1 //===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF)
10 // for a non-SSA program representation (e.g. post-RA machine code).
11 //
12 //
13 // *** Introduction
14 //
15 // The RDF graph is a collection of nodes, each of which denotes some element
16 // of the program. There are two main types of such elements: code and refe-
17 // rences. Conceptually, "code" is something that represents the structure
18 // of the program, e.g. basic block or a statement, while "reference" is an
19 // instance of accessing a register, e.g. a definition or a use. Nodes are
20 // connected with each other based on the structure of the program (such as
21 // blocks, instructions, etc.), and based on the data flow (e.g. reaching
22 // definitions, reached uses, etc.). The single-reaching-definition principle
23 // of SSA is generally observed, although, due to the non-SSA representation
24 // of the program, there are some differences between the graph and a "pure"
25 // SSA representation.
26 //
27 //
28 // *** Implementation remarks
29 //
30 // Since the graph can contain a large number of nodes, memory consumption
31 // was one of the major design considerations. As a result, there is a single
32 // base class NodeBase which defines all members used by all possible derived
33 // classes. The members are arranged in a union, and a derived class cannot
34 // add any data members of its own. Each derived class only defines the
35 // functional interface, i.e. member functions. NodeBase must be a POD,
36 // which implies that all of its members must also be PODs.
37 // Since nodes need to be connected with other nodes, pointers have been
38 // replaced with 32-bit identifiers: each node has an id of type NodeId.
39 // There are mapping functions in the graph that translate between actual
40 // memory addresses and the corresponding identifiers.
41 // A node id of 0 is equivalent to nullptr.
42 //
43 //
44 // *** Structure of the graph
45 //
46 // A code node is always a collection of other nodes. For example, a code
47 // node corresponding to a basic block will contain code nodes corresponding
48 // to instructions. In turn, a code node corresponding to an instruction will
49 // contain a list of reference nodes that correspond to the definitions and
50 // uses of registers in that instruction. The members are arranged into a
51 // circular list, which is yet another consequence of the effort to save
52 // memory: for each member node it should be possible to obtain its owner,
53 // and it should be possible to access all other members. There are other
54 // ways to accomplish that, but the circular list seemed the most natural.
55 //
56 // +- CodeNode -+
57 // |            | <---------------------------------------------------+
58 // +-+--------+-+                                                     |
59 //   |FirstM  |LastM                                                  |
60 //   |        +-------------------------------------+                 |
61 //   |                                              |                 |
62 //   V                                              V                 |
63 //  +----------+ Next +----------+ Next       Next +----------+ Next  |
64 //  |          |----->|          |-----> ... ----->|          |----->-+
65 //  +- Member -+      +- Member -+                 +- Member -+
66 //
67 // The order of members is such that related reference nodes (see below)
68 // should be contiguous on the member list.
69 //
70 // A reference node is a node that encapsulates an access to a register,
71 // in other words, data flowing into or out of a register. There are two
72 // major kinds of reference nodes: defs and uses. A def node will contain
73 // the id of the first reached use, and the id of the first reached def.
74 // Each def and use will contain the id of the reaching def, and also the
75 // id of the next reached def (for def nodes) or use (for use nodes).
76 // The "next node sharing the same reaching def" is denoted as "sibling".
77 // In summary:
78 // - Def node contains: reaching def, sibling, first reached def, and first
79 // reached use.
80 // - Use node contains: reaching def and sibling.
81 //
82 // +-- DefNode --+
83 // | R2 = ...    | <---+--------------------+
84 // ++---------+--+     |                    |
85 //  |Reached  |Reached |                    |
86 //  |Def      |Use     |                    |
87 //  |         |        |Reaching            |Reaching
88 //  |         V        |Def                 |Def
89 //  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
90 //  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
91 //  |      +-------------+      +-------------+
92 //  V
93 // +-- DefNode --+ Sib
94 // | R2 = ...    |----> ...
95 // ++---------+--+
96 //  |         |
97 //  |         |
98 // ...       ...
99 //
100 // To get a full picture, the circular lists connecting blocks within a
101 // function, instructions within a block, etc. should be superimposed with
102 // the def-def, def-use links shown above.
