1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveVariables analysis pass.  For each machine
10 // instruction in the function, this pass calculates the set of registers that
11 // are immediately dead after the instruction (i.e., the instruction calculates
12 // the value, but it is never used) and the set of registers that are used by
13 // the instruction, but are never used after the instruction (i.e., they are
14 // killed).
15 //
16 // This class computes live variables using a sparse implementation based on
17 // the machine code SSA form.  This class computes live variable information for
18 // each virtual and _register allocatable_ physical register in a function.  It
19 // uses the dominance properties of SSA form to efficiently compute live
20 // variables for virtual registers, and assumes that physical registers are only
21 // live within a single basic block (allowing it to do a single local analysis
22 // to resolve physical register lifetimes in each basic block).  If a physical
23 // register is not register allocatable, it is not tracked.  This is useful for
24 // things like the stack pointer and condition codes.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29 #define LLVM_CODEGEN_LIVEVARIABLES_H
30 
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/PassRegistry.h"
41 
42 namespace llvm {
43 
44 class MachineBasicBlock;
45 class MachineRegisterInfo;
46 
47 class LiveVariables : public MachineFunctionPass {
48 public:
49   static char ID; // Pass identification, replacement for typeid
50   LiveVariables() : MachineFunctionPass(ID) {
51     initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
52   }
53 
54   /// VarInfo - This represents the regions where a virtual register is live in
55   /// the program.  We represent this with three different pieces of
56   /// information: the set of blocks in which the instruction is live
57   /// throughout, the set of blocks in which the instruction is actually used,
58   /// and the set of non-phi instructions that are the last users of the value.
59   ///
60   /// In the common case where a value is defined and killed in the same block,
61   /// There is one killing instruction, and AliveBlocks is empty.
62   ///
63   /// Otherwise, the value is live out of the block.  If the value is live
64   /// throughout any blocks, these blocks are listed in AliveBlocks.  Blocks
65   /// where the liveness range ends are not included in AliveBlocks, instead
66   /// being captured by the Kills set.  In these blocks, the value is live into
67   /// the block (unless the value is defined and killed in the same block) and
68   /// lives until the specified instruction.  Note that there cannot ever be a
69   /// value whose Kills set contains two instructions from the same basic block.
70   ///
71   /// PHI nodes complicate things a bit.  If a PHI node is the last user of a
72   /// value in one of its predecessor blocks, it is not listed in the kills set,
73   /// but does include the predecessor block in the AliveBlocks set (unless that
74   /// block also defines the value).  This leads to the (perfectly sensical)
75   /// situation where a value is defined in a block, and the last use is a phi
76   /// node in the successor.  In this case, AliveBlocks is empty (the value is
77   /// not live across any  blocks) and Kills is empty (phi nodes are not
78   /// included). This is sensical because the value must be live to the end of
79   /// the block, but is not live in any successor blocks.
80   struct VarInfo {
81     /// AliveBlocks - Set of blocks in which this value is alive completely
82     /// through.  This is a bit set which uses the basic block number as an
83     /// index.
84     ///
85     SparseBitVector<> AliveBlocks;
86 
87     /// Kills - List of MachineInstruction's which are the last use of this
88     /// virtual register (kill it) in their basic block.
89     ///
90     std::vector<MachineInstr*> Kills;
91 
92     /// removeKill - Delete a kill corresponding to the specified
93     /// machine instruction. Returns true if there was a kill
94     /// corresponding to this instruction, false otherwise.
95     bool removeKill(MachineInstr &MI) {
96       std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
97       if (I == Kills.end())
98         return false;
99       Kills.erase(I);
100       return true;
101     }
102 
103     /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
104     MachineInstr *findKill(const MachineBasicBlock *MBB) const;
105 
106     /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
107     /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
108     /// MBB, it is not considered live in.
109     bool isLiveIn(const MachineBasicBlock &MBB, Register Reg,
110                   MachineRegisterInfo &MRI);
111 
112     void dump() const;
113   };
114 
115 private:
116   /// VirtRegInfo - This list is a mapping from virtual register number to
117   /// variable information.
