1 //===- ModuloSchedule.h - Software pipeline schedule expansion ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Software pipelining (SWP) is an instruction scheduling technique for loops
10 // that overlaps loop iterations and exploits ILP via compiler transformations.
11 //
12 // There are multiple methods for analyzing a loop and creating a schedule.
13 // An example algorithm is Swing Modulo Scheduling (implemented by the
14 // MachinePipeliner). The details of how a schedule is arrived at are irrelevant
15 // for the task of actually rewriting a loop to adhere to the schedule, which
16 // is what this file does.
17 //
18 // A schedule is, for every instruction in a block, a Cycle and a Stage. Note
19 // that we only support single-block loops, so "block" and "loop" can be used
20 // interchangably.
21 //
22 // The Cycle of an instruction defines a partial order of the instructions in
23 // the remapped loop. Instructions within a cycle must not consume the output
24 // of any instruction in the same cycle. Cycle information is assumed to have
25 // been calculated such that the processor will execute instructions in
26 // lock-step (for example in a VLIW ISA).
27 //
28 // The Stage of an instruction defines the mapping between logical loop
29 // iterations and pipelined loop iterations. An example (unrolled) pipeline
30 // may look something like:
31 //
32 //  I0[0]                      Execute instruction I0 of iteration 0
33 //  I1[0], I0[1]               Execute I0 of iteration 1 and I1 of iteration 1
34 //         I1[1], I0[2]
35 //                I1[2], I0[3]
36 //
37 // In the schedule for this unrolled sequence we would say that I0 was scheduled
38 // in stage 0 and I1 in stage 1:
39 //
40 //  loop:
41 //    [stage 0] x = I0
42 //    [stage 1] I1 x (from stage 0)
43 //
44 // And to actually generate valid code we must insert a phi:
45 //
46 //  loop:
47 //    x' = phi(x)
48 //    x = I0
49 //    I1 x'
50 //
51 // This is a simple example; the rules for how to generate correct code given
52 // an arbitrary schedule containing loop-carried values are complex.
53 //
54 // Note that these examples only mention the steady-state kernel of the
55 // generated loop; prologs and epilogs must be generated also that prime and
56 // flush the pipeline. Doing so is nontrivial.
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #ifndef LLVM_CODEGEN_MODULOSCHEDULE_H
61 #define LLVM_CODEGEN_MODULOSCHEDULE_H
62 
63 #include "llvm/CodeGen/MachineFunction.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/TargetInstrInfo.h"
67 #include "llvm/CodeGen/TargetSubtargetInfo.h"
68 #include <deque>
69 #include <vector>
70 
71 namespace llvm {
72 class MachineBasicBlock;
73 class MachineInstr;
74 class LiveIntervals;
75 
76 /// Represents a schedule for a single-block loop. For every instruction we
77 /// maintain a Cycle and Stage.
78 class ModuloSchedule {
79 private:
80   /// The block containing the loop instructions.
81   MachineLoop *Loop;
82 
83   /// The instructions to be generated, in total order. Cycle provides a partial
84   /// order; the total order within cycles has been decided by the schedule
85   /// producer.
86   std::vector<MachineInstr *> ScheduledInstrs;
87 
88   /// The cycle for each instruction.
89   DenseMap<MachineInstr *, int> Cycle;
90 
91   /// The stage for each instruction.
92   DenseMap<MachineInstr *, int> Stage;
93 
94   /// The number of stages in this schedule (Max(Stage) + 1).
95   int NumStages;
96 
97 public:
98   /// Create a new ModuloSchedule.
99   /// \arg ScheduledInstrs The new loop instructions, in total resequenced
100   ///    order.
101   /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does
102   ///    not need to start at zero. ScheduledInstrs must be partially ordered by
103   ///    Cycle.
104   /// \arg Stage Stage index for all instructions in ScheduleInstrs.
105   ModuloSchedule(MachineFunction &MF, MachineLoop *Loop,
106                  std::vector<MachineInstr *> ScheduledInstrs,
107                  DenseMap<MachineInstr *, int> Cycle,
108                  DenseMap<MachineInstr *, int> Stage)
109       : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)),
110         Stage(std::move(Stage)) {
111     NumStages = 0;
112     for (auto &KV : this->Stage)
113       NumStages = std::max(NumStages, KV.second);
114     ++NumStages;
115   }
116 
117   /// Return the single-block loop being scheduled.
118   MachineLoop *getLoop() const { return Loop; }
119 
120   /// Return the number of stages contained in this schedule, which is the
121   /// largest stage index + 1.
122   int getNumStages() const { return NumStages; }
123 
124   /// Return the first cycle in the schedule, which is the cycle index of the
125   /// first instruction.
126   int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; }
127 
128   /// Return the final cycle in the schedule, which is the cycle index of the
129   /// last instruction.
130   int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; }
131 
132   /// Return the stage that MI is scheduled in, or -1.
133   int getStage(MachineInstr *MI) {
134     auto I = Stage.find(MI);
135     return I == Stage.end() ? -1 : I->second;
136   }
137 
138   /// Return the cycle that MI is scheduled at, or -1.
