NULL. Use this to find the reaching def
420     /// used by an instruction at this SlotIndex position.
421     VNInfo *getVNInfoBefore(SlotIndex Idx) const {
422       const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
423       return I == end() ? nullptr : I->valno;
424     }
425 
426     /// Return an iterator to the segment that contains the specified index, or
427     /// end() if there is none.
428     iterator FindSegmentContaining(SlotIndex Idx) {
429       iterator I = find(Idx);
430       return I != end() && I->start <= Idx ? I : end();
431     }
432 
433     const_iterator FindSegmentContaining(SlotIndex Idx) const {
434       const_iterator I = find(Idx);
435       return I != end() && I->start <= Idx ? I : end();
436     }
437 
438     /// overlaps - Return true if the intersection of the two live ranges is
439     /// not empty.
440     bool overlaps(const LiveRange &other) const {
441       if (other.empty())
442         return false;
443       return overlapsFrom(other, other.begin());
444     }
445 
446     /// overlaps - Return true if the two ranges have overlapping segments
447     /// that are not coalescable according to CP.
448     ///
449     /// Overlapping segments where one range is defined by a coalescable
450     /// copy are allowed.
451     bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
452                   const SlotIndexes&) const;
453 
454     /// overlaps - Return true if the live range overlaps an interval specified
455     /// by [Start, End).
456     bool overlaps(SlotIndex Start, SlotIndex End) const;
457 
458     /// overlapsFrom - Return true if the intersection of the two live ranges
459     /// is not empty.  The specified iterator is a hint that we can begin
460     /// scanning the Other range starting at I.
461     bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
462 
463     /// Returns true if all segments of the @p Other live range are completely
464     /// covered by this live range.
465     /// Adjacent live ranges do not affect the covering:the liverange
466     /// [1,5](5,10] covers (3,7].
467     bool covers(const LiveRange &Other) const;
468 
469     /// Add the specified Segment to this range, merging segments as
470     /// appropriate.  This returns an iterator to the inserted segment (which
471     /// may have grown since it was inserted).
472     iterator addSegment(Segment S);
473 
474     /// Attempt to extend a value defined after @p StartIdx to include @p Use.
475     /// Both @p StartIdx and @p Use should be in the same basic block. In case
476     /// of subranges, an extension could be prevented by an explicit "undef"
477     /// caused by a <def,read-undef> on a non-overlapping lane. The list of
478     /// location of such "undefs" should be provided in @p Undefs.
479     /// The return value is a pair: the first element is VNInfo of the value
480     /// that was extended (possibly nullptr), the second is a boolean value
481     /// indicating whether an "undef" was encountered.
482     /// If this range is live before @p Use in the basic block that starts at
483     /// @p StartIdx, and there is no intervening "undef", extend it to be live
484     /// up to @p Use, and return the pair {value, false}. If there is no
485     /// segment before @p Use and there is no "undef" between @p StartIdx and
486     /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
487     /// return {nullptr, true}.
488     std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
489         SlotIndex StartIdx, SlotIndex Kill);
490 
491     /// Simplified version of the above "extendInBlock", which assumes that
492     /// no register lanes are undefined by <def,read-undef> operands.
493     /// If this range is live before @p Use in the basic block that starts
494     /// at @p StartIdx, extend it to be live up to @p Use, and return the
495     /// value. If there is no segment before @p Use, return nullptr.
496     VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
497 
498     /// join - Join two live ranges (this, and other) together.  This applies
499     /// mappings to the value numbers in the LHS/RHS ranges as specified.  If
500     /// the ranges are not joinable, this aborts.
501     void join(LiveRange &Other,
502               const int *ValNoAssignments,
503               const int *RHSValNoAssignments,
504               SmallVectorImpl<VNInfo *> &NewVNInfo);
505 
506     /// True iff this segment is a single segment that lies between the
507     /// specified boundaries, exclusively. Vregs live across a backedge are not
508     /// considered local. The boundaries are expected to lie within an extended
509     /// basic block, so vregs that are not live out should contain no holes.
510     bool isLocal(SlotIndex Start, SlotIndex End) const {
511       return beginIndex() > Start.getBaseIndex() &&
512         endIndex() < End.getBoundaryIndex();
513     }
514 
515     /// Remove the specified segment from this range.  Note that the segment
516     /// must be a single Segment in its entirety.
