1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/Register.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/Support/AlignOf.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <climits>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <iterator>
54 #include <string>
55 #include <tuple>
56 
57 namespace llvm {
58 
59 class APInt;
60 class Constant;
61 template <typename T> struct DenseMapInfo;
62 class GlobalValue;
63 class MachineBasicBlock;
64 class MachineConstantPoolValue;
65 class MCSymbol;
66 class raw_ostream;
67 class SDNode;
68 class SelectionDAG;
69 class Type;
70 class Value;
71 
72 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73                     bool force = false);
74 
75 /// This represents a list of ValueType's that has been intern'd by
76 /// a SelectionDAG.  Instances of this simple value class are returned by
77 /// SelectionDAG::getVTList(...).
78 ///
79 struct SDVTList {
80   const EVT *VTs;
81   unsigned int NumVTs;
82 };
83 
84 namespace ISD {
85 
86   /// Node predicates
87 
88 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89 /// same constant or undefined, return true and return the constant value in
90 /// \p SplatValue.
91 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92 
93 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95 /// true, it only checks BUILD_VECTOR.
96 bool isConstantSplatVectorAllOnes(const SDNode *N,
97                                   bool BuildVectorOnly = false);
98 
99 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101 /// only checks BUILD_VECTOR.
102 bool isConstantSplatVectorAllZeros(const SDNode *N,
103                                    bool BuildVectorOnly = false);
104 
105 /// Return true if the specified node is a BUILD_VECTOR where all of the
106 /// elements are ~0 or undef.
107 bool isBuildVectorAllOnes(const SDNode *N);
108 
109 /// Return true if the specified node is a BUILD_VECTOR where all of the
110 /// elements are 0 or undef.
111 bool isBuildVectorAllZeros(const SDNode *N);
112 
113 /// Return true if the specified node is a BUILD_VECTOR node of all
114 /// ConstantSDNode or undef.
115 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116 
117 /// Return true if the specified node is a BUILD_VECTOR node of all
118 /// ConstantFPSDNode or undef.
119 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120 
121 /// Return true if the node has at least one operand and all operands of the
122 /// specified node are ISD::UNDEF.
123 bool allOperandsUndef(const SDNode *N);
124 
125 } // end namespace ISD
126 
127 //===----------------------------------------------------------------------===//
128 /// Unlike LLVM values, Selection DAG nodes may return multiple
129 /// values as the result of a computation.  Many nodes return multiple values,
130 /// from loads (which define a token and a return value) to ADDC (which returns
131 /// a result and a carry value), to calls (which may return an arbitrary number
132 /// of values).
133 ///
134 /// As such, each use of a SelectionDAG computation must indicate the node that
135 /// computes it as well as which return value to use from that node.  This pair
136 /// of information is represented with the SDValue value type.
137 ///
138 class SDValue {
139   friend struct DenseMapInfo<SDValue>;
140 
141   SDNode *Node = nullptr; // The node defining the value we are using.
142   unsigned ResNo = 0;     // Which return value of the node we are using.
143 
144 public:
145   SDValue() = default;
146   SDValue(SDNode *node, unsigned resno);
147 
148   /// get the index which selects a specific result in the SDNode
149   unsigned getResNo() const { return ResNo; }
150 
151   /// get the SDNode which holds the desired result
152   SDNode *getNode() const { return Node; }
153 
154   /// set the SDNode
155   void setNode(SDNode *N) { Node = N; }
156 
157   inline SDNode *operator->() const { return Node; }
158 
159   bool operator==(const SDValue &O) const {
160     return Node == O.Node && ResNo == O.ResNo;
161   }
162   bool operator!=(const SDValue &O) const {
163     return !operator==(O);
164   }
165   bool operator<(const SDValue &O) const {
166     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167   }
168   explicit operator bool() const {
169     return Node != nullptr;
170   }
171 
172   SDValue getValue(unsigned R) const {
173     return SDValue(Node, R);
174   }
175 
176   /// Return true if this node is an operand of N.
177   bool isOperandOf(const SDNode *N) const;
178 
179   /// Return the ValueType of the referenced return value.
180   inline EVT getValueType() const;
181 
182   /// Return the simple ValueType of the referenced return value.
183   MVT getSimpleValueType() const {
184     return getValueType().getSimpleVT();
185   }
186 
187   /// Returns the size of the value in bits.
188   ///
189   /// If the value type is a scalable vector type, the scalable property will
190   /// be set and the runtime size will be a positive integer multiple of the
191   /// base size.
192   TypeSize getValueSizeInBits() const {
193     return getValueType().getSizeInBits();
194   }
195 
196   uint64_t getScalarValueSizeInBits() const {
197     return getValueType().getScalarType().getFixedSizeInBits();
198   }
199 
200   // Forwarding methods - These forward to the corresponding methods in SDNode.
201   inline unsigned getOpcode() const;
202   inline unsigned getNumOperands() const;
203   inline const SDValue &getOperand(unsigned i) const;
204   inline uint64_t getConstantOperandVal(unsigned i) const;
205   inline const APInt &getConstantOperandAPInt(unsigned i) const;
206   inline bool isTargetMemoryOpcode() const;
207   inline bool isTargetOpcode() const;
208   inline bool isMachineOpcode() const;
209   inline bool isUndef() const;
210   inline unsigned getMachineOpcode() const;
211   inline const DebugLoc &getDebugLoc() const;
212   inline void dump() const;
213   inline void dump(const SelectionDAG *G) const;
214   inline void dumpr() const;
215   inline void dumpr(const SelectionDAG *G) const;
216 
217   /// Return true if this operand (which must be a chain) reaches the
218   /// specified operand without crossing any side-effecting instructions.
219   /// In practice, this looks through token factors and non-volatile loads.
220   /// In order to remain efficient, this only
221   /// looks a couple of nodes in, it does not do an exhaustive search.
222   bool reachesChainWithoutSideEffects(SDValue Dest,
223                                       unsigned Depth = 2) const;
224 
225   /// Return true if there are no nodes using value ResNo of Node.
226   inline bool use_empty() const;
227 
228   /// Return true if there is exactly one node using value ResNo of Node.
229   inline bool hasOneUse() const;
230 };
231 
232 template<> struct DenseMapInfo<SDValue> {
233   static inline SDValue getEmptyKey() {
234     SDValue V;
235     V.ResNo = -1U;
236     return V;
237   }
238 
239   static inline SDValue getTombstoneKey() {
240     SDValue V;
241     V.ResNo = -2U;
242     return V;
243   }
244 
245   static unsigned getHashValue(const SDValue &Val) {
246     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248   }
249 
250   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251     return LHS == RHS;
252   }
253 };
254 
255 /// Allow casting operators to work directly on
256 /// SDValues as if they were SDNode*'s.
257 template<> struct simplify_type<SDValue> {
258   using SimpleType = SDNode *;
259 
260   static SimpleType getSimplifiedValue(SDValue &Val) {
261     return Val.getNode();
262   }
263 };
264 template<> struct simplify_type<const SDValue> {
265   using SimpleType = /*const*/ SDNode *;
266 
267   static SimpleType getSimplifiedValue(const SDValue &Val) {
268     return Val.getNode();
269   }
270 };
271 
272 /// Represents a use of a SDNode. This class holds an SDValue,
273 /// which records the SDNode being used and the result number, a
274 /// pointer to the SDNode using the value, and Next and Prev pointers,
275 /// which link together all the uses of an SDNode.
276 ///
277 class SDUse {
278   /// Val - The value being used.
279   SDValue Val;
280   /// User - The user of this value.
281   SDNode *User = nullptr;
282   /// Prev, Next - Pointers to the uses list of the SDNode referred by
283   /// this operand.
284   SDUse **Prev = nullptr;
285   SDUse *Next = nullptr;
286 
287 public:
288   SDUse() = default;
289   SDUse(const SDUse &U) = delete;
290   SDUse &operator=(const SDUse &) = delete;
291 
292   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293   operator const SDValue&() const { return Val; }
294 
295   /// If implicit conversion to SDValue doesn't work, the get() method returns
296   /// the SDValue.
297   const SDValue &get() const { return Val; }
298 
299   /// This returns the SDNode that contains this Use.
300   SDNode *getUser() { return User; }
301 
302   /// Get the next SDUse in the use list.
303   SDUse *getNext() const { return Next; }
304 
305   /// Convenience function for get().getNode().
306   SDNode *getNode() const { return Val.getNode(); }
307   /// Convenience function for get().getResNo().
308   unsigned getResNo() const { return Val.getResNo(); }
309   /// Convenience function for get().getValueType().
310   EVT getValueType() const { return Val.getValueType(); }
311 
312   /// Convenience function for get().operator==
313   bool operator==(const SDValue &V) const {
314     return Val == V;
315   }
316 
317   /// Convenience function for get().operator!=
318   bool operator!=(const SDValue &V) const {
319     return Val != V;
320   }
321 
322   /// Convenience function for get().operator<
323   bool operator<(const SDValue &V) const {
324     return Val < V;
325   }
326 
327 private:
328   friend class SelectionDAG;
329   friend class SDNode;
330   // TODO: unfriend HandleSDNode once we fix its operand handling.
331   friend class HandleSDNode;
332 
333   void setUser(SDNode *p) { User = p; }
334 
335   /// Remove this use from its existing use list, assign it the
336   /// given value, and add it to the new value's node's use list.
337   inline void set(const SDValue &V);
338   /// Like set, but only supports initializing a newly-allocated
339   /// SDUse with a non-null value.
340   inline void setInitial(const SDValue &V);
341   /// Like set, but only sets the Node portion of the value,
342   /// leaving the ResNo portion unmodified.
343   inline void setNode(SDNode *N);
344 
345   void addToList(SDUse **List) {
346     Next = *List;
347     if (Next) Next->Prev = &Next;
348     Prev = List;
349     *List = this;
350   }
351 
352   void removeFromList() {
353     *Prev = Next;
354     if (Next) Next->Prev = Prev;
355   }
356 };
357 
358 /// simplify_type specializations - Allow casting operators to work directly on
359 /// SDValues as if they were SDNode*'s.
360 template<> struct simplify_type<SDUse> {
361   using SimpleType = SDNode *;
362 
363   static SimpleType getSimplifiedValue(SDUse &Val) {
364     return Val.getNode();
365   }
366 };
367 
368 /// These are IR-level optimization flags that may be propagated to SDNodes.
369 /// TODO: This data structure should be shared by the IR optimizer and the
370 /// the backend.
371 struct SDNodeFlags {
372 private:
373   bool NoUnsignedWrap : 1;
374   bool NoSignedWrap : 1;
375   bool Exact : 1;
376   bool NoNaNs : 1;
377   bool NoInfs : 1;
378   bool NoSignedZeros : 1;
379   bool AllowReciprocal : 1;
380   bool AllowContract : 1;
381   bool ApproximateFuncs : 1;
382   bool AllowReassociation : 1;
383 
384   // We assume instructions do not raise floating-point exceptions by default,
385   // and only those marked explicitly may do so.  We could choose to represent
386   // this via a positive "FPExcept" flags like on the MI level, but having a
387   // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388   // intersection logic more straightforward.