139   int getCycle(MachineInstr *MI) {
140     auto I = Cycle.find(MI);
141     return I == Cycle.end() ? -1 : I->second;
142   }
143 
144   /// Set the stage of a newly created instruction.
145   void setStage(MachineInstr *MI, int MIStage) {
146     assert(Stage.count(MI) == 0);
147     Stage[MI] = MIStage;
148   }
149 
150   /// Return the rescheduled instructions in order.
151   ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; }
152 
153   void dump() { print(dbgs()); }
154   void print(raw_ostream &OS);
155 };
156 
157 /// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place,
158 /// rewriting the old loop and inserting prologs and epilogs as required.
159 class ModuloScheduleExpander {
160 public:
161   using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>;
162 
163 private:
164   using ValueMapTy = DenseMap<unsigned, unsigned>;
165   using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
166   using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
167 
168   ModuloSchedule &Schedule;
169   MachineFunction &MF;
170   const TargetSubtargetInfo &ST;
171   MachineRegisterInfo &MRI;
172   const TargetInstrInfo *TII;
173   LiveIntervals &LIS;
174 
175   MachineBasicBlock *BB;
176   MachineBasicBlock *Preheader;
177   MachineBasicBlock *NewKernel = nullptr;
178   std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
179 
180   /// Map for each register and the max difference between its uses and def.
181   /// The first element in the pair is the max difference in stages. The
182   /// second is true if the register defines a Phi value and loop value is
183   /// scheduled before the Phi.
184   std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
185 
186   /// Instructions to change when emitting the final schedule.
187   InstrChangesTy InstrChanges;
188 
189   void generatePipelinedLoop();
190   void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB,
191                       ValueMapTy *VRMap, MBBVectorTy &PrologBBs);
192   void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB,
193                       ValueMapTy *VRMap, MBBVectorTy &EpilogBBs,
194                       MBBVectorTy &PrologBBs);
195   void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
196                             MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
197                             ValueMapTy *VRMap, InstrMapTy &InstrMap,
198                             unsigned LastStageNum, unsigned CurStageNum,
199                             bool IsLast);
200   void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
201                     MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
202                     ValueMapTy *VRMap, InstrMapTy &InstrMap,
203                     unsigned LastStageNum, unsigned CurStageNum, bool IsLast);
204   void removeDeadInstructions(MachineBasicBlock *KernelBB,
205                               MBBVectorTy &EpilogBBs);
206   void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs);
207   void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs,
208                    MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
209                    ValueMapTy *VRMap);
210   bool computeDelta(MachineInstr &MI, unsigned &Delta);
211   void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
212                          unsigned Num);
213   MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
214                            unsigned InstStageNum);
215   MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
216                                     unsigned InstStageNum);
217   void updateInstruction(MachineInstr *NewMI, bool LastDef,
218                          unsigned CurStageNum, unsigned InstrStageNum,
219                          ValueMapTy *VRMap);
220   MachineInstr *findDefInLoop(unsigned Reg);
221   unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
222                          unsigned LoopStage, ValueMapTy *VRMap,
223                          MachineBasicBlock *BB);
224   void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
225                         ValueMapTy *VRMap, InstrMapTy &InstrMap);
226   void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap,
227                              unsigned CurStageNum, unsigned PhiNum,
228                              MachineInstr *Phi, unsigned OldReg,
229                              unsigned NewReg, unsigned PrevReg = 0);
230   bool isLoopCarried(MachineInstr &Phi);
231 
232   /// Return the max. number of stages/iterations that can occur between a
233   /// register definition and its uses.
234   unsigned getStagesForReg(int Reg, unsigned CurStage) {
235     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
236     if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 &&
237         Stages.second)
238       return 1;
239     return Stages.first;
240   }
241 
242   /// The number of stages for a Phi is a little different than other
243   /// instructions. The minimum value computed in RegToStageDiff is 1
244   /// because we assume the Phi is needed for at least 1 iteration.
245   /// This is not the case if the loop value is scheduled prior to the
246   /// Phi in the same stage.  This function returns the number of stages
247   /// or iterations needed between the Phi definition and any uses.
248   unsigned getStagesForPhi(int Reg) {
249     std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
250     if (Stages.second)
251       return Stages.first;
252     return Stages.first - 1;
253   }
254 
255 public:
256   /// Create a new ModuloScheduleExpander.
257   /// \arg InstrChanges Modifications to make to instructions with memory
258   ///   operands.
259   /// FIXME: InstrChanges is opaque and is an implementation detail of an
260   ///   optimization in MachinePipeliner that crosses abstraction boundaries.
261   ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
262                          LiveIntervals &LIS, InstrChangesTy InstrChanges)
263       : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
264         TII(ST.getInstrInfo()), LIS(LIS),
265         InstrChanges(std::move(InstrChanges)) {}
266 
267   /// Performs the actual expansion.
268   void expand();
269   /// Performs final cleanup after expansion.