517     void removeSegment(SlotIndex Start, SlotIndex End,
518                        bool RemoveDeadValNo = false);
519 
520     void removeSegment(Segment S, bool RemoveDeadValNo = false) {
521       removeSegment(S.start, S.end, RemoveDeadValNo);
522     }
523 
524     /// Remove segment pointed to by iterator @p I from this range.
525     iterator removeSegment(iterator I, bool RemoveDeadValNo = false);
526 
527     /// Mark \p ValNo for deletion if no segments in this range use it.
528     void removeValNoIfDead(VNInfo *ValNo);
529 
530     /// Query Liveness at Idx.
531     /// The sub-instruction slot of Idx doesn't matter, only the instruction
532     /// it refers to is considered.
533     LiveQueryResult Query(SlotIndex Idx) const {
534       // Find the segment that enters the instruction.
535       const_iterator I = find(Idx.getBaseIndex());
536       const_iterator E = end();
537       if (I == E)
538         return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
539 
540       // Is this an instruction live-in segment?
541       // If Idx is the start index of a basic block, include live-in segments
542       // that start at Idx.getBaseIndex().
543       VNInfo *EarlyVal = nullptr;
544       VNInfo *LateVal  = nullptr;
545       SlotIndex EndPoint;
546       bool Kill = false;
547       if (I->start <= Idx.getBaseIndex()) {
548         EarlyVal = I->valno;
549         EndPoint = I->end;
550         // Move to the potentially live-out segment.
551         if (SlotIndex::isSameInstr(Idx, I->end)) {
552           Kill = true;
553           if (++I == E)
554             return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
555         }
556         // Special case: A PHIDef value can have its def in the middle of a
557         // segment if the value happens to be live out of the layout
558         // predecessor.
559         // Such a value is not live-in.
560         if (EarlyVal->def == Idx.getBaseIndex())
561           EarlyVal = nullptr;
562       }
563       // I now points to the segment that may be live-through, or defined by
564       // this instr. Ignore segments starting after the current instr.
565       if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
566         LateVal = I->valno;
567         EndPoint = I->end;
568       }
569       return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
570     }
571 
572     /// removeValNo - Remove all the segments defined by the specified value#.
573     /// Also remove the value# from value# list.
574     void removeValNo(VNInfo *ValNo);
575 
576     /// Returns true if the live range is zero length, i.e. no live segments
577     /// span instructions. It doesn't pay to spill such a range.
578     bool isZeroLength(SlotIndexes *Indexes) const {
579       for (const Segment &S : segments)
580         if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
581             S.end.getBaseIndex())
582           return false;
583       return true;
584     }
585 
586     // Returns true if any segment in the live range contains any of the
587     // provided slot indexes.  Slots which occur in holes between
588     // segments will not cause the function to return true.
589     bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
590 
591     bool operator<(const LiveRange& other) const {
592       const SlotIndex &thisIndex = beginIndex();
593       const SlotIndex &otherIndex = other.beginIndex();
594       return thisIndex < otherIndex;
595     }
596 
597     /// Returns true if there is an explicit "undef" between @p Begin
598     /// @p End.
599     bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
600                    SlotIndex End) const {
601       return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool {
602         return Begin <= Idx && Idx < End;
603       });
604     }
605 
606     /// Flush segment set into the regular segment vector.
607     /// The method is to be called after the live range
608     /// has been created, if use of the segment set was
609     /// activated in the constructor of the live range.
610     void flushSegmentSet();
611 
612     /// Stores indexes from the input index sequence R at which this LiveRange
613     /// is live to the output O iterator.
614     /// R is a range of _ascending sorted_ _random_ access iterators
615     /// to the input indexes. Indexes stored at O are ascending sorted so it
616     /// can be used directly in the subsequent search (for example for
617     /// subranges). Returns true if found at least one index.