389   bool NoFPExcept : 1;
390 
391 public:
392   /// Default constructor turns off all optimization flags.
393   SDNodeFlags()
394       : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395         NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396         AllowContract(false), ApproximateFuncs(false),
397         AllowReassociation(false), NoFPExcept(false) {}
398 
399   /// Propagate the fast-math-flags from an IR FPMathOperator.
400   void copyFMF(const FPMathOperator &FPMO) {
401     setNoNaNs(FPMO.hasNoNaNs());
402     setNoInfs(FPMO.hasNoInfs());
403     setNoSignedZeros(FPMO.hasNoSignedZeros());
404     setAllowReciprocal(FPMO.hasAllowReciprocal());
405     setAllowContract(FPMO.hasAllowContract());
406     setApproximateFuncs(FPMO.hasApproxFunc());
407     setAllowReassociation(FPMO.hasAllowReassoc());
408   }
409 
410   // These are mutators for each flag.
411   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413   void setExact(bool b) { Exact = b; }
414   void setNoNaNs(bool b) { NoNaNs = b; }
415   void setNoInfs(bool b) { NoInfs = b; }
416   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418   void setAllowContract(bool b) { AllowContract = b; }
419   void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420   void setAllowReassociation(bool b) { AllowReassociation = b; }
421   void setNoFPExcept(bool b) { NoFPExcept = b; }
422 
423   // These are accessors for each flag.
424   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425   bool hasNoSignedWrap() const { return NoSignedWrap; }
426   bool hasExact() const { return Exact; }
427   bool hasNoNaNs() const { return NoNaNs; }
428   bool hasNoInfs() const { return NoInfs; }
429   bool hasNoSignedZeros() const { return NoSignedZeros; }
430   bool hasAllowReciprocal() const { return AllowReciprocal; }
431   bool hasAllowContract() const { return AllowContract; }
432   bool hasApproximateFuncs() const { return ApproximateFuncs; }
433   bool hasAllowReassociation() const { return AllowReassociation; }
434   bool hasNoFPExcept() const { return NoFPExcept; }
435 
436   /// Clear any flags in this flag set that aren't also set in Flags. All
437   /// flags will be cleared if Flags are undefined.
438   void intersectWith(const SDNodeFlags Flags) {
439     NoUnsignedWrap &= Flags.NoUnsignedWrap;
440     NoSignedWrap &= Flags.NoSignedWrap;
441     Exact &= Flags.Exact;
442     NoNaNs &= Flags.NoNaNs;
443     NoInfs &= Flags.NoInfs;
444     NoSignedZeros &= Flags.NoSignedZeros;
445     AllowReciprocal &= Flags.AllowReciprocal;
446     AllowContract &= Flags.AllowContract;
447     ApproximateFuncs &= Flags.ApproximateFuncs;
448     AllowReassociation &= Flags.AllowReassociation;
449     NoFPExcept &= Flags.NoFPExcept;
450   }
451 };
452 
453 /// Represents one node in the SelectionDAG.
454 ///
455 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456 private:
457   /// The operation that this node performs.
458   int16_t NodeType;
459 
460 protected:
461   // We define a set of mini-helper classes to help us interpret the bits in our
462   // SubclassData.  These are designed to fit within a uint16_t so they pack
463   // with NodeType.
464 
465 #if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__))
466 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467 // and give the `pack` pragma push semantics.
468 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
469 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
470 #else
471 #define BEGIN_TWO_BYTE_PACK()
472 #define END_TWO_BYTE_PACK()
473 #endif
474 
475 BEGIN_TWO_BYTE_PACK()
476   class SDNodeBitfields {
477     friend class SDNode;
478     friend class MemIntrinsicSDNode;
479     friend class MemSDNode;
480     friend class SelectionDAG;
481 
482     uint16_t HasDebugValue : 1;
483     uint16_t IsMemIntrinsic : 1;
484     uint16_t IsDivergent : 1;
485   };
486   enum { NumSDNodeBits = 3 };
487 
488   class ConstantSDNodeBitfields {
489     friend class ConstantSDNode;
490 
491     uint16_t : NumSDNodeBits;
492 
493     uint16_t IsOpaque : 1;
494   };
495 
496   class MemSDNodeBitfields {
497     friend class MemSDNode;
498     friend class MemIntrinsicSDNode;
499     friend class AtomicSDNode;
500 
501     uint16_t : NumSDNodeBits;
502 
503     uint16_t IsVolatile : 1;
504     uint16_t IsNonTemporal : 1;
505     uint16_t IsDereferenceable : 1;
506     uint16_t IsInvariant : 1;
507   };
508   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509 
510   class LSBaseSDNodeBitfields {
511     friend class LSBaseSDNode;
512     friend class MaskedLoadStoreSDNode;
513     friend class MaskedGatherScatterSDNode;
514 
515     uint16_t : NumMemSDNodeBits;
516 
517     // This storage is shared between disparate class hierarchies to hold an
518     // enumeration specific to the class hierarchy in use.
519     //   LSBaseSDNode => enum ISD::MemIndexedMode
520     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
522     uint16_t AddressingMode : 3;
523   };
524   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525 
526   class LoadSDNodeBitfields {
527     friend class LoadSDNode;
528     friend class MaskedLoadSDNode;
529     friend class MaskedGatherSDNode;
530 
531     uint16_t : NumLSBaseSDNodeBits;
532 
533     uint16_t ExtTy : 2; // enum ISD::LoadExtType
534     uint16_t IsExpanding : 1;
535   };
536 
537   class StoreSDNodeBitfields {
538     friend class StoreSDNode;
539     friend class MaskedStoreSDNode;
540     friend class MaskedScatterSDNode;
541 
542     uint16_t : NumLSBaseSDNodeBits;
543 
544     uint16_t IsTruncating : 1;
545     uint16_t IsCompressing : 1;
546   };
547 
548   union {
549     char RawSDNodeBits[sizeof(uint16_t)];
550     SDNodeBitfields SDNodeBits;
551     ConstantSDNodeBitfields ConstantSDNodeBits;
552     MemSDNodeBitfields MemSDNodeBits;
553     LSBaseSDNodeBitfields LSBaseSDNodeBits;
554     LoadSDNodeBitfields LoadSDNodeBits;
555     StoreSDNodeBitfields StoreSDNodeBits;
556   };
557 END_TWO_BYTE_PACK()
558 #undef BEGIN_TWO_BYTE_PACK
559 #undef END_TWO_BYTE_PACK
560 
561   // RawSDNodeBits must cover the entirety of the union.  This means that all of
562   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
563   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570 
571 private:
572   friend class SelectionDAG;
573   // TODO: unfriend HandleSDNode once we fix its operand handling.
574   friend class HandleSDNode;
575 
576   /// Unique id per SDNode in the DAG.
577   int NodeId = -1;
578 
579   /// The values that are used by this operation.
580   SDUse *OperandList = nullptr;
581 
582   /// The types of the values this node defines.  SDNode's may
583   /// define multiple values simultaneously.
584   const EVT *ValueList;
585 
586   /// List of uses for this SDNode.
587   SDUse *UseList = nullptr;
588 
589   /// The number of entries in the Operand/Value list.
590   unsigned short NumOperands = 0;
591   unsigned short NumValues;
592 
593   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594   // original LLVM instructions.
595   // This is used for turning off scheduling, because we'll forgo
596   // the normal scheduling algorithms and output the instructions according to
597   // this ordering.
598   unsigned IROrder;
599 
600   /// Source line information.
601   DebugLoc debugLoc;
602 
603   /// Return a pointer to the specified value type.
604   static const EVT *getValueTypeList(EVT VT);
605 
606   SDNodeFlags Flags;
607 
608 public:
609   /// Unique and persistent id per SDNode in the DAG.
610   /// Used for debug printing.
611   uint16_t PersistentId;
612 
613   //===--------------------------------------------------------------------===//
614   //  Accessors
615   //
616 
617   /// Return the SelectionDAG opcode value for this node. For
618   /// pre-isel nodes (those for which isMachineOpcode returns false), these
619   /// are the opcode values in the ISD and <target>ISD namespaces. For
620   /// post-isel opcodes, see getMachineOpcode.
621   unsigned getOpcode()  const { return (unsigned short)NodeType; }
622 
623   /// Test if this node has a target-specific opcode (in the
624   /// \<target\>ISD namespace).
625   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626 
627   /// Test if this node has a target-specific opcode that may raise
628   /// FP exceptions (in the \<target\>ISD namespace and greater than
629   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
630   /// opcode are currently automatically considered to possibly raise
631   /// FP exceptions as well.
632   bool isTargetStrictFPOpcode() const {
633     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634   }
635 
636   /// Test if this node has a target-specific
637   /// memory-referencing opcode (in the \<target\>ISD namespace and
638   /// greater than FIRST_TARGET_MEMORY_OPCODE).
639   bool isTargetMemoryOpcode() const {
640     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641   }
642 
643   /// Return true if the type of the node type undefined.
644   bool isUndef() const { return NodeType == ISD::UNDEF; }
645 
646   /// Test if this node is a memory intrinsic (with valid pointer information).
647   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648   /// non-memory intrinsics (with chains) that are not really instances of
649   /// MemSDNode. For such nodes, we need some extra state to determine the
650   /// proper classof relationship.
651   bool isMemIntrinsic() const {
652     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653             NodeType == ISD::INTRINSIC_VOID) &&
654            SDNodeBits.IsMemIntrinsic;
655   }
656 
657   /// Test if this node is a strict floating point pseudo-op.
658   bool isStrictFPOpcode() {
659     switch (NodeType) {
660       default:
661         return false;
662       case ISD::STRICT_FP16_TO_FP:
663       case ISD::STRICT_FP_TO_FP16:
664 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
665       case ISD::STRICT_##DAGN:
666 #include "llvm/IR/ConstrainedOps.def"
667         return true;
668     }
669   }
670 
671   /// Test if this node has a post-isel opcode, directly
672   /// corresponding to a MachineInstr opcode.
673   bool isMachineOpcode() const { return NodeType < 0; }
674 
675   /// This may only be called if isMachineOpcode returns
676   /// true. It returns the MachineInstr opcode value that the node's opcode
677   /// corresponds to.
678   unsigned getMachineOpcode() const {
679     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
680     return ~NodeType;
681   }
682 
683   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685 
686   bool isDivergent() const { return SDNodeBits.IsDivergent; }
687 
688   /// Return true if there are no uses of this node.
689   bool use_empty() const { return UseList == nullptr; }
690 
691   /// Return true if there is exactly one use of this node.
692   bool hasOneUse() const { return hasSingleElement(uses()); }
693 
694   /// Return the number of uses of this node. This method takes
695   /// time proportional to the number of uses.
696   size_t use_size() const { return std::distance(use_begin(), use_end()); }
697 
698   /// Return the unique node id.
699   int getNodeId() const { return NodeId; }
700 
701   /// Set unique node id.
702   void setNodeId(int Id) { NodeId = Id; }
703 
704   /// Return the node ordering.
705   unsigned getIROrder() const { return IROrder; }
706 
707   /// Set the node ordering.