270   void cleanup();
271 
272   /// Returns the newly rewritten kernel block, or nullptr if this was
273   /// optimized away.
274   MachineBasicBlock *getRewrittenKernel() { return NewKernel; }
275 };
276 
277 /// A reimplementation of ModuloScheduleExpander. It works by generating a
278 /// standalone kernel loop and peeling out the prologs and epilogs.
279 class PeelingModuloScheduleExpander {
280 public:
281   PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S,
282                                 LiveIntervals *LIS)
283       : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()),
284         TII(ST.getInstrInfo()), LIS(LIS) {}
285 
286   void expand();
287 
288   /// Runs ModuloScheduleExpander and treats it as a golden input to validate
289   /// aspects of the code generated by PeelingModuloScheduleExpander.
290   void validateAgainstModuloScheduleExpander();
291 
292 protected:
293   ModuloSchedule &Schedule;
294   MachineFunction &MF;
295   const TargetSubtargetInfo &ST;
296   MachineRegisterInfo &MRI;
297   const TargetInstrInfo *TII;
298   LiveIntervals *LIS;
299 
300   /// The original loop block that gets rewritten in-place.
301   MachineBasicBlock *BB;
302   /// The original loop preheader.
303   MachineBasicBlock *Preheader;
304   /// All prolog and epilog blocks.
305   SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs;
306   /// For every block, the stages that are produced.
307   DenseMap<MachineBasicBlock *, BitVector> LiveStages;
308   /// For every block, the stages that are available. A stage can be available
309   /// but not produced (in the epilog) or produced but not available (in the
310   /// prolog).
311   DenseMap<MachineBasicBlock *, BitVector> AvailableStages;
312   /// When peeling the epilogue keep track of the distance between the phi
313   /// nodes and the kernel.
314   DenseMap<MachineInstr *, unsigned> PhiNodeLoopIteration;
315 
316   /// CanonicalMIs and BlockMIs form a bidirectional map between any of the
317   /// loop kernel clones.
318   DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs;
319   DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *>
320       BlockMIs;
321 
322   /// State passed from peelKernel to peelPrologAndEpilogs().
323   std::deque<MachineBasicBlock *> PeeledFront, PeeledBack;
324   /// Illegal phis that need to be deleted once we re-link stages.
325   SmallVector<MachineInstr *, 4> IllegalPhisToDelete;
326 
327   /// Converts BB from the original loop body to the rewritten, pipelined
328   /// steady-state.
329   void rewriteKernel();
330 
331   /// Peels one iteration of the rewritten kernel (BB) in the specified
332   /// direction.
333   MachineBasicBlock *peelKernel(LoopPeelDirection LPD);
334   // Delete instructions whose stage is less than MinStage in the given basic
335   // block.
336   void filterInstructions(MachineBasicBlock *MB, int MinStage);
337   // Move instructions of the given stage from sourceBB to DestBB. Remap the phi
338   // instructions to keep a valid IR.
339   void moveStageBetweenBlocks(MachineBasicBlock *DestBB,
340                               MachineBasicBlock *SourceBB, unsigned Stage);
341   /// Peel the kernel forwards and backwards to produce prologs and epilogs,
342   /// and stitch them together.
343   void peelPrologAndEpilogs();
344   /// All prolog and epilog blocks are clones of the kernel, so any produced
345   /// register in one block has an corollary in all other blocks.
346   Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB);
347   /// Change all users of MI, if MI is predicated out
348   /// (LiveStages[MI->getParent()] == false).
349   void rewriteUsesOf(MachineInstr *MI);
350   /// Insert branches between prologs, kernel and epilogs.
351   void fixupBranches();
352   /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block
353   /// to a block dominated by all prologs and epilogs. This allows us to treat
354   /// the loop exiting block as any other kernel clone.
355   MachineBasicBlock *CreateLCSSAExitingBlock();
356   /// Helper to get the stage of an instruction in the schedule.
357   unsigned getStage(MachineInstr *MI) {
358     if (CanonicalMIs.count(MI))
359       MI = CanonicalMIs[MI];
360     return Schedule.getStage(MI);
361   }
362   /// Helper function to find the right canonical register for a phi instruction
363   /// coming from a peeled out prologue.
364   Register getPhiCanonicalReg(MachineInstr* CanonicalPhi, MachineInstr* Phi);
365   /// Target loop info before kernel peeling.
366   std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo;
367 };
368 
369 /// Expander that simply annotates each scheduled instruction with a post-instr
370 /// symbol that can be consumed by the ModuloScheduleTest pass.
371 ///
372 /// The post-instr symbol is a way of annotating an instruction that can be
373 /// roundtripped in MIR. The syntax is:
374 ///   MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5>
375 class ModuloScheduleTestAnnotater {
376   MachineFunction &MF;
377   ModuloSchedule &S;
378 
379 public:
380   ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S)
381       : MF(MF), S(S) {}
382 
383   /// Performs the annotation.
384   void annotate();
385 };
386 
387 } // end namespace llvm
388 
389 #endif // LLVM_CODEGEN_MODULOSCHEDULE_H
390