1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveVariables analysis pass.  For each machine
10 // instruction in the function, this pass calculates the set of registers that
11 // are immediately dead after the instruction (i.e., the instruction calculates
12 // the value, but it is never used) and the set of registers that are used by
13 // the instruction, but are never used after the instruction (i.e., they are
14 // killed).
15 //
16 // This class computes live variables using a sparse implementation based on
17 // the machine code SSA form.  This class computes live variable information for
18 // each virtual and _register allocatable_ physical register in a function.  It
19 // uses the dominance properties of SSA form to efficiently compute live
20 // variables for virtual registers, and assumes that physical registers are only
21 // live within a single basic block (allowing it to do a single local analysis
22 // to resolve physical register lifetimes in each basic block).  If a physical
23 // register is not register allocatable, it is not tracked.  This is useful for
24 // things like the stack pointer and condition codes.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29 #define LLVM_CODEGEN_LIVEVARIABLES_H
30 
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/InitializePasses.h"
40 
41 namespace llvm {
42 
43 class MachineBasicBlock;
44 class MachineRegisterInfo;
45 
46 class LiveVariables : public MachineFunctionPass {
47 public:
48   static char ID; // Pass identification, replacement for typeid
49   LiveVariables() : MachineFunctionPass(ID) {
50     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
51   }
52 
53   /// VarInfo - This represents the regions where a virtual register is live in
54   /// the program.  We represent this with three different pieces of
55   /// information: the set of blocks in which the instruction is live
56   /// throughout, the set of blocks in which the instruction is actually used,
57   /// and the set of non-phi instructions that are the last users of the value.
58   ///
59   /// In the common case where a value is defined and killed in the same block,
60   /// There is one killing instruction, and AliveBlocks is empty.
61   ///
62   /// Otherwise, the value is live out of the block.  If the value is live
63   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
64   /// where the liveness range ends are not included in AliveBlocks, instead
65   /// being captured by the Kills set.  In these blocks, the value is live into
66   /// the block (unless the value is defined and killed in the same block) and
67   /// lives until the specified instruction.  Note that there cannot ever be a
68   /// value whose Kills set contains two instructions from the same basic block.
69   ///
70   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
71   /// value in one of its predecessor blocks, it is not listed in the kills set,
72   /// but does include the predecessor block in the AliveBlocks set (unless that
73   /// block also defines the value).  This leads to the (perfectly sensical)
74   /// situation where a value is defined in a block, and the last use is a phi
75   /// node in the successor.  In this case, AliveBlocks is empty (the value is
76   /// not live across any  blocks) and Kills is empty (phi nodes are not
77   /// included). This is sensical because the value must be live to the end of
78   /// the block, but is not live in any successor blocks.
79   struct VarInfo {
80     /// AliveBlocks - Set of blocks in which this value is alive completely
81     /// through.  This is a bit set which uses the basic block number as an
82     /// index.
83     ///
84     SparseBitVector<> AliveBlocks;
85 
86     /// Kills - List of MachineInstruction's which are the last use of this
87     /// virtual register (kill it) in their basic block.
88     ///
89     std::vector<MachineInstr*> Kills;
90 
91     /// removeKill - Delete a kill corresponding to the specified
92     /// machine instruction. Returns true if there was a kill
93     /// corresponding to this instruction, false otherwise.
94     bool removeKill(MachineInstr &MI) {
95       std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
96       if (I == Kills.end())
97         return false;
98       Kills.erase(I);
99       return true;
100     }
101 
102     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
103     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104 
105     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
106     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
107     /// MBB, it is not considered live in.
108     bool isLiveIn(const MachineBasicBlock &MBB, Register Reg,
109                   MachineRegisterInfo &MRI);
110 
111     void dump() const;
112   };
113 
114 private:
115   /// VirtRegInfo - This list is a mapping from virtual register number to
116   /// variable information.
117   ///
118   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
119 
120   /// PHIJoins - list of virtual registers that are PHI joins. These registers
121   /// may have multiple definitions, and they require special handling when
122   /// building live intervals.
123   SparseBitVector<> PHIJoins;
124 
125 private:   // Intermediate data structures
126   MachineFunction *MF;
127 
128   MachineRegisterInfo* MRI;
129 
130   const TargetRegisterInfo *TRI;
131 
132   // PhysRegInfo - Keep track of which instruction was the last def of a
133   // physical register. This is a purely local property, because all physical
134   // register references are presumed dead across basic blocks.
135   std::vector<MachineInstr *> PhysRegDef;
136 
137   // PhysRegInfo - Keep track of which instruction was the last use of a
138   // physical register. This is a purely local property, because all physical
139   // register references are presumed dead across basic blocks.
140   std::vector<MachineInstr *> PhysRegUse;
141 
142   std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
143 
144   // DistanceMap - Keep track the distance of a MI from the start of the
145   // current basic block.
146   DenseMap<MachineInstr*, unsigned> DistanceMap;
147 
148   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
149   /// uses. Pay special attention to the sub-register uses which may come below
150   /// the last use of the whole register.
151   bool HandlePhysRegKill(Register Reg, MachineInstr *MI);
152 
153   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
154   void HandleRegMask(const MachineOperand&);
155 
156   void HandlePhysRegUse(Register Reg, MachineInstr &MI);
157   void HandlePhysRegDef(Register Reg, MachineInstr *MI,
158                         SmallVectorImpl<unsigned> &Defs);
159   void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
160 
161   /// FindLastRefOrPartRef - Return the last reference or partial reference of
162   /// the specified register.