708   void setIROrder(unsigned Order) { IROrder = Order; }
709 
710   /// Return the source location info.
711   const DebugLoc &getDebugLoc() const { return debugLoc; }
712 
713   /// Set source location info.  Try to avoid this, putting
714   /// it in the constructor is preferable.
715   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716 
717   /// This class provides iterator support for SDUse
718   /// operands that use a specific SDNode.
719   class use_iterator
720     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
721     friend class SDNode;
722 
723     SDUse *Op = nullptr;
724 
725     explicit use_iterator(SDUse *op) : Op(op) {}
726 
727   public:
728     using reference = std::iterator<std::forward_iterator_tag,
729                                     SDUse, ptrdiff_t>::reference;
730     using pointer = std::iterator<std::forward_iterator_tag,
731                                   SDUse, ptrdiff_t>::pointer;
732 
733     use_iterator() = default;
734     use_iterator(const use_iterator &I) : Op(I.Op) {}
735 
736     bool operator==(const use_iterator &x) const {
737       return Op == x.Op;
738     }
739     bool operator!=(const use_iterator &x) const {
740       return !operator==(x);
741     }
742 
743     /// Return true if this iterator is at the end of uses list.
744     bool atEnd() const { return Op == nullptr; }
745 
746     // Iterator traversal: forward iteration only.
747     use_iterator &operator++() {          // Preincrement
748       assert(Op && "Cannot increment end iterator!");
749       Op = Op->getNext();
750       return *this;
751     }
752 
753     use_iterator operator++(int) {        // Postincrement
754       use_iterator tmp = *this; ++*this; return tmp;
755     }
756 
757     /// Retrieve a pointer to the current user node.
758     SDNode *operator*() const {
759       assert(Op && "Cannot dereference end iterator!");
760       return Op->getUser();
761     }
762 
763     SDNode *operator->() const { return operator*(); }
764 
765     SDUse &getUse() const { return *Op; }
766 
767     /// Retrieve the operand # of this use in its user.
768     unsigned getOperandNo() const {
769       assert(Op && "Cannot dereference end iterator!");
770       return (unsigned)(Op - Op->getUser()->OperandList);
771     }
772   };
773 
774   /// Provide iteration support to walk over all uses of an SDNode.
775   use_iterator use_begin() const {
776     return use_iterator(UseList);
777   }
778 
779   static use_iterator use_end() { return use_iterator(nullptr); }
780 
781   inline iterator_range<use_iterator> uses() {
782     return make_range(use_begin(), use_end());
783   }
784   inline iterator_range<use_iterator> uses() const {
785     return make_range(use_begin(), use_end());
786   }
787 
788   /// Return true if there are exactly NUSES uses of the indicated value.
789   /// This method ignores uses of other values defined by this operation.
790   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791 
792   /// Return true if there are any use of the indicated value.
793   /// This method ignores uses of other values defined by this operation.
794   bool hasAnyUseOfValue(unsigned Value) const;
795 
796   /// Return true if this node is the only use of N.
797   bool isOnlyUserOf(const SDNode *N) const;
798 
799   /// Return true if this node is an operand of N.
800   bool isOperandOf(const SDNode *N) const;
801 
802   /// Return true if this node is a predecessor of N.
803   /// NOTE: Implemented on top of hasPredecessor and every bit as
804   /// expensive. Use carefully.
805   bool isPredecessorOf(const SDNode *N) const {
806     return N->hasPredecessor(this);
807   }
808 
809   /// Return true if N is a predecessor of this node.
810   /// N is either an operand of this node, or can be reached by recursively
811   /// traversing up the operands.
812   /// NOTE: This is an expensive method. Use it carefully.
813   bool hasPredecessor(const SDNode *N) const;
814 
815   /// Returns true if N is a predecessor of any node in Worklist. This
816   /// helper keeps Visited and Worklist sets externally to allow unions
817   /// searches to be performed in parallel, caching of results across
818   /// queries and incremental addition to Worklist. Stops early if N is
819   /// found but will resume. Remember to clear Visited and Worklists
820   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822   /// topologically ordered (Operands have strictly smaller node id) and search
823   /// can be pruned leveraging this.
824   static bool hasPredecessorHelper(const SDNode *N,
825                                    SmallPtrSetImpl<const SDNode *> &Visited,
826                                    SmallVectorImpl<const SDNode *> &Worklist,
827                                    unsigned int MaxSteps = 0,
828                                    bool TopologicalPrune = false) {
829     SmallVector<const SDNode *, 8> DeferredNodes;
830     if (Visited.count(N))
831       return true;
832 
833     // Node Id's are assigned in three places: As a topological
834     // ordering (> 0), during legalization (results in values set to
835     // 0), new nodes (set to -1). If N has a topolgical id then we
836     // know that all nodes with ids smaller than it cannot be
837     // successors and we need not check them. Filter out all node
838     // that can't be matches. We add them to the worklist before exit
839     // in case of multiple calls. Note that during selection the topological id
840     // may be violated if a node's predecessor is selected before it. We mark
841     // this at selection negating the id of unselected successors and
842     // restricting topological pruning to positive ids.
843 
844     int NId = N->getNodeId();
845     // If we Invalidated the Id, reconstruct original NId.
846     if (NId < -1)
847       NId = -(NId + 1);
848 
849     bool Found = false;
850     while (!Worklist.empty()) {
851       const SDNode *M = Worklist.pop_back_val();
852       int MId = M->getNodeId();
853       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854           (MId > 0) && (MId < NId)) {
855         DeferredNodes.push_back(M);
856         continue;
857       }
858       for (const SDValue &OpV : M->op_values()) {
859         SDNode *Op = OpV.getNode();
860         if (Visited.insert(Op).second)
861           Worklist.push_back(Op);
862         if (Op == N)
863           Found = true;
864       }
865       if (Found)
866         break;
867       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868         break;
869     }
870     // Push deferred nodes back on worklist.
871     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872     // If we bailed early, conservatively return found.
873     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874       return true;
875     return Found;
876   }
877 
878   /// Return true if all the users of N are contained in Nodes.
879   /// NOTE: Requires at least one match, but doesn't require them all.
880   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881 
882   /// Return the number of values used by this operation.
883   unsigned getNumOperands() const { return NumOperands; }
884 
885   /// Return the maximum number of operands that a SDNode can hold.
886   static constexpr size_t getMaxNumOperands() {
887     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888   }
889 
890   /// Helper method returns the integer value of a ConstantSDNode operand.
891   inline uint64_t getConstantOperandVal(unsigned Num) const;
892 
893   /// Helper method returns the APInt of a ConstantSDNode operand.
894   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895 
896   const SDValue &getOperand(unsigned Num) const {
897     assert(Num < NumOperands && "Invalid child # of SDNode!");
898     return OperandList[Num];
899   }
900 
901   using op_iterator = SDUse *;
902 
903   op_iterator op_begin() const { return OperandList; }
904   op_iterator op_end() const { return OperandList+NumOperands; }
905   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906 
907   /// Iterator for directly iterating over the operand SDValue's.
908   struct value_op_iterator
909       : iterator_adaptor_base<value_op_iterator, op_iterator,
910                               std::random_access_iterator_tag, SDValue,
911                               ptrdiff_t, value_op_iterator *,
912                               value_op_iterator *> {
913     explicit value_op_iterator(SDUse *U = nullptr)
914       : iterator_adaptor_base(U) {}
915 
916     const SDValue &operator*() const { return I->get(); }
917   };
918 
919   iterator_range<value_op_iterator> op_values() const {
920     return make_range(value_op_iterator(op_begin()),
921                       value_op_iterator(op_end()));
922   }
923 
924   SDVTList getVTList() const {
925     SDVTList X = { ValueList, NumValues };
926     return X;
927   }
928 
929   /// If this node has a glue operand, return the node
930   /// to which the glue operand points. Otherwise return NULL.
931   SDNode *getGluedNode() const {
932     if (getNumOperands() != 0 &&
933         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934       return getOperand(getNumOperands()-1).getNode();
935     return nullptr;
936   }
937 
938   /// If this node has a glue value with a user, return
939   /// the user (there is at most one). Otherwise return NULL.
940   SDNode *getGluedUser() const {
941     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942       if (UI.getUse().get().getValueType() == MVT::Glue)
943         return *UI;
944     return nullptr;
945   }
946 
947   const SDNodeFlags getFlags() const { return Flags; }
948   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949 
950   /// Clear any flags in this node that aren't also set in Flags.
951   /// If Flags is not in a defined state then this has no effect.
952   void intersectFlagsWith(const SDNodeFlags Flags);
953 
954   /// Return the number of values defined/returned by this operator.
955   unsigned getNumValues() const { return NumValues; }
956 
957   /// Return the type of a specified result.
958   EVT getValueType(unsigned ResNo) const {
959     assert(ResNo < NumValues && "Illegal result number!");
960     return ValueList[ResNo];
961   }
962 
963   /// Return the type of a specified result as a simple type.
964   MVT getSimpleValueType(unsigned ResNo) const {
965     return getValueType(ResNo).getSimpleVT();
966   }
967 
968   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969   ///
970   /// If the value type is a scalable vector type, the scalable property will
971   /// be set and the runtime size will be a positive integer multiple of the
972   /// base size.
973   TypeSize getValueSizeInBits(unsigned ResNo) const {
974     return getValueType(ResNo).getSizeInBits();
975   }
976 
977   using value_iterator = const EVT *;
978 
979   value_iterator value_begin() const { return ValueList; }
980   value_iterator value_end() const { return ValueList+NumValues; }
981   iterator_range<value_iterator> values() const {
982     return llvm::make_range(value_begin(), value_end());
983   }
984 
985   /// Return the opcode of this operation for printing.
986   std::string getOperationName(const SelectionDAG *G = nullptr) const;
987   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992 
993   /// Print a SelectionDAG node and all children down to
994   /// the leaves.  The given SelectionDAG allows target-specific nodes
995   /// to be printed in human-readable form.  Unlike printr, this will
996   /// print the whole DAG, including children that appear multiple
997   /// times.
998   ///
999   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000 
1001   /// Print a SelectionDAG node and children up to
1002   /// depth "depth."  The given SelectionDAG allows target-specific
1003   /// nodes to be printed in human-readable form.  Unlike printr, this
1004   /// will print children that appear multiple times wherever they are
1005   /// used.
1006   ///
1007   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008                        unsigned depth = 100) const;
1009 
1010   /// Dump this node, for debugging.
1011   void dump() const;
1012 
1013   /// Dump (recursively) this node and its use-def subgraph.
1014   void dumpr() const;
1015 
1016   /// Dump this node, for debugging.
1017   /// The given SelectionDAG allows target-specific nodes to be printed
1018   /// in human-readable form.
1019   void dump(const SelectionDAG *G) const;
1020 
1021   /// Dump (recursively) this node and its use-def subgraph.
1022   /// The given SelectionDAG allows target-specific nodes to be printed
1023   /// in human-readable form.
1024   void dumpr(const SelectionDAG *G) const;
1025 
1026   /// printrFull to dbgs().  The given SelectionDAG allows
1027   /// target-specific nodes to be printed in human-readable form.