618     template <typename Range, typename OutputIt>
619     bool findIndexesLiveAt(Range &&R, OutputIt O) const {
620       assert(llvm::is_sorted(R));
621       auto Idx = R.begin(), EndIdx = R.end();
622       auto Seg = segments.begin(), EndSeg = segments.end();
623       bool Found = false;
624       while (Idx != EndIdx && Seg != EndSeg) {
625         // if the Seg is lower find first segment that is above Idx using binary
626         // search
627         if (Seg->end <= *Idx) {
628           Seg = std::upper_bound(
629               ++Seg, EndSeg, *Idx,
630               [=](std::remove_reference_t<decltype(*Idx)> V,
631                   const std::remove_reference_t<decltype(*Seg)> &S) {
632                 return V < S.end;
633               });
634           if (Seg == EndSeg)
635             break;
636         }
637         auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
638         if (NotLessStart == EndIdx)
639           break;
640         auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
641         if (NotLessEnd != NotLessStart) {
642           Found = true;
643           O = std::copy(NotLessStart, NotLessEnd, O);
644         }
645         Idx = NotLessEnd;
646         ++Seg;
647       }
648       return Found;
649     }
650 
651     void print(raw_ostream &OS) const;
652     void dump() const;
653 
654     /// Walk the range and assert if any invariants fail to hold.
655     ///
656     /// Note that this is a no-op when asserts are disabled.
657 #ifdef NDEBUG
658     void verify() const {}
659 #else
660     void verify() const;
661 #endif
662 
663   protected:
664     /// Append a segment to the list of segments.
665     void append(const LiveRange::Segment S);
666 
667   private:
668     friend class LiveRangeUpdater;
669     void addSegmentToSet(Segment S);
670     void markValNoForDeletion(VNInfo *V);
671   };
672 
673   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
674     LR.print(OS);
675     return OS;
676   }
677 
678   /// LiveInterval - This class represents the liveness of a register,
679   /// or stack slot.
680   class LiveInterval : public LiveRange {
681   public:
682     using super = LiveRange;
683 
684     /// A live range for subregisters. The LaneMask specifies which parts of the
685     /// super register are covered by the interval.
686     /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
687     class SubRange : public LiveRange {
688     public:
689       SubRange *Next = nullptr;
690       LaneBitmask LaneMask;
691 
692       /// Constructs a new SubRange object.
693       SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
694 
695       /// Constructs a new SubRange object by copying liveness from @p Other.
696       SubRange(LaneBitmask LaneMask, const LiveRange &Other,
697                BumpPtrAllocator &Allocator)
698         : LiveRange(Other, Allocator), LaneMask(LaneMask) {}
699 
700       void print(raw_ostream &OS) const;
701       void dump() const;
702     };
703 
704   private:
705     SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
706                                    /// ranges.
707     const Register Reg; // the register or stack slot of this interval.
708     float Weight = 0.0; // weight of this interval
709 
710   public:
711     Register reg() const { return Reg; }
712     float weight() const { return Weight; }
713     void incrementWeight(float Inc) { Weight += Inc; }
714     void setWeight(float Value) { Weight = Value; }
715 
716     LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
717 
718     ~LiveInterval() {
719       clearSubRanges();
720     }
721 
722     template<typename T>
723     class SingleLinkedListIterator {
724       T *P;
725 
726     public:
727       SingleLinkedListIterator(T *P) : P(P) {}
728 
729       SingleLinkedListIterator<T> &operator++() {
730         P = P->Next;
731         return *this;
732       }
733       SingleLinkedListIterator<T> operator++(int) {
734         SingleLinkedListIterator res = *this;
735         ++*this;
736         return res;
737       }
738       bool operator!=(const SingleLinkedListIterator<T> &Other) const {
739         return P != Other.operator->();
740       }
741       bool operator==(const SingleLinkedListIterator<T> &Other) const {
742         return P == Other.operator->();
743       }
744       T &operator*() const {
745         return *P;
746       }
747       T *operator->() const {
748         return P;
749       }
750     };
751 
752     using subrange_iterator = SingleLinkedListIterator<SubRange>;
753     using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
754 
755     subrange_iterator subrange_begin() {
756       return subrange_iterator(SubRanges);
757     }
758     subrange_iterator subrange_end() {
759       return subrange_iterator(nullptr);
760     }
761 
762     const_subrange_iterator subrange_begin() const {
763       return const_subrange_iterator(SubRanges);
764     }
765     const_subrange_iterator subrange_end() const {
766       return const_subrange_iterator(nullptr);
767     }
768 
769     iterator_range<subrange_iterator> subranges() {
770       return make_range(subrange_begin(), subrange_end());
771     }
772 
773     iterator_range<const_subrange_iterator> subranges() const {
774       return make_range(subrange_begin(), subrange_end());
775     }
776 
777     /// Creates a new empty subregister live range. The range is added at the
778     /// beginning of the subrange list; subrange iterators stay valid.