103 // To illustrate this, consider a small example in a pseudo-assembly:
104 // foo:
105 //   add r2, r0, r1   ; r2 = r0+r1
106 //   addi r0, r2, 1   ; r0 = r2+1
107 //   ret r0           ; return value in r0
108 //
109 // The graph (in a format used by the debugging functions) would look like:
110 //
111 //   DFG dump:[
112 //   f1: Function foo
113 //   b2: === %bb.0 === preds(0), succs(0):
114 //   p3: phi [d4<r0>(,d12,u9):]
115 //   p5: phi [d6<r1>(,,u10):]
116 //   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
117 //   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
118 //   s14: ret [u15<r0>(d12):]
119 //   ]
120 //
121 // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
122 // kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
123 // ment, d - def, u - use).
124 // The format of a def node is:
125 //   dN<R>(rd,d,u):sib,
126 // where
127 //   N   - numeric node id,
128 //   R   - register being defined
129 //   rd  - reaching def,
130 //   d   - reached def,
131 //   u   - reached use,
132 //   sib - sibling.
133 // The format of a use node is:
134 //   uN<R>[!](rd):sib,
135 // where
136 //   N   - numeric node id,
137 //   R   - register being used,
138 //   rd  - reaching def,
139 //   sib - sibling.
140 // Possible annotations (usually preceding the node id):
141 //   +   - preserving def,
142 //   ~   - clobbering def,
143 //   "   - shadow ref (follows the node id),
144 //   !   - fixed register (appears after register name).
145 //
146 // The circular lists are not explicit in the dump.
147 //
148 //
149 // *** Node attributes
150 //
151 // NodeBase has a member "Attrs", which is the primary way of determining
152 // the node's characteristics. The fields in this member decide whether
153 // the node is a code node or a reference node (i.e. node's "type"), then
154 // within each type, the "kind" determines what specifically this node
155 // represents. The remaining bits, "flags", contain additional information
156 // that is even more detailed than the "kind".
157 // CodeNode's kinds are:
158 // - Phi:   Phi node, members are reference nodes.
159 // - Stmt:  Statement, members are reference nodes.
160 // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
161 // - Func:  The whole function. The members are basic block nodes.
162 // RefNode's kinds are:
163 // - Use.
164 // - Def.
165 //
166 // Meaning of flags:
167 // - Preserving: applies only to defs. A preserving def is one that can
168 //   preserve some of the original bits among those that are included in
169 //   the register associated with that def. For example, if R0 is a 32-bit
170 //   register, but a def can only change the lower 16 bits, then it will
171 //   be marked as preserving.
172 // - Shadow: a reference that has duplicates holding additional reaching
173 //   defs (see more below).
174 // - Clobbering: applied only to defs, indicates that the value generated
175 //   by this def is unspecified. A typical example would be volatile registers
176 //   after function calls.
177 // - Fixed: the register in this def/use cannot be replaced with any other
178 //   register. A typical case would be a parameter register to a call, or
179 //   the register with the return value from a function.
180 // - Undef: the register in this reference the register is assumed to have
181 //   no pre-existing value, even if it appears to be reached by some def.
182 //   This is typically used to prevent keeping registers artificially live
183 //   in cases when they are defined via predicated instructions. For example:
184 //     r0 = add-if-true cond, r10, r11                (1)
185 //     r0 = add-if-false cond, r12, r13, implicit r0  (2)
186 //     ... = r0                                       (3)
187 //   Before (1), r0 is not intended to be live, and the use of r0 in (3) is
188 //   not meant to be reached by any def preceding (1). However, since the
189 //   defs in (1) and (2) are both preserving, these properties alone would
190 //   imply that the use in (3) may indeed be reached by some prior def.
191 //   Adding Undef flag to the def in (1) prevents that. The Undef flag
192 //   may be applied to both defs and uses.
193 // - Dead: applies only to defs. The value coming out of a "dead" def is
194 //   assumed to be unused, even if the def appears to be reaching other defs
195 //   or uses. The motivation for this flag comes from dead defs on function
196 //   calls: there is no way to determine if such a def is dead without
197 //   analyzing the target's ABI. Hence the graph should contain this info,
198 //   as it is unavailable otherwise. On the other hand, a def without any
199 //   uses on a typical instruction is not the intended target for this flag.