1028   /// Unlike dumpr, this will print the whole DAG, including children
1029   /// that appear multiple times.
1030   void dumprFull(const SelectionDAG *G = nullptr) const;
1031 
1032   /// printrWithDepth to dbgs().  The given
1033   /// SelectionDAG allows target-specific nodes to be printed in
1034   /// human-readable form.  Unlike dumpr, this will print children
1035   /// that appear multiple times wherever they are used.
1036   ///
1037   void dumprWithDepth(const SelectionDAG *G = nullptr,
1038                       unsigned depth = 100) const;
1039 
1040   /// Gather unique data for the node.
1041   void Profile(FoldingSetNodeID &ID) const;
1042 
1043   /// This method should only be used by the SDUse class.
1044   void addUse(SDUse &U) { U.addToList(&UseList); }
1045 
1046 protected:
1047   static SDVTList getSDVTList(EVT VT) {
1048     SDVTList Ret = { getValueTypeList(VT), 1 };
1049     return Ret;
1050   }
1051 
1052   /// Create an SDNode.
1053   ///
1054   /// SDNodes are created without any operands, and never own the operand
1055   /// storage. To add operands, see SelectionDAG::createOperands.
1056   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058         IROrder(Order), debugLoc(std::move(dl)) {
1059     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1061     assert(NumValues == VTs.NumVTs &&
1062            "NumValues wasn't wide enough for its operands!");
1063   }
1064 
1065   /// Release the operands and set this node to have zero operands.
1066   void DropOperands();
1067 };
1068 
1069 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070 /// into SDNode creation functions.
1071 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072 /// from the original Instruction, and IROrder is the ordinal position of
1073 /// the instruction.
1074 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1075 /// the IROrder are propagated from the original SDNode.
1076 /// So SDLoc class provides two constructors besides the default one, one to
1077 /// be used by the DAGBuilder, the other to be used by others.
1078 class SDLoc {
1079 private:
1080   DebugLoc DL;
1081   int IROrder = 0;
1082 
1083 public:
1084   SDLoc() = default;
1085   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088     assert(Order >= 0 && "bad IROrder");
1089     if (I)
1090       DL = I->getDebugLoc();
1091   }
1092 
1093   unsigned getIROrder() const { return IROrder; }
1094   const DebugLoc &getDebugLoc() const { return DL; }
1095 };
1096 
1097 // Define inline functions from the SDValue class.
1098 
1099 inline SDValue::SDValue(SDNode *node, unsigned resno)
1100     : Node(node), ResNo(resno) {
1101   // Explicitly check for !ResNo to avoid use-after-free, because there are
1102   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103   // combines.
1104   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1105          "Invalid result number for the given node!");
1106   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1107 }
1108 
1109 inline unsigned SDValue::getOpcode() const {
1110   return Node->getOpcode();
1111 }
1112 
1113 inline EVT SDValue::getValueType() const {
1114   return Node->getValueType(ResNo);
1115 }
1116 
1117 inline unsigned SDValue::getNumOperands() const {
1118   return Node->getNumOperands();
1119 }
1120 
1121 inline const SDValue &SDValue::getOperand(unsigned i) const {
1122   return Node->getOperand(i);
1123 }
1124 
1125 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126   return Node->getConstantOperandVal(i);
1127 }
1128 
1129 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130   return Node->getConstantOperandAPInt(i);
1131 }
1132 
1133 inline bool SDValue::isTargetOpcode() const {
1134   return Node->isTargetOpcode();
1135 }
1136 
1137 inline bool SDValue::isTargetMemoryOpcode() const {
1138   return Node->isTargetMemoryOpcode();
1139 }
1140 
1141 inline bool SDValue::isMachineOpcode() const {
1142   return Node->isMachineOpcode();
1143 }
1144 
1145 inline unsigned SDValue::getMachineOpcode() const {
1146   return Node->getMachineOpcode();
1147 }
1148 
1149 inline bool SDValue::isUndef() const {
1150   return Node->isUndef();
1151 }
1152 
1153 inline bool SDValue::use_empty() const {
1154   return !Node->hasAnyUseOfValue(ResNo);
1155 }
1156 
1157 inline bool SDValue::hasOneUse() const {
1158   return Node->hasNUsesOfValue(1, ResNo);
1159 }
1160 
1161 inline const DebugLoc &SDValue::getDebugLoc() const {
1162   return Node->getDebugLoc();
1163 }
1164 
1165 inline void SDValue::dump() const {
1166   return Node->dump();
1167 }
1168 
1169 inline void SDValue::dump(const SelectionDAG *G) const {
1170   return Node->dump(G);
1171 }
1172 
1173 inline void SDValue::dumpr() const {
1174   return Node->dumpr();
1175 }
1176 
1177 inline void SDValue::dumpr(const SelectionDAG *G) const {
1178   return Node->dumpr(G);
1179 }
1180 
1181 // Define inline functions from the SDUse class.
1182 
1183 inline void SDUse::set(const SDValue &V) {
1184   if (Val.getNode()) removeFromList();
1185   Val = V;
1186   if (V.getNode()) V.getNode()->addUse(*this);
1187 }
1188 
1189 inline void SDUse::setInitial(const SDValue &V) {
1190   Val = V;
1191   V.getNode()->addUse(*this);
1192 }
1193 
1194 inline void SDUse::setNode(SDNode *N) {
1195   if (Val.getNode()) removeFromList();
1196   Val.setNode(N);
1197   if (N) N->addUse(*this);
1198 }
1199 
1200 /// This class is used to form a handle around another node that
1201 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1202 /// operand.  This node should be directly created by end-users and not added to
1203 /// the AllNodes list.
1204 class HandleSDNode : public SDNode {
1205   SDUse Op;
1206 
1207 public:
1208   explicit HandleSDNode(SDValue X)
1209     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210     // HandleSDNodes are never inserted into the DAG, so they won't be
1211     // auto-numbered. Use ID 65535 as a sentinel.
1212     PersistentId = 0xffff;
1213 
1214     // Manually set up the operand list. This node type is special in that it's
1215     // always stack allocated and SelectionDAG does not manage its operands.
1216     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217     // be so special.
1218     Op.setUser(this);
1219     Op.setInitial(X);
1220     NumOperands = 1;
1221     OperandList = &Op;
1222   }
1223   ~HandleSDNode();
1224 
1225   const SDValue &getValue() const { return Op; }
1226 };
1227 
1228 class AddrSpaceCastSDNode : public SDNode {
1229 private:
1230   unsigned SrcAddrSpace;
1231   unsigned DestAddrSpace;
1232 
1233 public:
1234   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235                       unsigned SrcAS, unsigned DestAS);
1236 
1237   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239 
1240   static bool classof(const SDNode *N) {
1241     return N->getOpcode() == ISD::ADDRSPACECAST;
1242   }
1243 };
1244 
1245 /// This is an abstract virtual class for memory operations.
1246 class MemSDNode : public SDNode {
1247 private:
1248   // VT of in-memory value.
1249   EVT MemoryVT;
1250 
1251 protected:
1252   /// Memory reference information.
1253   MachineMemOperand *MMO;
1254 
1255 public:
1256   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257             EVT memvt, MachineMemOperand *MMO);
1258 
1259   bool readMem() const { return MMO->isLoad(); }
1260   bool writeMem() const { return MMO->isStore(); }
1261 
1262   /// Returns alignment and volatility of the memory access
1263   Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264   Align getAlign() const { return MMO->getAlign(); }
1265   LLVM_ATTRIBUTE_DEPRECATED(unsigned getOriginalAlignment() const,
1266                             "Use getOriginalAlign() instead") {
1267     return MMO->getBaseAlign().value();
1268   }
1269   // FIXME: Remove once transition to getAlign is over.
1270   unsigned getAlignment() const { return MMO->getAlign().value(); }
1271 
1272   /// Return the SubclassData value, without HasDebugValue. This contains an
1273   /// encoding of the volatile flag, as well as bits used by subclasses. This
1274   /// function should only be used to compute a FoldingSetNodeID value.
1275   /// The HasDebugValue bit is masked out because CSE map needs to match
1276   /// nodes with debug info with nodes without debug info. Same is about
1277   /// isDivergent bit.
1278   unsigned getRawSubclassData() const {
1279     uint16_t Data;
1280     union {
1281       char RawSDNodeBits[sizeof(uint16_t)];
1282       SDNodeBitfields SDNodeBits;
1283     };
1284     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1285     SDNodeBits.HasDebugValue = 0;
1286     SDNodeBits.IsDivergent = false;
1287     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1288     return Data;
1289   }
1290 
1291   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1292   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1293   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1294   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1295 
1296   // Returns the offset from the location of the access.
1297   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1298 
1299   /// Returns the AA info that describes the dereference.
1300   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1301 
1302   /// Returns the Ranges that describes the dereference.
1303   const MDNode *getRanges() const { return MMO->getRanges(); }
1304 
1305   /// Returns the synchronization scope ID for this memory operation.
1306   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1307 
1308   /// Return the atomic ordering requirements for this memory operation. For
1309   /// cmpxchg atomic operations, return the atomic ordering requirements when
1310   /// store occurs.
1311   AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1312 
1313   /// Return true if the memory operation ordering is Unordered or higher.
1314   bool isAtomic() const { return MMO->isAtomic(); }
1315 
1316   /// Returns true if the memory operation doesn't imply any ordering
1317   /// constraints on surrounding memory operations beyond the normal memory
1318   /// aliasing rules.
1319   bool isUnordered() const { return MMO->isUnordered(); }
1320 
1321   /// Returns true if the memory operation is neither atomic or volatile.
1322   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1323 
1324   /// Return the type of the in-memory value.
1325   EVT getMemoryVT() const { return MemoryVT; }
1326 
1327   /// Return a MachineMemOperand object describing the memory
1328   /// reference performed by operation.
1329   MachineMemOperand *getMemOperand() const { return MMO; }
1330 
1331   const MachinePointerInfo &getPointerInfo() const {
1332     return MMO->getPointerInfo();
1333   }
1334 
1335   /// Return the address space for the associated pointer
1336   unsigned getAddressSpace() const {
1337     return getPointerInfo().getAddrSpace();
1338   }
1339 
1340   /// Update this MemSDNode's MachineMemOperand information
1341   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1342   /// This must only be used when the new alignment applies to all users of
1343   /// this MachineMemOperand.
1344   void refineAlignment(const MachineMemOperand *NewMMO) {
1345     MMO->refineAlignment(NewMMO);
1346   }
1347 
1348   const SDValue &getChain() const { return getOperand(0); }
1349 
1350   const SDValue &getBasePtr() const {
1351     switch (getOpcode()) {
1352     case ISD::STORE:
1353     case ISD::MSTORE:
1354       return getOperand(2);
1355     case ISD::MGATHER:
1356     case ISD::MSCATTER:
1357       return getOperand(3);
1358     default:
1359       return getOperand(1);
1360     }
1361   }
1362 
1363   // Methods to support isa and dyn_cast
1364   static bool classof(const SDNode *N) {
1365     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1366     // with either an intrinsic or a target opcode.