779     SubRange *createSubRange(BumpPtrAllocator &Allocator,
780                              LaneBitmask LaneMask) {
781       SubRange *Range = new (Allocator) SubRange(LaneMask);
782       appendSubRange(Range);
783       return Range;
784     }
785 
786     /// Like createSubRange() but the new range is filled with a copy of the
787     /// liveness information in @p CopyFrom.
788     SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
789                                  LaneBitmask LaneMask,
790                                  const LiveRange &CopyFrom) {
791       SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
792       appendSubRange(Range);
793       return Range;
794     }
795 
796     /// Returns true if subregister liveness information is available.
797     bool hasSubRanges() const {
798       return SubRanges != nullptr;
799     }
800 
801     /// Removes all subregister liveness information.
802     void clearSubRanges();
803 
804     /// Removes all subranges without any segments (subranges without segments
805     /// are not considered valid and should only exist temporarily).
806     void removeEmptySubRanges();
807 
808     /// getSize - Returns the sum of sizes of all the LiveRange's.
809     ///
810     unsigned getSize() const;
811 
812     /// isSpillable - Can this interval be spilled?
813     bool isSpillable() const { return Weight != huge_valf; }
814 
815     /// markNotSpillable - Mark interval as not spillable
816     void markNotSpillable() { Weight = huge_valf; }
817 
818     /// For a given lane mask @p LaneMask, compute indexes at which the
819     /// lane is marked undefined by subregister <def,read-undef> definitions.
820     void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
821                                LaneBitmask LaneMask,
822                                const MachineRegisterInfo &MRI,
823                                const SlotIndexes &Indexes) const;
824 
825     /// Refines the subranges to support \p LaneMask. This may only be called
826     /// for LI.hasSubrange()==true. Subregister ranges are split or created
827     /// until \p LaneMask can be matched exactly. \p Mod is executed on the
828     /// matching subranges.
829     ///
830     /// Example:
831     ///    Given an interval with subranges with lanemasks L0F00, L00F0 and
832     ///    L000F, refining for mask L0018. Will split the L00F0 lane into
833     ///    L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
834     ///    function will be applied to the L0010 and L0008 subranges.
835     ///
836     /// \p Indexes and \p TRI are required to clean up the VNIs that
837     /// don't define the related lane masks after they get shrunk. E.g.,
838     /// when L000F gets split into L0007 and L0008 maybe only a subset
839     /// of the VNIs that defined L000F defines L0007.
840     ///
841     /// The clean up of the VNIs need to look at the actual instructions
842     /// to decide what is or is not live at a definition point. If the
843     /// update of the subranges occurs while the IR does not reflect these
844     /// changes, \p ComposeSubRegIdx can be used to specify how the
845     /// definition are going to be rewritten.
846     /// E.g., let say we want to merge:
847     ///     V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
848     /// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
849     /// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
850     /// Put differently we align V2's sub3 with V1's sub1:
851     /// V2: sub0 sub1 sub2 sub3
852     /// V1: <offset>  sub0 sub1
853     ///
854     /// This offset will look like a composed subregidx in the the class:
855     ///     V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
856     /// =>  V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
857     ///
858     /// Now if we didn't rewrite the uses and def of V1, all the checks for V1
859     /// need to account for this offset.
860     /// This happens during coalescing where we update the live-ranges while
861     /// still having the old IR around because updating the IR on-the-fly
862     /// would actually clobber some information on how the live-ranges that
863     /// are being updated look like.
864     void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
865                          std::function<void(LiveInterval::SubRange &)> Apply,
866                          const SlotIndexes &Indexes,
867                          const TargetRegisterInfo &TRI,
868                          unsigned ComposeSubRegIdx = 0);
869 
870     bool operator<(const LiveInterval& other) const {
871       const SlotIndex &thisIndex = beginIndex();
872       const SlotIndex &otherIndex = other.beginIndex();
873       return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg);
874     }
875 
876     void print(raw_ostream &OS) const;
877     void dump() const;
878 
879     /// Walks the interval and assert if any invariants fail to hold.
880     ///
881     /// Note that this is a no-op when asserts are disabled.