200 //
201 // *** Shadow references
202 //
203 // It may happen that a super-register can have two (or more) non-overlapping
204 // sub-registers. When both of these sub-registers are defined and followed
205 // by a use of the super-register, the use of the super-register will not
206 // have a unique reaching def: both defs of the sub-registers need to be
207 // accounted for. In such cases, a duplicate use of the super-register is
208 // added and it points to the extra reaching def. Both uses are marked with
209 // a flag "shadow". Example:
210 // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
211 //   set r0, 1        ; r0 = 1
212 //   set r1, 1        ; r1 = 1
213 //   addi t1, t0, 1   ; t1 = t0+1
214 //
215 // The DFG:
216 //   s1: set [d2<r0>(,,u9):]
217 //   s3: set [d4<r1>(,,u10):]
218 //   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
219 //
220 // The statement s5 has two use nodes for t0: u7" and u9". The quotation
221 // mark " indicates that the node is a shadow.
222 //
223 
224 #ifndef LLVM_CODEGEN_RDFGRAPH_H
225 #define LLVM_CODEGEN_RDFGRAPH_H
226 
227 #include "RDFRegisters.h"
228 #include "llvm/ADT/SmallVector.h"
229 #include "llvm/MC/LaneBitmask.h"
230 #include "llvm/Support/Allocator.h"
231 #include "llvm/Support/MathExtras.h"
232 #include <cassert>
233 #include <cstdint>
234 #include <cstring>
235 #include <map>
236 #include <memory>
237 #include <set>
238 #include <unordered_map>
239 #include <utility>
240 #include <vector>
241 
242 // RDF uses uint32_t to refer to registers. This is to ensure that the type
243 // size remains specific. In other places, registers are often stored using
244 // unsigned.
245 static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
246 
247 namespace llvm {
248 
249 class MachineBasicBlock;
250 class MachineDominanceFrontier;
251 class MachineDominatorTree;
252 class MachineFunction;
253 class MachineInstr;
254 class MachineOperand;
255 class raw_ostream;
256 class TargetInstrInfo;
257 class TargetRegisterInfo;
258 
259 namespace rdf {
260 
261   using NodeId = uint32_t;
262 
263   struct DataFlowGraph;
264 
265   struct NodeAttrs {
266     enum : uint16_t {
267       None          = 0x0000,   // Nothing
268 
269       // Types: 2 bits
270       TypeMask      = 0x0003,
271       Code          = 0x0001,   // 01, Container
272       Ref           = 0x0002,   // 10, Reference
273 
274       // Kind: 3 bits
275       KindMask      = 0x0007 << 2,
276       Def           = 0x0001 << 2,  // 001
277       Use           = 0x0002 << 2,  // 010
278       Phi           = 0x0003 << 2,  // 011
279       Stmt          = 0x0004 << 2,  // 100
280       Block         = 0x0005 << 2,  // 101
281       Func          = 0x0006 << 2,  // 110
282 
283       // Flags: 7 bits for now
284       FlagMask      = 0x007F << 5,
285       Shadow        = 0x0001 << 5,  // 0000001, Has extra reaching defs.
286       Clobbering    = 0x0002 << 5,  // 0000010, Produces unspecified values.
287       PhiRef        = 0x0004 << 5,  // 0000100, Member of PhiNode.
288       Preserving    = 0x0008 << 5,  // 0001000, Def can keep original bits.
289       Fixed         = 0x0010 << 5,  // 0010000, Fixed register.
290       Undef         = 0x0020 << 5,  // 0100000, Has no pre-existing value.
291       Dead          = 0x0040 << 5,  // 1000000, Does not define a value.
292     };
293 
294     static uint16_t type(uint16_t T)  { return T & TypeMask; }
295     static uint16_t kind(uint16_t T)  { return T & KindMask; }
296     static uint16_t flags(uint16_t T) { return T & FlagMask; }
297 
298     static uint16_t set_type(uint16_t A, uint16_t T) {
299       return (A & ~TypeMask) | T;
300     }
301 
302     static uint16_t set_kind(uint16_t A, uint16_t K) {
303       return (A & ~KindMask) | K;
304     }
305 
306     static uint16_t set_flags(uint16_t A, uint16_t F) {
307       return (A & ~FlagMask) | F;
308     }
309 
310     // Test if A contains B.