1367     return N->getOpcode() == ISD::LOAD                ||
1368            N->getOpcode() == ISD::STORE               ||
1369            N->getOpcode() == ISD::PREFETCH            ||
1370            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1371            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1372            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1373            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1374            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1375            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1376            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1377            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1378            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1379            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1380            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1381            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1382            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1383            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1384            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1385            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1386            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1387            N->getOpcode() == ISD::ATOMIC_STORE        ||
1388            N->getOpcode() == ISD::MLOAD               ||
1389            N->getOpcode() == ISD::MSTORE              ||
1390            N->getOpcode() == ISD::MGATHER             ||
1391            N->getOpcode() == ISD::MSCATTER            ||
1392            N->isMemIntrinsic()                        ||
1393            N->isTargetMemoryOpcode();
1394   }
1395 };
1396 
1397 /// This is an SDNode representing atomic operations.
1398 class AtomicSDNode : public MemSDNode {
1399 public:
1400   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1401                EVT MemVT, MachineMemOperand *MMO)
1402     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1403     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1404             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1405   }
1406 
1407   const SDValue &getBasePtr() const { return getOperand(1); }
1408   const SDValue &getVal() const { return getOperand(2); }
1409 
1410   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1411   /// otherwise.
1412   bool isCompareAndSwap() const {
1413     unsigned Op = getOpcode();
1414     return Op == ISD::ATOMIC_CMP_SWAP ||
1415            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1416   }
1417 
1418   /// For cmpxchg atomic operations, return the atomic ordering requirements
1419   /// when store does not occur.
1420   AtomicOrdering getFailureOrdering() const {
1421     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1422     return MMO->getFailureOrdering();
1423   }
1424 
1425   // Methods to support isa and dyn_cast
1426   static bool classof(const SDNode *N) {
1427     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1428            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1429            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1430            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1431            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1432            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1433            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1434            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1435            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1436            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1437            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1438            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1439            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1440            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1441            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1442            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1443            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1444            N->getOpcode() == ISD::ATOMIC_STORE;
1445   }
1446 };
1447 
1448 /// This SDNode is used for target intrinsics that touch
1449 /// memory and need an associated MachineMemOperand. Its opcode may be
1450 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1451 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1452 class MemIntrinsicSDNode : public MemSDNode {
1453 public:
1454   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1455                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1456       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1457     SDNodeBits.IsMemIntrinsic = true;
1458   }
1459 
1460   // Methods to support isa and dyn_cast
1461   static bool classof(const SDNode *N) {
1462     // We lower some target intrinsics to their target opcode
1463     // early a node with a target opcode can be of this class
1464     return N->isMemIntrinsic()             ||
1465            N->getOpcode() == ISD::PREFETCH ||
1466            N->isTargetMemoryOpcode();
1467   }
1468 };
1469 
1470 /// This SDNode is used to implement the code generator
1471 /// support for the llvm IR shufflevector instruction.  It combines elements
1472 /// from two input vectors into a new input vector, with the selection and
1473 /// ordering of elements determined by an array of integers, referred to as
1474 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1475 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1476 /// An index of -1 is treated as undef, such that the code generator may put
1477 /// any value in the corresponding element of the result.
1478 class ShuffleVectorSDNode : public SDNode {
1479   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1480   // is freed when the SelectionDAG object is destroyed.
1481   const int *Mask;
1482 
1483 protected:
1484   friend class SelectionDAG;
1485 
1486   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1487       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1488 
1489 public:
1490   ArrayRef<int> getMask() const {
1491     EVT VT = getValueType(0);
1492     return makeArrayRef(Mask, VT.getVectorNumElements());
1493   }
1494 
1495   int getMaskElt(unsigned Idx) const {
1496     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1497     return Mask[Idx];
1498   }
1499 
1500   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1501 
1502   int getSplatIndex() const {
1503     assert(isSplat() && "Cannot get splat index for non-splat!");
1504     EVT VT = getValueType(0);
1505     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1506       if (Mask[i] >= 0)
1507         return Mask[i];
1508 
1509     // We can choose any index value here and be correct because all elements
1510     // are undefined. Return 0 for better potential for callers to simplify.
1511     return 0;
1512   }
1513 
1514   static bool isSplatMask(const int *Mask, EVT VT);
1515 
1516   /// Change values in a shuffle permute mask assuming
1517   /// the two vector operands have swapped position.
1518   static void commuteMask(MutableArrayRef<int> Mask) {
1519     unsigned NumElems = Mask.size();
1520     for (unsigned i = 0; i != NumElems; ++i) {
1521       int idx = Mask[i];
1522       if (idx < 0)
1523         continue;
1524       else if (idx < (int)NumElems)
1525         Mask[i] = idx + NumElems;
1526       else
1527         Mask[i] = idx - NumElems;
1528     }
1529   }
1530 
1531   static bool classof(const SDNode *N) {
1532     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1533   }
1534 };
1535 
1536 class ConstantSDNode : public SDNode {
1537   friend class SelectionDAG;
1538 
1539   const ConstantInt *Value;
1540 
1541   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1542       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1543                getSDVTList(VT)),
1544         Value(val) {
1545     ConstantSDNodeBits.IsOpaque = isOpaque;
1546   }
1547 
1548 public:
1549   const ConstantInt *getConstantIntValue() const { return Value; }
1550   const APInt &getAPIntValue() const { return Value->getValue(); }
1551   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1552   int64_t getSExtValue() const { return Value->getSExtValue(); }
1553   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1554     return Value->getLimitedValue(Limit);
1555   }
1556   MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1557   Align getAlignValue() const { return Value->getAlignValue(); }
1558 
1559   bool isOne() const { return Value->isOne(); }
1560   bool isNullValue() const { return Value->isZero(); }
1561   bool isAllOnesValue() const { return Value->isMinusOne(); }
1562 
1563   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1564 
1565   static bool classof(const SDNode *N) {
1566     return N->getOpcode() == ISD::Constant ||
1567            N->getOpcode() == ISD::TargetConstant;
1568   }
1569 };
1570 
1571 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1572   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1573 }
1574 
1575 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1576   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1577 }
1578 
1579 class ConstantFPSDNode : public SDNode {
1580   friend class SelectionDAG;
1581 
1582   const ConstantFP *Value;
1583 
1584   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1585       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1586                DebugLoc(), getSDVTList(VT)),
1587         Value(val) {}
1588 
1589 public:
1590   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1591   const ConstantFP *getConstantFPValue() const { return Value; }
1592 
1593   /// Return true if the value is positive or negative zero.
1594   bool isZero() const { return Value->isZero(); }
1595 
1596   /// Return true if the value is a NaN.
1597   bool isNaN() const { return Value->isNaN(); }
1598 
1599   /// Return true if the value is an infinity
1600   bool isInfinity() const { return Value->isInfinity(); }
1601 
1602   /// Return true if the value is negative.
1603   bool isNegative() const { return Value->isNegative(); }
1604 
1605   /// We don't rely on operator== working on double values, as
1606   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1607   /// As such, this method can be used to do an exact bit-for-bit comparison of
1608   /// two floating point values.
1609 
1610   /// We leave the version with the double argument here because it's just so
1611   /// convenient to write "2.0" and the like.  Without this function we'd
1612   /// have to duplicate its logic everywhere it's called.
1613   bool isExactlyValue(double V) const {
1614     return Value->getValueAPF().isExactlyValue(V);
1615   }
1616   bool isExactlyValue(const APFloat& V) const;
1617 
1618   static bool isValueValidForType(EVT VT, const APFloat& Val);
1619 
1620   static bool classof(const SDNode *N) {
1621     return N->getOpcode() == ISD::ConstantFP ||
1622            N->getOpcode() == ISD::TargetConstantFP;
1623   }
1624 };
1625 
1626 /// Returns true if \p V is a constant integer zero.
1627 bool isNullConstant(SDValue V);
1628 
1629 /// Returns true if \p V is an FP constant with a value of positive zero.
1630 bool isNullFPConstant(SDValue V);
1631 
1632 /// Returns true if \p V is an integer constant with all bits set.
1633 bool isAllOnesConstant(SDValue V);
1634 
1635 /// Returns true if \p V is a constant integer one.
1636 bool isOneConstant(SDValue V);
1637 
1638 /// Return the non-bitcasted source operand of \p V if it exists.
1639 /// If \p V is not a bitcasted value, it is returned as-is.
1640 SDValue peekThroughBitcasts(SDValue V);
1641 
1642 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1643 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1644 SDValue peekThroughOneUseBitcasts(SDValue V);
1645 
1646 /// Return the non-extracted vector source operand of \p V if it exists.
1647 /// If \p V is not an extracted subvector, it is returned as-is.
1648 SDValue peekThroughExtractSubvectors(SDValue V);
1649 
1650 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1651 /// constant is canonicalized to be operand 1.
1652 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1653 
1654 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1655 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1656                                     bool AllowTruncation = false);
1657 
1658 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1659 /// constant int.
1660 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1661                                     bool AllowUndefs = false,
1662                                     bool AllowTruncation = false);
1663 
1664 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1665 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1666 
1667 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1668 /// constant float.
1669 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1670                                         bool AllowUndefs = false);
1671 
1672 /// Return true if the value is a constant 0 integer or a splatted vector of
1673 /// a constant 0 integer (with no undefs by default).
1674 /// Build vector implicit truncation is not an issue for null values.
1675 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1676 
1677 /// Return true if the value is a constant 1 integer or a splatted vector of a
1678 /// constant 1 integer (with no undefs).
1679 /// Does not permit build vector implicit truncation.
1680 bool isOneOrOneSplat(SDValue V);
1681 
1682 /// Return true if the value is a constant -1 integer or a splatted vector of a
1683 /// constant -1 integer (with no undefs).
1684 /// Does not permit build vector implicit truncation.
1685 bool isAllOnesOrAllOnesSplat(SDValue V);
1686 
1687 class GlobalAddressSDNode : public SDNode {
1688   friend class SelectionDAG;
1689 
1690   const GlobalValue *TheGlobal;
1691   int64_t Offset;
1692   unsigned TargetFlags;
1693 
1694   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1695                       const GlobalValue *GA, EVT VT, int64_t o,
1696                       unsigned TF);
1697 
1698 public:
1699   const GlobalValue *getGlobal() const { return TheGlobal; }
1700   int64_t getOffset() const { return Offset; }
1701   unsigned getTargetFlags() const { return TargetFlags; }
1702   // Return the address space this GlobalAddress belongs to.
1703   unsigned getAddressSpace() const;
1704 
1705   static bool classof(const SDNode *N) {
1706     return N->getOpcode() == ISD::GlobalAddress ||
1707            N->getOpcode() == ISD::TargetGlobalAddress ||
1708            N->getOpcode() == ISD::GlobalTLSAddress ||
1709            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1710   }
1711 };
1712 
1713 class FrameIndexSDNode : public SDNode {
1714   friend class SelectionDAG;
1715 
1716   int FI;
1717 
1718   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1719     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1720       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1721   }
1722 
1723 public:
1724   int getIndex() const { return FI; }
1725 
1726   static bool classof(const SDNode *N) {
1727     return N->getOpcode() == ISD::FrameIndex ||
1728            N->getOpcode() == ISD::TargetFrameIndex;
1729   }
1730 };
1731 
1732 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1733 /// the offet and size that are started/ended in the underlying FrameIndex.