882 #ifdef NDEBUG
883     void verify(const MachineRegisterInfo *MRI = nullptr) const {}
884 #else
885     void verify(const MachineRegisterInfo *MRI = nullptr) const;
886 #endif
887 
888   private:
889     /// Appends @p Range to SubRanges list.
890     void appendSubRange(SubRange *Range) {
891       Range->Next = SubRanges;
892       SubRanges = Range;
893     }
894 
895     /// Free memory held by SubRange.
896     void freeSubRange(SubRange *S);
897   };
898 
899   inline raw_ostream &operator<<(raw_ostream &OS,
900                                  const LiveInterval::SubRange &SR) {
901     SR.print(OS);
902     return OS;
903   }
904 
905   inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
906     LI.print(OS);
907     return OS;
908   }
909 
910   raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
911 
912   inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
913     return V < S.start;
914   }
915 
916   inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
917     return S.start < V;
918   }
919 
920   /// Helper class for performant LiveRange bulk updates.
921   ///
922   /// Calling LiveRange::addSegment() repeatedly can be expensive on large
923   /// live ranges because segments after the insertion point may need to be
924   /// shifted. The LiveRangeUpdater class can defer the shifting when adding
925   /// many segments in order.
926   ///
927   /// The LiveRange will be in an invalid state until flush() is called.
928   class LiveRangeUpdater {
929     LiveRange *LR;
930     SlotIndex LastStart;
931     LiveRange::iterator WriteI;
932     LiveRange::iterator ReadI;
933     SmallVector<LiveRange::Segment, 16> Spills;
934     void mergeSpills();
935 
936   public:
937     /// Create a LiveRangeUpdater for adding segments to LR.
938     /// LR will temporarily be in an invalid state until flush() is called.
939     LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
940 
941     ~LiveRangeUpdater() { flush(); }
942 
943     /// Add a segment to LR and coalesce when possible, just like
944     /// LR.addSegment(). Segments should be added in increasing start order for
945     /// best performance.
946     void add(LiveRange::Segment);
947 
948     void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
949       add(LiveRange::Segment(Start, End, VNI));
950     }
951 
952     /// Return true if the LR is currently in an invalid state, and flush()
953     /// needs to be called.
954     bool isDirty() const { return LastStart.isValid(); }
955 
956     /// Flush the updater state to LR so it is valid and contains all added
957     /// segments.
958     void flush();
959 
960     /// Select a different destination live range.
961     void setDest(LiveRange *lr) {
962       if (LR != lr && isDirty())
963         flush();
964       LR = lr;
965     }
966 
967     /// Get the current destination live range.
968     LiveRange *getDest() const { return LR; }
969 
970     void dump() const;
971     void print(raw_ostream&) const;
972   };
973 
974   inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
975     X.print(OS);
976     return OS;
977   }
978 
979   /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
980   /// LiveInterval into equivalence clases of connected components. A
981   /// LiveInterval that has multiple connected components can be broken into
982   /// multiple LiveIntervals.
983   ///
984   /// Given a LiveInterval that may have multiple connected components, run:
985   ///
986   ///   unsigned numComps = ConEQ.Classify(LI);
987   ///   if (numComps > 1) {
988   ///     // allocate numComps-1 new LiveIntervals into LIS[1..]
989   ///     ConEQ.Distribute(LIS);
990   /// }
991 
992   class ConnectedVNInfoEqClasses {
993     LiveIntervals &LIS;
994     IntEqClasses EqClass;
995 
996   public:
997     explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
998 
999     /// Classify the values in \p LR into connected components.
1000     /// Returns the number of connected components.
1001     unsigned Classify(const LiveRange &LR);
1002 
1003     /// getEqClass - Classify creates equivalence classes numbered 0..N. Return
1004     /// the equivalence class assigned the VNI.
1005     unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
1006 
1007     /// Distribute values in \p LI into a separate LiveIntervals
1008     /// for each connected component. LIV must have an empty LiveInterval for
1009     /// each additional connected component. The first connected component is
1010     /// left in \p LI.
1011     void Distribute(LiveInterval &LI, LiveInterval *LIV[],
1012                     MachineRegisterInfo &MRI);
1013   };
1014 
1015 } // end namespace llvm
1016 
1017 #endif // LLVM_CODEGEN_LIVEINTERVAL_H
1018