311     static bool contains(uint16_t A, uint16_t B) {
312       if (type(A) != Code)
313         return false;
314       uint16_t KB = kind(B);
315       switch (kind(A)) {
316         case Func:
317           return KB == Block;
318         case Block:
319           return KB == Phi || KB == Stmt;
320         case Phi:
321         case Stmt:
322           return type(B) == Ref;
323       }
324       return false;
325     }
326   };
327 
328   struct BuildOptions {
329     enum : unsigned {
330       None          = 0x00,
331       KeepDeadPhis  = 0x01,   // Do not remove dead phis during build.
332     };
333   };
334 
335   template <typename T> struct NodeAddr {
336     NodeAddr() = default;
337     NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
338 
339     // Type cast (casting constructor). The reason for having this class
340     // instead of std::pair.
341     template <typename S> NodeAddr(const NodeAddr<S> &NA)
342       : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
343 
344     bool operator== (const NodeAddr<T> &NA) const {
345       assert((Addr == NA.Addr) == (Id == NA.Id));
346       return Addr == NA.Addr;
347     }
348     bool operator!= (const NodeAddr<T> &NA) const {
349       return !operator==(NA);
350     }
351 
352     T Addr = nullptr;
353     NodeId Id = 0;
354   };
355 
356   struct NodeBase;
357 
358   // Fast memory allocation and translation between node id and node address.
359   // This is really the same idea as the one underlying the "bump pointer
360   // allocator", the difference being in the translation. A node id is
361   // composed of two components: the index of the block in which it was
362   // allocated, and the index within the block. With the default settings,
363   // where the number of nodes per block is 4096, the node id (minus 1) is:
364   //
365   // bit position:                11             0
366   // +----------------------------+--------------+
367   // | Index of the block         |Index in block|
368   // +----------------------------+--------------+
369   //
370   // The actual node id is the above plus 1, to avoid creating a node id of 0.
371   //
372   // This method significantly improved the build time, compared to using maps
373   // (std::unordered_map or DenseMap) to translate between pointers and ids.
374   struct NodeAllocator {
375     // Amount of storage for a single node.
376     enum { NodeMemSize = 32 };
377 
378     NodeAllocator(uint32_t NPB = 4096)
379         : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
380           IndexMask((1 << BitsPerIndex)-1) {
381       assert(isPowerOf2_32(NPB));
382     }
383 
384     NodeBase *ptr(NodeId N) const {
385       uint32_t N1 = N-1;
386       uint32_t BlockN = N1 >> BitsPerIndex;
387       uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
388       return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
389     }
390 
391     NodeId id(const NodeBase *P) const;
392     NodeAddr<NodeBase*> New();
393     void clear();
394 
395   private:
396     void startNewBlock();
397     bool needNewBlock();
398 
399     uint32_t makeId(uint32_t Block, uint32_t Index) const {
400       // Add 1 to the id, to avoid the id of 0, which is treated as "null".
401       return ((Block << BitsPerIndex) | Index) + 1;
402     }
403 
404     const uint32_t NodesPerBlock;
405     const uint32_t BitsPerIndex;
406     const uint32_t IndexMask;
407     char *ActiveEnd = nullptr;
408     std::vector<char*> Blocks;
409     using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
410     AllocatorTy MemPool;
411   };
412 
413   using RegisterSet = std::set<RegisterRef>;
414 
415   struct TargetOperandInfo {
416     TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
417     virtual ~TargetOperandInfo() = default;
418 
419     virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
420     virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
421     virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
422 
423     const TargetInstrInfo &TII;
424   };
425 
426   // Packed register reference. Only used for storage.