118   ///
119   IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120 
121   /// PHIJoins - list of virtual registers that are PHI joins. These registers
122   /// may have multiple definitions, and they require special handling when
123   /// building live intervals.
124   SparseBitVector<> PHIJoins;
125 
126 private:   // Intermediate data structures
127   MachineFunction *MF;
128 
129   MachineRegisterInfo* MRI;
130 
131   const TargetRegisterInfo *TRI;
132 
133   // PhysRegInfo - Keep track of which instruction was the last def of a
134   // physical register. This is a purely local property, because all physical
135   // register references are presumed dead across basic blocks.
136   std::vector<MachineInstr *> PhysRegDef;
137 
138   // PhysRegInfo - Keep track of which instruction was the last use of a
139   // physical register. This is a purely local property, because all physical
140   // register references are presumed dead across basic blocks.
141   std::vector<MachineInstr *> PhysRegUse;
142 
143   std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144 
145   // DistanceMap - Keep track the distance of a MI from the start of the
146   // current basic block.
147   DenseMap<MachineInstr*, unsigned> DistanceMap;
148 
149   /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
150   /// uses. Pay special attention to the sub-register uses which may come below
151   /// the last use of the whole register.
152   bool HandlePhysRegKill(Register Reg, MachineInstr *MI);
153 
154   /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
155   void HandleRegMask(const MachineOperand&);
156 
157   void HandlePhysRegUse(Register Reg, MachineInstr &MI);
158   void HandlePhysRegDef(Register Reg, MachineInstr *MI,
159                         SmallVectorImpl<unsigned> &Defs);
160   void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161 
162   /// FindLastRefOrPartRef - Return the last reference or partial reference of
163   /// the specified register.
164   MachineInstr *FindLastRefOrPartRef(Register Reg);
165 
166   /// FindLastPartialDef - Return the last partial def of the specified
167   /// register. Also returns the sub-registers that're defined by the
168   /// instruction.
169   MachineInstr *FindLastPartialDef(Register Reg,
170                                    SmallSet<unsigned, 4> &PartDefRegs);
171 
172   /// analyzePHINodes - Gather information about the PHI nodes in here. In
173   /// particular, we want to map the variable information of a virtual
174   /// register which is used in a PHI node. We map that to the BB the vreg
175   /// is coming from.
176   void analyzePHINodes(const MachineFunction& Fn);
177 
178   void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179 
180   void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
181 public:
182 
183   bool runOnMachineFunction(MachineFunction &MF) override;
184 
185   /// RegisterDefIsDead - Return true if the specified instruction defines the
186   /// specified register, but that definition is dead.
187   bool RegisterDefIsDead(MachineInstr &MI, Register Reg) const;
188 
189   //===--------------------------------------------------------------------===//
190   //  API to update live variable information
191 
192   /// Recompute liveness from scratch for a virtual register \p Reg that is
193   /// known to have a single def that dominates all uses. This can be useful
194   /// after removing some uses of \p Reg. It is not necessary for the whole
195   /// machine function to be in SSA form.
196   void recomputeForSingleDefVirtReg(Register Reg);
197 
198   /// replaceKillInstruction - Update register kill info by replacing a kill
199   /// instruction with a new one.
200   void replaceKillInstruction(Register Reg, MachineInstr &OldMI,
201                               MachineInstr &NewMI);
202 
203   /// addVirtualRegisterKilled - Add information about the fact that the
204   /// specified register is killed after being used by the specified
205   /// instruction. If AddIfNotFound is true, add a implicit operand if it's
206   /// not found.
207   void addVirtualRegisterKilled(Register IncomingReg, MachineInstr &MI,
208                                 bool AddIfNotFound = false) {
209     if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
210       getVarInfo(IncomingReg).Kills.push_back(&MI);
211   }
212 
213   /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
214   /// register from the live variable information. Returns true if the
215   /// variable was marked as killed by the specified instruction,
216   /// false otherwise.