1734 class LifetimeSDNode : public SDNode {
1735   friend class SelectionDAG;
1736   int64_t Size;
1737   int64_t Offset; // -1 if offset is unknown.
1738 
1739   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1740                  SDVTList VTs, int64_t Size, int64_t Offset)
1741       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1742 public:
1743   int64_t getFrameIndex() const {
1744     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1745   }
1746 
1747   bool hasOffset() const { return Offset >= 0; }
1748   int64_t getOffset() const {
1749     assert(hasOffset() && "offset is unknown");
1750     return Offset;
1751   }
1752   int64_t getSize() const {
1753     assert(hasOffset() && "offset is unknown");
1754     return Size;
1755   }
1756 
1757   // Methods to support isa and dyn_cast
1758   static bool classof(const SDNode *N) {
1759     return N->getOpcode() == ISD::LIFETIME_START ||
1760            N->getOpcode() == ISD::LIFETIME_END;
1761   }
1762 };
1763 
1764 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1765 /// the index of the basic block being probed. A pseudo probe serves as a place
1766 /// holder and will be removed at the end of compilation. It does not have any
1767 /// operand because we do not want the instruction selection to deal with any.
1768 class PseudoProbeSDNode : public SDNode {
1769   friend class SelectionDAG;
1770   uint64_t Guid;
1771   uint64_t Index;
1772   uint32_t Attributes;
1773 
1774   PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1775                     SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1776       : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1777         Attributes(Attr) {}
1778 
1779 public:
1780   uint64_t getGuid() const { return Guid; }
1781   uint64_t getIndex() const { return Index; }
1782   uint32_t getAttributes() const { return Attributes; }
1783 
1784   // Methods to support isa and dyn_cast
1785   static bool classof(const SDNode *N) {
1786     return N->getOpcode() == ISD::PSEUDO_PROBE;
1787   }
1788 };
1789 
1790 class JumpTableSDNode : public SDNode {
1791   friend class SelectionDAG;
1792 
1793   int JTI;
1794   unsigned TargetFlags;
1795 
1796   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1797     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1798       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1799   }
1800 
1801 public:
1802   int getIndex() const { return JTI; }
1803   unsigned getTargetFlags() const { return TargetFlags; }
1804 
1805   static bool classof(const SDNode *N) {
1806     return N->getOpcode() == ISD::JumpTable ||
1807            N->getOpcode() == ISD::TargetJumpTable;
1808   }
1809 };
1810 
1811 class ConstantPoolSDNode : public SDNode {
1812   friend class SelectionDAG;
1813 
1814   union {
1815     const Constant *ConstVal;
1816     MachineConstantPoolValue *MachineCPVal;
1817   } Val;
1818   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1819   Align Alignment; // Minimum alignment requirement of CP.
1820   unsigned TargetFlags;
1821 
1822   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1823                      Align Alignment, unsigned TF)
1824       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1825                DebugLoc(), getSDVTList(VT)),
1826         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1827     assert(Offset >= 0 && "Offset is too large");
1828     Val.ConstVal = c;
1829   }
1830 
1831   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1832                      Align Alignment, unsigned TF)
1833       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1834                DebugLoc(), getSDVTList(VT)),
1835         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1836     assert(Offset >= 0 && "Offset is too large");
1837     Val.MachineCPVal = v;
1838     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1839   }
1840 
1841 public:
1842   bool isMachineConstantPoolEntry() const {
1843     return Offset < 0;
1844   }
1845 
1846   const Constant *getConstVal() const {
1847     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1848     return Val.ConstVal;
1849   }
1850 
1851   MachineConstantPoolValue *getMachineCPVal() const {
1852     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1853     return Val.MachineCPVal;
1854   }
1855 
1856   int getOffset() const {
1857     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1858   }
1859 
1860   // Return the alignment of this constant pool object, which is either 0 (for
1861   // default alignment) or the desired value.
1862   Align getAlign() const { return Alignment; }
1863   unsigned getTargetFlags() const { return TargetFlags; }
1864 
1865   Type *getType() const;
1866 
1867   static bool classof(const SDNode *N) {
1868     return N->getOpcode() == ISD::ConstantPool ||
1869            N->getOpcode() == ISD::TargetConstantPool;
1870   }
1871 };
1872 
1873 /// Completely target-dependent object reference.
1874 class TargetIndexSDNode : public SDNode {
1875   friend class SelectionDAG;
1876 
1877   unsigned TargetFlags;
1878   int Index;
1879   int64_t Offset;
1880 
1881 public:
1882   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1883       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1884         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1885 
1886   unsigned getTargetFlags() const { return TargetFlags; }
1887   int getIndex() const { return Index; }
1888   int64_t getOffset() const { return Offset; }
1889 
1890   static bool classof(const SDNode *N) {
1891     return N->getOpcode() == ISD::TargetIndex;
1892   }
1893 };
1894 
1895 class BasicBlockSDNode : public SDNode {
1896   friend class SelectionDAG;
1897 
1898   MachineBasicBlock *MBB;
1899 
1900   /// Debug info is meaningful and potentially useful here, but we create
1901   /// blocks out of order when they're jumped to, which makes it a bit
1902   /// harder.  Let's see if we need it first.
1903   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1904     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1905   {}
1906 
1907 public:
1908   MachineBasicBlock *getBasicBlock() const { return MBB; }
1909 
1910   static bool classof(const SDNode *N) {
1911     return N->getOpcode() == ISD::BasicBlock;
1912   }
1913 };
1914 
1915 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1916 class BuildVectorSDNode : public SDNode {
1917 public:
1918   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1919   explicit BuildVectorSDNode() = delete;
1920 
1921   /// Check if this is a constant splat, and if so, find the
1922   /// smallest element size that splats the vector.  If MinSplatBits is
1923   /// nonzero, the element size must be at least that large.  Note that the
1924   /// splat element may be the entire vector (i.e., a one element vector).
1925   /// Returns the splat element value in SplatValue.  Any undefined bits in
1926   /// that value are zero, and the corresponding bits in the SplatUndef mask
1927   /// are set.  The SplatBitSize value is set to the splat element size in
1928   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1929   /// undefined.  isBigEndian describes the endianness of the target.
1930   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1931                        unsigned &SplatBitSize, bool &HasAnyUndefs,
1932                        unsigned MinSplatBits = 0,
1933                        bool isBigEndian = false) const;
1934 
1935   /// Returns the demanded splatted value or a null value if this is not a
1936   /// splat.
1937   ///
1938   /// The DemandedElts mask indicates the elements that must be in the splat.
1939   /// If passed a non-null UndefElements bitvector, it will resize it to match
1940   /// the vector width and set the bits where elements are undef.
1941   SDValue getSplatValue(const APInt &DemandedElts,
1942                         BitVector *UndefElements = nullptr) const;
1943 
1944   /// Returns the splatted value or a null value if this is not a splat.
1945   ///
1946   /// If passed a non-null UndefElements bitvector, it will resize it to match
1947   /// the vector width and set the bits where elements are undef.
1948   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1949 
1950   /// Find the shortest repeating sequence of values in the build vector.
1951   ///
1952   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1953   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
1954   ///
1955   /// Currently this must be a power-of-2 build vector.
1956   /// The DemandedElts mask indicates the elements that must be present,
1957   /// undemanded elements in Sequence may be null (SDValue()). If passed a
1958   /// non-null UndefElements bitvector, it will resize it to match the original
1959   /// vector width and set the bits where elements are undef. If result is
1960   /// false, Sequence will be empty.
1961   bool getRepeatedSequence(const APInt &DemandedElts,
1962                            SmallVectorImpl<SDValue> &Sequence,
1963                            BitVector *UndefElements = nullptr) const;
1964 
1965   /// Find the shortest repeating sequence of values in the build vector.
1966   ///
1967   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1968   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
1969   ///
1970   /// Currently this must be a power-of-2 build vector.
1971   /// If passed a non-null UndefElements bitvector, it will resize it to match
1972   /// the original vector width and set the bits where elements are undef.
1973   /// If result is false, Sequence will be empty.
1974   bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1975                            BitVector *UndefElements = nullptr) const;
1976 
1977   /// Returns the demanded splatted constant or null if this is not a constant
1978   /// splat.
1979   ///
1980   /// The DemandedElts mask indicates the elements that must be in the splat.
1981   /// If passed a non-null UndefElements bitvector, it will resize it to match
1982   /// the vector width and set the bits where elements are undef.
1983   ConstantSDNode *
1984   getConstantSplatNode(const APInt &DemandedElts,
1985                        BitVector *UndefElements = nullptr) const;
1986 
1987   /// Returns the splatted constant or null if this is not a constant
1988   /// splat.
1989   ///
1990   /// If passed a non-null UndefElements bitvector, it will resize it to match
1991   /// the vector width and set the bits where elements are undef.
1992   ConstantSDNode *
1993   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1994 
1995   /// Returns the demanded splatted constant FP or null if this is not a
1996   /// constant FP splat.
1997   ///
1998   /// The DemandedElts mask indicates the elements that must be in the splat.
1999   /// If passed a non-null UndefElements bitvector, it will resize it to match
2000   /// the vector width and set the bits where elements are undef.
2001   ConstantFPSDNode *
2002   getConstantFPSplatNode(const APInt &DemandedElts,
2003                          BitVector *UndefElements = nullptr) const;
2004 
2005   /// Returns the splatted constant FP or null if this is not a constant
2006   /// FP splat.
2007   ///
2008   /// If passed a non-null UndefElements bitvector, it will resize it to match
2009   /// the vector width and set the bits where elements are undef.
2010   ConstantFPSDNode *
2011   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2012 
2013   /// If this is a constant FP splat and the splatted constant FP is an
2014   /// exact power or 2, return the log base 2 integer value.  Otherwise,
2015   /// return -1.
2016   ///
2017   /// The BitWidth specifies the necessary bit precision.
2018   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2019                                           uint32_t BitWidth) const;
2020 
2021   bool isConstant() const;
2022 
2023   static bool classof(const SDNode *N) {
2024     return N->getOpcode() == ISD::BUILD_VECTOR;
2025   }
2026 };
2027 
2028 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2029 /// used when the SelectionDAG needs to make a simple reference to something
2030 /// in the LLVM IR representation.
2031 ///
2032 class SrcValueSDNode : public SDNode {
2033   friend class SelectionDAG;
2034 
2035   const Value *V;
2036 
2037   /// Create a SrcValue for a general value.
2038   explicit SrcValueSDNode(const Value *v)
2039     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2040 
2041 public:
2042   /// Return the contained Value.