427   struct PackedRegisterRef {
428     RegisterId Reg;
429     uint32_t MaskId;
430   };
431 
432   struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
433     LaneMaskIndex() = default;
434 
435     LaneBitmask getLaneMaskForIndex(uint32_t K) const {
436       return K == 0 ? LaneBitmask::getAll() : get(K);
437     }
438 
439     uint32_t getIndexForLaneMask(LaneBitmask LM) {
440       assert(LM.any());
441       return LM.all() ? 0 : insert(LM);
442     }
443 
444     uint32_t getIndexForLaneMask(LaneBitmask LM) const {
445       assert(LM.any());
446       return LM.all() ? 0 : find(LM);
447     }
448   };
449 
450   struct NodeBase {
451   public:
452     // Make sure this is a POD.
453     NodeBase() = default;
454 
455     uint16_t getType()  const { return NodeAttrs::type(Attrs); }
456     uint16_t getKind()  const { return NodeAttrs::kind(Attrs); }
457     uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
458     NodeId   getNext()  const { return Next; }
459 
460     uint16_t getAttrs() const { return Attrs; }
461     void setAttrs(uint16_t A) { Attrs = A; }
462     void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
463 
464     // Insert node NA after "this" in the circular chain.
465     void append(NodeAddr<NodeBase*> NA);
466 
467     // Initialize all members to 0.
468     void init() { memset(this, 0, sizeof *this); }
469 
470     void setNext(NodeId N) { Next = N; }
471 
472   protected:
473     uint16_t Attrs;
474     uint16_t Reserved;
475     NodeId Next;                // Id of the next node in the circular chain.
476     // Definitions of nested types. Using anonymous nested structs would make
477     // this class definition clearer, but unnamed structs are not a part of
478     // the standard.
479     struct Def_struct  {
480       NodeId DD, DU;          // Ids of the first reached def and use.
481     };
482     struct PhiU_struct  {
483       NodeId PredB;           // Id of the predecessor block for a phi use.
484     };
485     struct Code_struct {
486       void *CP;               // Pointer to the actual code.
487       NodeId FirstM, LastM;   // Id of the first member and last.
488     };
489     struct Ref_struct {
490       NodeId RD, Sib;         // Ids of the reaching def and the sibling.
491       union {
492         Def_struct Def;
493         PhiU_struct PhiU;
494       };
495       union {
496         MachineOperand *Op;   // Non-phi refs point to a machine operand.
497         PackedRegisterRef PR; // Phi refs store register info directly.
498       };
499     };
500 
501     // The actual payload.
502     union {
503       Ref_struct Ref;
504       Code_struct Code;
505     };
506   };
507   // The allocator allocates chunks of 32 bytes for each node. The fact that
508   // each node takes 32 bytes in memory is used for fast translation between
509   // the node id and the node address.
510   static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
511         "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
512 
513   using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
514   using NodeSet = std::set<NodeId>;
515 
516   struct RefNode : public NodeBase {
517     RefNode() = default;
518 
519     RegisterRef getRegRef(const DataFlowGraph &G) const;
520 
521     MachineOperand &getOp() {
522       assert(!(getFlags() & NodeAttrs::PhiRef));
523       return *Ref.Op;
524     }
525 
526     void setRegRef(RegisterRef RR, DataFlowGraph &G);
527     void setRegRef(MachineOperand *Op, DataFlowGraph &G);
528 
529     NodeId getReachingDef() const {
530       return Ref.RD;
531     }
532     void setReachingDef(NodeId RD) {
533       Ref.RD = RD;
534     }
535 
536     NodeId getSibling() const {
537       return Ref.Sib;
538     }
539     void setSibling(NodeId Sib) {
540       Ref.Sib = Sib;
541     }
542 
543     bool isUse() const {
544       assert(getType() == NodeAttrs::Ref);
545       return getKind() == NodeAttrs::Use;
546     }
547 
548     bool isDef() const {
549       assert(getType() == NodeAttrs::Ref);
550       return getKind() == NodeAttrs::Def;
551     }
552 
553     template <typename Predicate>
554     NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
555         const DataFlowGraph &G);
556     NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
557   };
558 
559   struct DefNode : public RefNode {
560     NodeId getReachedDef() const {
561       return Ref.Def.DD;
562     }
563     void setReachedDef(NodeId D) {
564       Ref.Def.DD = D;
565     }
566     NodeId getReachedUse() const {
567       return Ref.Def.DU;
568     }
569     void setReachedUse(NodeId U) {