217   bool removeVirtualRegisterKilled(Register Reg, MachineInstr &MI) {
218     if (!getVarInfo(Reg).removeKill(MI))
219       return false;
220 
221     bool Removed = false;
222     for (MachineOperand &MO : MI.operands()) {
223       if (MO.isReg() && MO.isKill() && MO.getReg() == Reg) {
224         MO.setIsKill(false);
225         Removed = true;
226         break;
227       }
228     }
229 
230     assert(Removed && "Register is not used by this instruction!");
231     (void)Removed;
232     return true;
233   }
234 
235   /// removeVirtualRegistersKilled - Remove all killed info for the specified
236   /// instruction.
237   void removeVirtualRegistersKilled(MachineInstr &MI);
238 
239   /// addVirtualRegisterDead - Add information about the fact that the specified
240   /// register is dead after being used by the specified instruction. If
241   /// AddIfNotFound is true, add a implicit operand if it's not found.
242   void addVirtualRegisterDead(Register IncomingReg, MachineInstr &MI,
243                               bool AddIfNotFound = false) {
244     if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
245       getVarInfo(IncomingReg).Kills.push_back(&MI);
246   }
247 
248   /// removeVirtualRegisterDead - Remove the specified kill of the virtual
249   /// register from the live variable information. Returns true if the
250   /// variable was marked dead at the specified instruction, false
251   /// otherwise.
252   bool removeVirtualRegisterDead(Register Reg, MachineInstr &MI) {
253     if (!getVarInfo(Reg).removeKill(MI))
254       return false;
255 
256     bool Removed = false;
257     for (MachineOperand &MO : MI.operands()) {
258       if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) {
259         MO.setIsDead(false);
260         Removed = true;
261         break;
262       }
263     }
264     assert(Removed && "Register is not defined by this instruction!");
265     (void)Removed;
266     return true;
267   }
268 
269   void getAnalysisUsage(AnalysisUsage &AU) const override;
270 
271   void releaseMemory() override {
272     VirtRegInfo.clear();
273   }
274 
275   /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
276   /// register.
277   VarInfo &getVarInfo(Register Reg);
278 
279   void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
280                                MachineBasicBlock *BB);
281   void MarkVirtRegAliveInBlock(VarInfo &VRInfo, MachineBasicBlock *DefBlock,
282                                MachineBasicBlock *BB,
283                                SmallVectorImpl<MachineBasicBlock *> &WorkList);
284 
285   void HandleVirtRegDef(Register reg, MachineInstr &MI);
286   void HandleVirtRegUse(Register reg, MachineBasicBlock *MBB, MachineInstr &MI);
287 
288   bool isLiveIn(Register Reg, const MachineBasicBlock &MBB) {
289     return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
290   }
291 
292   /// isLiveOut - Determine if Reg is live out from MBB, when not considering
293   /// PHI nodes. This means that Reg is either killed by a successor block or
294   /// passed through one.
295   bool isLiveOut(Register Reg, const MachineBasicBlock &MBB);
296 
297   /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
298   /// variables that are live out of DomBB and live into SuccBB will be marked
299   /// as passing live through BB. This method assumes that the machine code is
300   /// still in SSA form.
301   void addNewBlock(MachineBasicBlock *BB,
302                    MachineBasicBlock *DomBB,
303                    MachineBasicBlock *SuccBB);
304 
305   void addNewBlock(MachineBasicBlock *BB,
306                    MachineBasicBlock *DomBB,
307                    MachineBasicBlock *SuccBB,
308                    std::vector<SparseBitVector<>> &LiveInSets);
309 
310   /// isPHIJoin - Return true if Reg is a phi join register.
311   bool isPHIJoin(Register Reg) { return PHIJoins.test(Reg.id()); }
312 
313   /// setPHIJoin - Mark Reg as a phi join register.
314   void setPHIJoin(Register Reg) { PHIJoins.set(Reg.id()); }
315 };
316 
317 } // End llvm namespace
318 
319 #endif
320