163   MachineInstr *FindLastRefOrPartRef(Register Reg);
164 
165   /// FindLastPartialDef - Return the last partial def of the specified
166   /// register. Also returns the sub-registers that're defined by the
167   /// instruction.
168   MachineInstr *FindLastPartialDef(Register Reg,
169                                    SmallSet<unsigned, 4> &PartDefRegs);
170 
171   /// analyzePHINodes - Gather information about the PHI nodes in here. In
172   /// particular, we want to map the variable information of a virtual
173   /// register which is used in a PHI node. We map that to the BB the vreg
174   /// is coming from.
175   void analyzePHINodes(const MachineFunction& Fn);
176 
177   void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
178 
179   void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
180 public:
181 
182   bool runOnMachineFunction(MachineFunction &MF) override;
183 
184   /// RegisterDefIsDead - Return true if the specified instruction defines the
185   /// specified register, but that definition is dead.
186   bool RegisterDefIsDead(MachineInstr &MI, Register Reg) const;
187 
188   //===--------------------------------------------------------------------===//
189   //  API to update live variable information
190 
191   /// Recompute liveness from scratch for a virtual register \p Reg that is
192   /// known to have a single def that dominates all uses. This can be useful
193   /// after removing some uses of \p Reg. It is not necessary for the whole
194   /// machine function to be in SSA form.
195   void recomputeForSingleDefVirtReg(Register Reg);
196 
197   /// replaceKillInstruction - Update register kill info by replacing a kill
198   /// instruction with a new one.
199   void replaceKillInstruction(Register Reg, MachineInstr &OldMI,
200                               MachineInstr &NewMI);
201 
202   /// addVirtualRegisterKilled - Add information about the fact that the
203   /// specified register is killed after being used by the specified
204   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
205   /// not found.
206   void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI,
207                                 bool AddIfNotFound = false) {
208     if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
209       getVarInfo(IncomingReg).Kills.push_back(&MI);
210   }
211 
212   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
213   /// register from the live variable information. Returns true if the
214   /// variable was marked as killed by the specified instruction,
215   /// false otherwise.
216   bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI) {
217     if (!getVarInfo(Reg).removeKill(MI))
218       return false;
219 
220     bool Removed = false;
221     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
222       MachineOperand &MO = MI.getOperand(i);
223       if (MO.isReg() && MO.isKill() && MO.getReg() == Reg) {
224         MO.setIsKill(false);
225         Removed = true;
226         break;
227       }
228     }
229 
230     assert(Removed && "Register is not used by this instruction!");
231     (void)Removed;
232     return true;
233   }
234 
235   /// removeVirtualRegistersKilled - Remove all killed info for the specified
236   /// instruction.
237   void removeVirtualRegistersKilled(MachineInstr &MI);
238 
239   /// addVirtualRegisterDead - Add information about the fact that the specified
240   /// register is dead after being used by the specified instruction. If
241   /// AddIfNotFound is true, add a implicit operand if it's not found.
242   void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI,
243                               bool AddIfNotFound = false) {
244     if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
245       getVarInfo(IncomingReg).Kills.push_back(&MI);
246   }
247 
248   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
249   /// register from the live variable information. Returns true if the
250   /// variable was marked dead at the specified instruction, false
251   /// otherwise.
252   bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI) {
253     if (!getVarInfo(Reg).removeKill(MI))
254       return false;
255 
256     bool Removed = false;
257     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
258       MachineOperand &MO = MI.getOperand(i);
259       if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
260         MO.setIsDead(false);
261         Removed = true;
262         break;
263       }
264     }
265     assert(Removed && "Register is not defined by this instruction!");
266     (void)Removed;
267     return true;
268   }
269 
270   void getAnalysisUsage(AnalysisUsage &AU) const override;
271 
272   void releaseMemory() override {
273     VirtRegInfo.clear();
274   }
275 
276   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
277   /// register.
278   VarInfo &getVarInfo(Register Reg);
279 
280   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
281                                MachineBasicBlock *BB);
282   void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock,
283                                MachineBasicBlock *BB,
284                                SmallVectorImpl<MachineBasicBlock *> &WorkList);
285 
286   void HandleVirtRegDef(Register reg, MachineInstr &MI);
287   void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI);
288 
289   bool isLiveIn(Register Reg, const MachineBasicBlock &MBB) {
290     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
291   }
292 
293   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
294   /// PHI nodes. This means that Reg is either killed by a successor block or
295   /// passed through one.
296   bool isLiveOut(Register Reg, const MachineBasicBlock &MBB);
297 
298   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
299   /// variables that are live out of DomBB and live into SuccBB will be marked
300   /// as passing live through BB. This method assumes that the machine code is
301   /// still in SSA form.
302   void addNewBlock(MachineBasicBlock *BB,
303                    MachineBasicBlock *DomBB,
304                    MachineBasicBlock *SuccBB);
305 
306   void addNewBlock(MachineBasicBlock *BB,
307                    MachineBasicBlock *DomBB,
308                    MachineBasicBlock *SuccBB,
309                    std::vector<SparseBitVector<>> &LiveInSets);
310 
311   /// isPHIJoin - Return true if Reg is a phi join register.
312   bool isPHIJoin(Register Reg) { return PHIJoins.test(Reg.id()); }
313 
314   /// setPHIJoin - Mark Reg as a phi join register.
315   void setPHIJoin(Register Reg) { PHIJoins.set(Reg.id()); }
316 };
317 
318 } // End llvm namespace
319 
320 #endif
321