570       Ref.Def.DU = U;
571     }
572 
573     void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
574   };
575 
576   struct UseNode : public RefNode {
577     void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
578   };
579 
580   struct PhiUseNode : public UseNode {
581     NodeId getPredecessor() const {
582       assert(getFlags() & NodeAttrs::PhiRef);
583       return Ref.PhiU.PredB;
584     }
585     void setPredecessor(NodeId B) {
586       assert(getFlags() & NodeAttrs::PhiRef);
587       Ref.PhiU.PredB = B;
588     }
589   };
590 
591   struct CodeNode : public NodeBase {
592     template <typename T> T getCode() const {
593       return static_cast<T>(Code.CP);
594     }
595     void setCode(void *C) {
596       Code.CP = C;
597     }
598 
599     NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
600     NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
601     void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
602     void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
603         const DataFlowGraph &G);
604     void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
605 
606     NodeList members(const DataFlowGraph &G) const;
607     template <typename Predicate>
608     NodeList members_if(Predicate P, const DataFlowGraph &G) const;
609   };
610 
611   struct InstrNode : public CodeNode {
612     NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
613   };
614 
615   struct PhiNode : public InstrNode {
616     MachineInstr *getCode() const {
617       return nullptr;
618     }
619   };
620 
621   struct StmtNode : public InstrNode {
622     MachineInstr *getCode() const {
623       return CodeNode::getCode<MachineInstr*>();
624     }
625   };
626 
627   struct BlockNode : public CodeNode {
628     MachineBasicBlock *getCode() const {
629       return CodeNode::getCode<MachineBasicBlock*>();
630     }
631 
632     void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
633   };
634 
635   struct FuncNode : public CodeNode {
636     MachineFunction *getCode() const {
637       return CodeNode::getCode<MachineFunction*>();
638     }
639 
640     NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
641         const DataFlowGraph &G) const;
642     NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
643   };
644 
645   struct DataFlowGraph {
646     DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
647         const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
648         const MachineDominanceFrontier &mdf);
649     DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
650         const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
651         const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
652 
653     NodeBase *ptr(NodeId N) const;
654     template <typename T> T ptr(NodeId N) const {
655       return static_cast<T>(ptr(N));
656     }
657 
658     NodeId id(const NodeBase *P) const;
659 
660     template <typename T> NodeAddr<T> addr(NodeId N) const {
661       return { ptr<T>(N), N };
662     }
663 
664     NodeAddr<FuncNode*> getFunc() const { return Func; }
665     MachineFunction &getMF() const { return MF; }
666     const TargetInstrInfo &getTII() const { return TII; }
667     const TargetRegisterInfo &getTRI() const { return TRI; }
668     const PhysicalRegisterInfo &getPRI() const { return PRI; }
669     const MachineDominatorTree &getDT() const { return MDT; }
670     const MachineDominanceFrontier &getDF() const { return MDF; }
671     const RegisterAggr &getLiveIns() const { return LiveIns; }
672 
673     struct DefStack {
674       DefStack() = default;
675 
676       bool empty() const { return Stack.empty() || top() == bottom(); }
677 
678     private:
679       using value_type = NodeAddr<DefNode *>;
680       struct Iterator {
681         using value_type = DefStack::value_type;
682 
683         Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
684         Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
685 
686         value_type operator*() const {
687           assert(Pos >= 1);
688           return DS.Stack[Pos-1];
689         }
690         const value_type *operator->() const {
691           assert(Pos >= 1);
692           return &DS.Stack[Pos-1];
693         }
694         bool operator==(const Iterator &It) const { return Pos == It.Pos; }
695         bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
696 
697       private:
698         friend struct DefStack;
699 
700         Iterator(const DefStack &S, bool Top);
701 
702         // Pos-1 is the index in the StorageType object that corresponds to
703         // the top of the DefStack.