2043   const Value *getValue() const { return V; }
2044 
2045   static bool classof(const SDNode *N) {
2046     return N->getOpcode() == ISD::SRCVALUE;
2047   }
2048 };
2049 
2050 class MDNodeSDNode : public SDNode {
2051   friend class SelectionDAG;
2052 
2053   const MDNode *MD;
2054 
2055   explicit MDNodeSDNode(const MDNode *md)
2056   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2057   {}
2058 
2059 public:
2060   const MDNode *getMD() const { return MD; }
2061 
2062   static bool classof(const SDNode *N) {
2063     return N->getOpcode() == ISD::MDNODE_SDNODE;
2064   }
2065 };
2066 
2067 class RegisterSDNode : public SDNode {
2068   friend class SelectionDAG;
2069 
2070   Register Reg;
2071 
2072   RegisterSDNode(Register reg, EVT VT)
2073     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2074 
2075 public:
2076   Register getReg() const { return Reg; }
2077 
2078   static bool classof(const SDNode *N) {
2079     return N->getOpcode() == ISD::Register;
2080   }
2081 };
2082 
2083 class RegisterMaskSDNode : public SDNode {
2084   friend class SelectionDAG;
2085 
2086   // The memory for RegMask is not owned by the node.
2087   const uint32_t *RegMask;
2088 
2089   RegisterMaskSDNode(const uint32_t *mask)
2090     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2091       RegMask(mask) {}
2092 
2093 public:
2094   const uint32_t *getRegMask() const { return RegMask; }
2095 
2096   static bool classof(const SDNode *N) {
2097     return N->getOpcode() == ISD::RegisterMask;
2098   }
2099 };
2100 
2101 class BlockAddressSDNode : public SDNode {
2102   friend class SelectionDAG;
2103 
2104   const BlockAddress *BA;
2105   int64_t Offset;
2106   unsigned TargetFlags;
2107 
2108   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2109                      int64_t o, unsigned Flags)
2110     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2111              BA(ba), Offset(o), TargetFlags(Flags) {}
2112 
2113 public:
2114   const BlockAddress *getBlockAddress() const { return BA; }
2115   int64_t getOffset() const { return Offset; }
2116   unsigned getTargetFlags() const { return TargetFlags; }
2117 
2118   static bool classof(const SDNode *N) {
2119     return N->getOpcode() == ISD::BlockAddress ||
2120            N->getOpcode() == ISD::TargetBlockAddress;
2121   }
2122 };
2123 
2124 class LabelSDNode : public SDNode {
2125   friend class SelectionDAG;
2126 
2127   MCSymbol *Label;
2128 
2129   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2130       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2131     assert(LabelSDNode::classof(this) && "not a label opcode");
2132   }
2133 
2134 public:
2135   MCSymbol *getLabel() const { return Label; }
2136 
2137   static bool classof(const SDNode *N) {
2138     return N->getOpcode() == ISD::EH_LABEL ||
2139            N->getOpcode() == ISD::ANNOTATION_LABEL;
2140   }
2141 };
2142 
2143 class ExternalSymbolSDNode : public SDNode {
2144   friend class SelectionDAG;
2145 
2146   const char *Symbol;
2147   unsigned TargetFlags;
2148 
2149   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2150       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2151                DebugLoc(), getSDVTList(VT)),
2152         Symbol(Sym), TargetFlags(TF) {}
2153 
2154 public:
2155   const char *getSymbol() const { return Symbol; }
2156   unsigned getTargetFlags() const { return TargetFlags; }
2157 
2158   static bool classof(const SDNode *N) {
2159     return N->getOpcode() == ISD::ExternalSymbol ||
2160            N->getOpcode() == ISD::TargetExternalSymbol;
2161   }
2162 };
2163 
2164 class MCSymbolSDNode : public SDNode {
2165   friend class SelectionDAG;
2166 
2167   MCSymbol *Symbol;
2168 
2169   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2170       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2171 
2172 public:
2173   MCSymbol *getMCSymbol() const { return Symbol; }
2174 
2175   static bool classof(const SDNode *N) {
2176     return N->getOpcode() == ISD::MCSymbol;
2177   }
2178 };
2179 
2180 class CondCodeSDNode : public SDNode {
2181   friend class SelectionDAG;
2182 
2183   ISD::CondCode Condition;
2184 
2185   explicit CondCodeSDNode(ISD::CondCode Cond)
2186     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2187       Condition(Cond) {}
2188 
2189 public:
2190   ISD::CondCode get() const { return Condition; }
2191 
2192   static bool classof(const SDNode *N) {
2193     return N->getOpcode() == ISD::CONDCODE;
2194   }
2195 };
2196 
2197 /// This class is used to represent EVT's, which are used
2198 /// to parameterize some operations.
2199 class VTSDNode : public SDNode {
2200   friend class SelectionDAG;
2201 
2202   EVT ValueType;
2203 
2204   explicit VTSDNode(EVT VT)
2205     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2206       ValueType(VT) {}
2207 
2208 public:
2209   EVT getVT() const { return ValueType; }
2210 
2211   static bool classof(const SDNode *N) {
2212     return N->getOpcode() == ISD::VALUETYPE;
2213   }
2214 };
2215 
2216 /// Base class for LoadSDNode and StoreSDNode
2217 class LSBaseSDNode : public MemSDNode {
2218 public:
2219   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2220                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2221                MachineMemOperand *MMO)
2222       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2223     LSBaseSDNodeBits.AddressingMode = AM;
2224     assert(getAddressingMode() == AM && "Value truncated");
2225   }
2226 
2227   const SDValue &getOffset() const {
2228     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2229   }
2230 
2231   /// Return the addressing mode for this load or store:
2232   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2233   ISD::MemIndexedMode getAddressingMode() const {
2234     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2235   }
2236 
2237   /// Return true if this is a pre/post inc/dec load/store.
2238   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2239 
2240   /// Return true if this is NOT a pre/post inc/dec load/store.
2241   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2242 
2243   static bool classof(const SDNode *N) {
2244     return N->getOpcode() == ISD::LOAD ||
2245            N->getOpcode() == ISD::STORE;
2246   }
2247 };
2248 
2249 /// This class is used to represent ISD::LOAD nodes.
2250 class LoadSDNode : public LSBaseSDNode {
2251   friend class SelectionDAG;
2252 
2253   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2254              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2255              MachineMemOperand *MMO)
2256       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2257     LoadSDNodeBits.ExtTy = ETy;
2258     assert(readMem() && "Load MachineMemOperand is not a load!");
2259     assert(!writeMem() && "Load MachineMemOperand is a store!");
2260   }
2261 
2262 public:
2263   /// Return whether this is a plain node,
2264   /// or one of the varieties of value-extending loads.
2265   ISD::LoadExtType getExtensionType() const {
2266     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2267   }
2268 
2269   const SDValue &getBasePtr() const { return getOperand(1); }
2270   const SDValue &getOffset() const { return getOperand(2); }
2271 
2272   static bool classof(const SDNode *N) {
2273     return N->getOpcode() == ISD::LOAD;
2274   }
2275 };
2276 
2277 /// This class is used to represent ISD::STORE nodes.
2278 class StoreSDNode : public LSBaseSDNode {
2279   friend class SelectionDAG;
2280 
2281   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2282               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2283               MachineMemOperand *MMO)
2284       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2285     StoreSDNodeBits.IsTruncating = isTrunc;
2286     assert(!readMem() && "Store MachineMemOperand is a load!");
2287     assert(writeMem() && "Store MachineMemOperand is not a store!");
2288   }
2289 
2290 public:
2291   /// Return true if the op does a truncation before store.
2292   /// For integers this is the same as doing a TRUNCATE and storing the result.
2293   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2294   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2295   void setTruncatingStore(bool Truncating) {
2296     StoreSDNodeBits.IsTruncating = Truncating;
2297   }
2298 
2299   const SDValue &getValue() const { return getOperand(1); }
2300   const SDValue &getBasePtr() const { return getOperand(2); }
2301   const SDValue &getOffset() const { return getOperand(3); }
2302 
2303   static bool classof(const SDNode *N) {
2304     return N->getOpcode() == ISD::STORE;
2305   }
2306 };
2307 
2308 /// This base class is used to represent MLOAD and MSTORE nodes
2309 class MaskedLoadStoreSDNode : public MemSDNode {
2310 public:
2311   friend class SelectionDAG;
2312 
2313   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2314                         const DebugLoc &dl, SDVTList VTs,
2315                         ISD::MemIndexedMode AM, EVT MemVT,
2316                         MachineMemOperand *MMO)
2317       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2318     LSBaseSDNodeBits.AddressingMode = AM;
2319     assert(getAddressingMode() == AM && "Value truncated");
2320   }
2321 
2322   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2323   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2324   // Mask is a vector of i1 elements
2325   const SDValue &getOffset() const {
2326     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2327   }
2328   const SDValue &getMask() const {
2329     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2330   }
2331 
2332   /// Return the addressing mode for this load or store:
2333   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2334   ISD::MemIndexedMode getAddressingMode() const {
2335     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2336   }
2337 
2338   /// Return true if this is a pre/post inc/dec load/store.
2339   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2340 
2341   /// Return true if this is NOT a pre/post inc/dec load/store.
2342   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2343 
2344   static bool classof(const SDNode *N) {
2345     return N->getOpcode() == ISD::MLOAD ||
2346            N->getOpcode() == ISD::MSTORE;
2347   }
2348 };
2349 
2350 /// This class is used to represent an MLOAD node
2351 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2352 public:
2353   friend class SelectionDAG;
2354 
2355   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2356                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2357                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2358       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2359     LoadSDNodeBits.ExtTy = ETy;
2360     LoadSDNodeBits.IsExpanding = IsExpanding;
2361   }
2362 
2363   ISD::LoadExtType getExtensionType() const {
2364     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2365   }
2366 
2367   const SDValue &getBasePtr() const { return getOperand(1); }
2368   const SDValue &getOffset() const { return getOperand(2); }
2369   const SDValue &getMask() const { return getOperand(3); }
2370   const SDValue &getPassThru() const { return getOperand(4); }
2371 
2372   static bool classof(const SDNode *N) {
2373     return N->getOpcode() == ISD::MLOAD;
2374   }
2375 
2376   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2377 };
2378 
2379 /// This class is used to represent an MSTORE node
2380 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2381 public:
2382   friend class SelectionDAG;
2383 
2384   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2385                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2386                     EVT MemVT, MachineMemOperand *MMO)
2387       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2388     StoreSDNodeBits.IsTruncating = isTrunc;
2389     StoreSDNodeBits.IsCompressing = isCompressing;
2390   }
2391 
2392   /// Return true if the op does a truncation before store.
2393   /// For integers this is the same as doing a TRUNCATE and storing the result.
2394   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2395   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2396 
2397   /// Returns true if the op does a compression to the vector before storing.
2398   /// The node contiguously stores the active elements (integers or floats)
2399   /// in src (those with their respective bit set in writemask k) to unaligned
2400   /// memory at base_addr.
2401   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2402 
2403   const SDValue &getValue() const { return getOperand(1); }
2404   const SDValue &getBasePtr() const { return getOperand(2); }
2405   const SDValue &getOffset() const { return getOperand(3); }
2406   const SDValue &getMask() const { return getOperand(4); }
2407 
2408   static bool classof(const SDNode *N) {
2409     return N->getOpcode() == ISD::MSTORE;
2410   }
2411 };
2412 
2413 /// This is a base class used to represent
2414 /// MGATHER and MSCATTER nodes
2415 ///
2416 class MaskedGatherScatterSDNode : public MemSDNode {
2417 public:
2418   friend class SelectionDAG;
2419 
2420   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2421                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2422                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2423       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2424     LSBaseSDNodeBits.AddressingMode = IndexType;
2425     assert(getIndexType() == IndexType && "Value truncated");
2426   }
2427 
2428   /// How is Index applied to BasePtr when computing addresses.