704         const DefStack &DS;
705         unsigned Pos;
706       };
707 
708     public:
709       using iterator = Iterator;
710 
711       iterator top() const { return Iterator(*this, true); }
712       iterator bottom() const { return Iterator(*this, false); }
713       unsigned size() const;
714 
715       void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
716       void pop();
717       void start_block(NodeId N);
718       void clear_block(NodeId N);
719 
720     private:
721       friend struct Iterator;
722 
723       using StorageType = std::vector<value_type>;
724 
725       bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
726         return (P.Addr == nullptr) && (N == 0 || P.Id == N);
727       }
728 
729       unsigned nextUp(unsigned P) const;
730       unsigned nextDown(unsigned P) const;
731 
732       StorageType Stack;
733     };
734 
735     // Make this std::unordered_map for speed of accessing elements.
736     // Map: Register (physical or virtual) -> DefStack
737     using DefStackMap = std::unordered_map<RegisterId, DefStack>;
738 
739     void build(unsigned Options = BuildOptions::None);
740     void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
741     void markBlock(NodeId B, DefStackMap &DefM);
742     void releaseBlock(NodeId B, DefStackMap &DefM);
743 
744     PackedRegisterRef pack(RegisterRef RR) {
745       return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
746     }
747     PackedRegisterRef pack(RegisterRef RR) const {
748       return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
749     }
750     RegisterRef unpack(PackedRegisterRef PR) const {
751       return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
752     }
753 
754     RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
755     RegisterRef makeRegRef(const MachineOperand &Op) const;
756 
757     NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
758         NodeAddr<RefNode*> RA) const;
759     NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
760         NodeAddr<RefNode*> RA, bool Create);
761     NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
762         NodeAddr<RefNode*> RA) const;
763 
764     NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
765         NodeAddr<RefNode*> RA) const;
766 
767     NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
768       return BlockNodes.at(BB);
769     }
770 
771     void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
772       unlinkUseDF(UA);
773       if (RemoveFromOwner)
774         removeFromOwner(UA);
775     }
776 
777     void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
778       unlinkDefDF(DA);
779       if (RemoveFromOwner)
780         removeFromOwner(DA);
781     }
782 
783     // Some useful filters.
784     template <uint16_t Kind>
785     static bool IsRef(const NodeAddr<NodeBase*> BA) {
786       return BA.Addr->getType() == NodeAttrs::Ref &&
787              BA.Addr->getKind() == Kind;
788     }
789 
790     template <uint16_t Kind>
791     static bool IsCode(const NodeAddr<NodeBase*> BA) {
792       return BA.Addr->getType() == NodeAttrs::Code &&
793              BA.Addr->getKind() == Kind;
794     }
795 
796     static bool IsDef(const NodeAddr<NodeBase*> BA) {
797       return BA.Addr->getType() == NodeAttrs::Ref &&
798              BA.Addr->getKind() == NodeAttrs::Def;
799     }
800 
801     static bool IsUse(const NodeAddr<NodeBase*> BA) {
802       return BA.Addr->getType() == NodeAttrs::Ref &&
803              BA.Addr->getKind() == NodeAttrs::Use;
804     }
805 
806     static bool IsPhi(const NodeAddr<NodeBase*> BA) {
807       return BA.Addr->getType() == NodeAttrs::Code &&
808              BA.Addr->getKind() == NodeAttrs::Phi;
809     }
810 
811     static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
812       uint16_t Flags = DA.Addr->getFlags();
813       return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
814     }
815 
816   private:
817     void reset();
818 
819     RegisterSet getLandingPadLiveIns() const;
820 
821     NodeAddr<NodeBase*> newNode(uint16_t Attrs);
822     NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
823     NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
824         MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
825     NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
826         RegisterRef RR, NodeAddr<BlockNode*> PredB,
827         uint16_t Flags = NodeAttrs::PhiRef);
828     NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
829         MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
830     NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
831         RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
832     NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
833     NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
834         MachineInstr *MI);
835     NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
836         MachineBasicBlock *BB);
837     NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
838 
839     template <typename Predicate>
840     std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
841     locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
842         Predicate P) const;
843 
844     using BlockRefsMap = std::map<NodeId, RegisterSet>;
845 
846     void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
847     void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
848     void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
849         NodeAddr<BlockNode*> BA);
850     void removeUnusedPhis();
851 
852     void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
853     void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
854     template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
855         NodeAddr<T> TA, DefStack &DS);
856     template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
857         NodeAddr<StmtNode*> SA, Predicate P);
858     void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
859 
860     void unlinkUseDF(NodeAddr<UseNode*> UA);
861     void unlinkDefDF(NodeAddr<DefNode*> DA);
862 
863     void removeFromOwner(NodeAddr<RefNode*> RA) {
864       NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
865       IA.Addr->removeMember(RA, *this);
866     }
867 
868     // Default TOI object, if not given in the constructor.