2429   ISD::MemIndexType getIndexType() const {
2430     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2431   }
2432   void setIndexType(ISD::MemIndexType IndexType) {
2433     LSBaseSDNodeBits.AddressingMode = IndexType;
2434   }
2435   bool isIndexScaled() const {
2436     return (getIndexType() == ISD::SIGNED_SCALED) ||
2437            (getIndexType() == ISD::UNSIGNED_SCALED);
2438   }
2439   bool isIndexSigned() const {
2440     return (getIndexType() == ISD::SIGNED_SCALED) ||
2441            (getIndexType() == ISD::SIGNED_UNSCALED);
2442   }
2443 
2444   // In the both nodes address is Op1, mask is Op2:
2445   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2446   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2447   // Mask is a vector of i1 elements
2448   const SDValue &getBasePtr() const { return getOperand(3); }
2449   const SDValue &getIndex()   const { return getOperand(4); }
2450   const SDValue &getMask()    const { return getOperand(2); }
2451   const SDValue &getScale()   const { return getOperand(5); }
2452 
2453   static bool classof(const SDNode *N) {
2454     return N->getOpcode() == ISD::MGATHER ||
2455            N->getOpcode() == ISD::MSCATTER;
2456   }
2457 };
2458 
2459 /// This class is used to represent an MGATHER node
2460 ///
2461 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2462 public:
2463   friend class SelectionDAG;
2464 
2465   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2466                      EVT MemVT, MachineMemOperand *MMO,
2467                      ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2468       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2469                                   IndexType) {
2470     LoadSDNodeBits.ExtTy = ETy;
2471   }
2472 
2473   const SDValue &getPassThru() const { return getOperand(1); }
2474 
2475   ISD::LoadExtType getExtensionType() const {
2476     return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2477   }
2478 
2479   static bool classof(const SDNode *N) {
2480     return N->getOpcode() == ISD::MGATHER;
2481   }
2482 };
2483 
2484 /// This class is used to represent an MSCATTER node
2485 ///
2486 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2487 public:
2488   friend class SelectionDAG;
2489 
2490   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2491                       EVT MemVT, MachineMemOperand *MMO,
2492                       ISD::MemIndexType IndexType, bool IsTrunc)
2493       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2494                                   IndexType) {
2495     StoreSDNodeBits.IsTruncating = IsTrunc;
2496   }
2497 
2498   /// Return true if the op does a truncation before store.
2499   /// For integers this is the same as doing a TRUNCATE and storing the result.
2500   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2501   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2502 
2503   const SDValue &getValue() const { return getOperand(1); }
2504 
2505   static bool classof(const SDNode *N) {
2506     return N->getOpcode() == ISD::MSCATTER;
2507   }
2508 };
2509 
2510 /// An SDNode that represents everything that will be needed
2511 /// to construct a MachineInstr. These nodes are created during the
2512 /// instruction selection proper phase.
2513 ///
2514 /// Note that the only supported way to set the `memoperands` is by calling the
2515 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2516 /// inside the DAG rather than in the node.
2517 class MachineSDNode : public SDNode {
2518 private:
2519   friend class SelectionDAG;
2520 
2521   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2522       : SDNode(Opc, Order, DL, VTs) {}
2523 
2524   // We use a pointer union between a single `MachineMemOperand` pointer and
2525   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2526   // the number of these is zero, the single pointer variant used when the
2527   // number is one, and the array is used for larger numbers.
2528   //
2529   // The array is allocated via the `SelectionDAG`'s allocator and so will
2530   // always live until the DAG is cleaned up and doesn't require ownership here.
2531   //
2532   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2533   // subclasses aren't managed in a conforming C++ manner. See the comments on
2534   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2535   // constraint here is that these don't manage memory with their constructor or
2536   // destructor and can be initialized to a good state even if they start off
2537   // uninitialized.
2538   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2539 
2540   // Note that this could be folded into the above `MemRefs` member if doing so
2541   // is advantageous at some point. We don't need to store this in most cases.
2542   // However, at the moment this doesn't appear to make the allocation any
2543   // smaller and makes the code somewhat simpler to read.
2544   int NumMemRefs = 0;
2545 
2546 public:
2547   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2548 
2549   ArrayRef<MachineMemOperand *> memoperands() const {
2550     // Special case the common cases.
2551     if (NumMemRefs == 0)
2552       return {};
2553     if (NumMemRefs == 1)
2554       return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2555 
2556     // Otherwise we have an actual array.
2557     return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2558   }
2559   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2560   mmo_iterator memoperands_end() const { return memoperands().end(); }
2561   bool memoperands_empty() const { return memoperands().empty(); }
2562 
2563   /// Clear out the memory reference descriptor list.
2564   void clearMemRefs() {
2565     MemRefs = nullptr;
2566     NumMemRefs = 0;
2567   }
2568 
2569   static bool classof(const SDNode *N) {
2570     return N->isMachineOpcode();
2571   }
2572 };
2573 
2574 /// An SDNode that records if a register contains a value that is guaranteed to
2575 /// be aligned accordingly.
2576 class AssertAlignSDNode : public SDNode {
2577   Align Alignment;
2578 
2579 public:
2580   AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2581       : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2582 
2583   Align getAlign() const { return Alignment; }
2584 
2585   static bool classof(const SDNode *N) {
2586     return N->getOpcode() == ISD::AssertAlign;
2587   }
2588 };
2589 
2590 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2591                                             SDNode, ptrdiff_t> {
2592   const SDNode *Node;
2593   unsigned Operand;
2594 
2595   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2596 
2597 public:
2598   bool operator==(const SDNodeIterator& x) const {
2599     return Operand == x.Operand;
2600   }
2601   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2602 
2603   pointer operator*() const {
2604     return Node->getOperand(Operand).getNode();
2605   }
2606   pointer operator->() const { return operator*(); }
2607 
2608   SDNodeIterator& operator++() {                // Preincrement
2609     ++Operand;
2610     return *this;
2611   }
2612   SDNodeIterator operator++(int) { // Postincrement
2613     SDNodeIterator tmp = *this; ++*this; return tmp;
2614   }
2615   size_t operator-(SDNodeIterator Other) const {
2616     assert(Node == Other.Node &&
2617            "Cannot compare iterators of two different nodes!");
2618     return Operand - Other.Operand;
2619   }
2620 
2621   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2622   static SDNodeIterator end  (const SDNode *N) {
2623     return SDNodeIterator(N, N->getNumOperands());
2624   }
2625 
2626   unsigned getOperand() const { return Operand; }
2627   const SDNode *getNode() const { return Node; }
2628 };
2629 
2630 template <> struct GraphTraits<SDNode*> {
2631   using NodeRef = SDNode *;
2632   using ChildIteratorType = SDNodeIterator;
2633 
2634   static NodeRef getEntryNode(SDNode *N) { return N; }
2635 
2636   static ChildIteratorType child_begin(NodeRef N) {
2637     return SDNodeIterator::begin(N);
2638   }
2639 
2640   static ChildIteratorType child_end(NodeRef N) {
2641     return SDNodeIterator::end(N);
2642   }
2643 };
2644 
2645 /// A representation of the largest SDNode, for use in sizeof().
2646 ///
2647 /// This needs to be a union because the largest node differs on 32 bit systems
2648 /// with 4 and 8 byte pointer alignment, respectively.
2649 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2650                                             BlockAddressSDNode,
2651                                             GlobalAddressSDNode,
2652                                             PseudoProbeSDNode>;
2653 
2654 /// The SDNode class with the greatest alignment requirement.
2655 using MostAlignedSDNode = GlobalAddressSDNode;
2656 
2657 namespace ISD {
2658 
2659   /// Returns true if the specified node is a non-extending and unindexed load.
2660   inline bool isNormalLoad(const SDNode *N) {
2661     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2662     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2663       Ld->getAddressingMode() == ISD::UNINDEXED;
2664   }
2665 
2666   /// Returns true if the specified node is a non-extending load.
2667   inline bool isNON_EXTLoad(const SDNode *N) {
2668     return isa<LoadSDNode>(N) &&
2669       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2670   }
2671 
2672   /// Returns true if the specified node is a EXTLOAD.
2673   inline bool isEXTLoad(const SDNode *N) {
2674     return isa<LoadSDNode>(N) &&
2675       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2676   }
2677 
2678   /// Returns true if the specified node is a SEXTLOAD.
2679   inline bool isSEXTLoad(const SDNode *N) {
2680     return isa<LoadSDNode>(N) &&
2681       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2682   }
2683 
2684   /// Returns true if the specified node is a ZEXTLOAD.
2685   inline bool isZEXTLoad(const SDNode *N) {
2686     return isa<LoadSDNode>(N) &&
2687       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2688   }
2689 
2690   /// Returns true if the specified node is an unindexed load.
2691   inline bool isUNINDEXEDLoad(const SDNode *N) {
2692     return isa<LoadSDNode>(N) &&
2693       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2694   }
2695 
2696   /// Returns true if the specified node is a non-truncating
2697   /// and unindexed store.
2698   inline bool isNormalStore(const SDNode *N) {
2699     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2700     return St && !St->isTruncatingStore() &&
2701       St->getAddressingMode() == ISD::UNINDEXED;
2702   }
2703 
2704   /// Returns true if the specified node is a non-truncating store.
2705   inline bool isNON_TRUNCStore(const SDNode *N) {
2706     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2707   }
2708 
2709   /// Returns true if the specified node is a truncating store.
2710   inline bool isTRUNCStore(const SDNode *N) {
2711     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2712   }
2713 
2714   /// Returns true if the specified node is an unindexed store.
2715   inline bool isUNINDEXEDStore(const SDNode *N) {
2716     return isa<StoreSDNode>(N) &&
2717       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2718   }
2719 
2720   /// Attempt to match a unary predicate against a scalar/splat constant or
2721   /// every element of a constant BUILD_VECTOR.
2722   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2723   bool matchUnaryPredicate(SDValue Op,
2724                            std::function<bool(ConstantSDNode *)> Match,
2725                            bool AllowUndefs = false);
2726 
2727   /// Attempt to match a binary predicate against a pair of scalar/splat
2728   /// constants or every element of a pair of constant BUILD_VECTORs.
2729   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2730   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2731   bool matchBinaryPredicate(
2732       SDValue LHS, SDValue RHS,
2733       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2734       bool AllowUndefs = false, bool AllowTypeMismatch = false);
2735 
2736   /// Returns true if the specified value is the overflow result from one
2737   /// of the overflow intrinsic nodes.
2738   inline bool isOverflowIntrOpRes(SDValue Op) {
2739     unsigned Opc = Op.getOpcode();
2740     return (Op.getResNo() == 1 &&
2741             (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2742              Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2743   }
2744 
2745 } // end namespace ISD
2746 
2747 } // end namespace llvm
2748 
2749 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
2750