869     std::unique_ptr<TargetOperandInfo> DefaultTOI;
870 
871     MachineFunction &MF;
872     const TargetInstrInfo &TII;
873     const TargetRegisterInfo &TRI;
874     const PhysicalRegisterInfo PRI;
875     const MachineDominatorTree &MDT;
876     const MachineDominanceFrontier &MDF;
877     const TargetOperandInfo &TOI;
878 
879     RegisterAggr LiveIns;
880     NodeAddr<FuncNode*> Func;
881     NodeAllocator Memory;
882     // Local map:  MachineBasicBlock -> NodeAddr<BlockNode*>
883     std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
884     // Lane mask map.
885     LaneMaskIndex LMI;
886   };  // struct DataFlowGraph
887 
888   template <typename Predicate>
889   NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
890         bool NextOnly, const DataFlowGraph &G) {
891     // Get the "Next" reference in the circular list that references RR and
892     // satisfies predicate "Pred".
893     auto NA = G.addr<NodeBase*>(getNext());
894 
895     while (NA.Addr != this) {
896       if (NA.Addr->getType() == NodeAttrs::Ref) {
897         NodeAddr<RefNode*> RA = NA;
898         if (RA.Addr->getRegRef(G) == RR && P(NA))
899           return NA;
900         if (NextOnly)
901           break;
902         NA = G.addr<NodeBase*>(NA.Addr->getNext());
903       } else {
904         // We've hit the beginning of the chain.
905         assert(NA.Addr->getType() == NodeAttrs::Code);
906         NodeAddr<CodeNode*> CA = NA;
907         NA = CA.Addr->getFirstMember(G);
908       }
909     }
910     // Return the equivalent of "nullptr" if such a node was not found.
911     return NodeAddr<RefNode*>();
912   }
913 
914   template <typename Predicate>
915   NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
916     NodeList MM;
917     auto M = getFirstMember(G);
918     if (M.Id == 0)
919       return MM;
920 
921     while (M.Addr != this) {
922       if (P(M))
923         MM.push_back(M);
924       M = G.addr<NodeBase*>(M.Addr->getNext());
925     }
926     return MM;
927   }
928 
929   template <typename T>
930   struct Print {
931     Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
932 
933     const T &Obj;
934     const DataFlowGraph &G;
935   };
936 
937   template <typename T> Print(const T &, const DataFlowGraph &) -> Print<T>;
938 
939   template <typename T>
940   struct PrintNode : Print<NodeAddr<T>> {
941     PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
942       : Print<NodeAddr<T>>(x, g) {}
943   };
944 
945   raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
946   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
947   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P);
948   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P);
949   raw_ostream &operator<<(raw_ostream &OS,
950                           const Print<NodeAddr<PhiUseNode *>> &P);
951   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P);
952   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
953   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
954   raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P);
955   raw_ostream &operator<<(raw_ostream &OS,
956                           const Print<NodeAddr<StmtNode *>> &P);
957   raw_ostream &operator<<(raw_ostream &OS,
958                           const Print<NodeAddr<InstrNode *>> &P);
959   raw_ostream &operator<<(raw_ostream &OS,
960                           const Print<NodeAddr<BlockNode *>> &P);
961   raw_ostream &operator<<(raw_ostream &OS,
962                           const Print<NodeAddr<FuncNode *>> &P);
963   raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
964   raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
965   raw_ostream &operator<<(raw_ostream &OS,
966                           const Print<DataFlowGraph::DefStack> &P);
967 
968 } // end namespace rdf
969 
970 } // end namespace llvm
971 
972 #endif // LLVM_CODEGEN_RDFGRAPH_H
973