1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14 #define LLVM_CODEGEN_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/CodeGen/MIRFormatter.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOutliner.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
38 
39 namespace llvm {
40 
41 class AAResults;
42 class DFAPacketizer;
43 class InstrItineraryData;
44 class LiveIntervals;
45 class LiveVariables;
46 class MachineLoop;
47 class MachineMemOperand;
48 class MachineRegisterInfo;
49 class MCAsmInfo;
50 class MCInst;
51 struct MCSchedModel;
52 class Module;
53 class ScheduleDAG;
54 class ScheduleDAGMI;
55 class ScheduleHazardRecognizer;
56 class SDNode;
57 class SelectionDAG;
58 class RegScavenger;
59 class TargetRegisterClass;
60 class TargetRegisterInfo;
61 class TargetSchedModel;
62 class TargetSubtargetInfo;
63 
64 template <class T> class SmallVectorImpl;
65 
66 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
67 
68 struct DestSourcePair {
69   const MachineOperand *Destination;
70   const MachineOperand *Source;
71 
72   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
73       : Destination(&Dest), Source(&Src) {}
74 };
75 
76 /// Used to describe a register and immediate addition.
77 struct RegImmPair {
78   Register Reg;
79   int64_t Imm;
80 
81   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
82 };
83 
84 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
85 /// It holds the register values, the scale value and the displacement.
86 struct ExtAddrMode {
87   Register BaseReg;
88   Register ScaledReg;
89   int64_t Scale;
90   int64_t Displacement;
91 };
92 
93 //---------------------------------------------------------------------------
94 ///
95 /// TargetInstrInfo - Interface to description of machine instruction set
96 ///
97 class TargetInstrInfo : public MCInstrInfo {
98 public:
99   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
100                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
101       : CallFrameSetupOpcode(CFSetupOpcode),
102         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
103         ReturnOpcode(ReturnOpcode) {}
104   TargetInstrInfo(const TargetInstrInfo &) = delete;
105   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
106   virtual ~TargetInstrInfo();
107 
108   static bool isGenericOpcode(unsigned Opc) {
109     return Opc <= TargetOpcode::GENERIC_OP_END;
110   }
111 
112   /// Given a machine instruction descriptor, returns the register
113   /// class constraint for OpNum, or NULL.
114   virtual
115   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
116                                          const TargetRegisterInfo *TRI,
117                                          const MachineFunction &MF) const;
118 
119   /// Return true if the instruction is trivially rematerializable, meaning it
120   /// has no side effects and requires no operands that aren't always available.
121   /// This means the only allowed uses are constants and unallocatable physical
122   /// registers so that the instructions result is independent of the place
123   /// in the function.
124   bool isTriviallyReMaterializable(const MachineInstr &MI,
125                                    AAResults *AA = nullptr) const {
126     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
127            (MI.getDesc().isRematerializable() &&
128             (isReallyTriviallyReMaterializable(MI, AA) ||
129              isReallyTriviallyReMaterializableGeneric(MI, AA)));
130   }
131 
132   /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
133   /// of instruction rematerialization.
134   virtual bool isIgnorableUse(const MachineOperand &MO) const {
135     return false;
136   }
137 
138 protected:
139   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
140   /// set, this hook lets the target specify whether the instruction is actually
141   /// trivially rematerializable, taking into consideration its operands. This
142   /// predicate must return false if the instruction has any side effects other
143   /// than producing a value, or if it requres any address registers that are
144   /// not always available.
145   /// Requirements must be check as stated in isTriviallyReMaterializable() .
146   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
147                                                  AAResults *AA) const {
148     return false;
149   }
150 
151   /// This method commutes the operands of the given machine instruction MI.
152   /// The operands to be commuted are specified by their indices OpIdx1 and
153   /// OpIdx2.
154   ///
155   /// If a target has any instructions that are commutable but require
156   /// converting to different instructions or making non-trivial changes
157   /// to commute them, this method can be overloaded to do that.
158   /// The default implementation simply swaps the commutable operands.
159   ///
160   /// If NewMI is false, MI is modified in place and returned; otherwise, a
161   /// new machine instruction is created and returned.
162   ///
163   /// Do not call this method for a non-commutable instruction.
164   /// Even though the instruction is commutable, the method may still
165   /// fail to commute the operands, null pointer is returned in such cases.
166   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
167                                                unsigned OpIdx1,
168                                                unsigned OpIdx2) const;
169 
170   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
171   /// operand indices to (ResultIdx1, ResultIdx2).
172   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
173   /// predefined to some indices or be undefined (designated by the special
174   /// value 'CommuteAnyOperandIndex').
175   /// The predefined result indices cannot be re-defined.
176   /// The function returns true iff after the result pair redefinition
177   /// the fixed result pair is equal to or equivalent to the source pair of
178   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
179   /// the pairs (x,y) and (y,x) are equivalent.
180   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
181                                    unsigned CommutableOpIdx1,
182                                    unsigned CommutableOpIdx2);
183 
184 private:
185   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
186   /// set and the target hook isReallyTriviallyReMaterializable returns false,
187   /// this function does target-independent tests to determine if the
188   /// instruction is really trivially rematerializable.
189   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
190                                                 AAResults *AA) const;
191 
192 public:
193   /// These methods return the opcode of the frame setup/destroy instructions
194   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
195   /// order to abstract away the difference between operating with a frame
196   /// pointer and operating without, through the use of these two instructions.
197   ///
198   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
199   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
200 
201   /// Returns true if the argument is a frame pseudo instruction.
202   bool isFrameInstr(const MachineInstr &I) const {
203     return I.getOpcode() == getCallFrameSetupOpcode() ||
204            I.getOpcode() == getCallFrameDestroyOpcode();
205   }
206 
207   /// Returns true if the argument is a frame setup pseudo instruction.
208   bool isFrameSetup(const MachineInstr &I) const {
209     return I.getOpcode() == getCallFrameSetupOpcode();
210   }
211 
212   /// Returns size of the frame associated with the given frame instruction.
213   /// For frame setup instruction this is frame that is set up space set up
214   /// after the instruction. For frame destroy instruction this is the frame
215   /// freed by the caller.
216   /// Note, in some cases a call frame (or a part of it) may be prepared prior
217   /// to the frame setup instruction. It occurs in the calls that involve
218   /// inalloca arguments. This function reports only the size of the frame part
219   /// that is set up between the frame setup and destroy pseudo instructions.
220   int64_t getFrameSize(const MachineInstr &I) const {
221     assert(isFrameInstr(I) && "Not a frame instruction");
222     assert(I.getOperand(0).getImm() >= 0);
223     return I.getOperand(0).getImm();
224   }
225 
226   /// Returns the total frame size, which is made up of the space set up inside
227   /// the pair of frame start-stop instructions and the space that is set up
228   /// prior to the pair.
229   int64_t getFrameTotalSize(const MachineInstr &I) const {
230     if (isFrameSetup(I)) {
231       assert(I.getOperand(1).getImm() >= 0 &&
232              "Frame size must not be negative");
233       return getFrameSize(I) + I.getOperand(1).getImm();
234     }
235     return getFrameSize(I);
236   }
237 
238   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
239   unsigned getReturnOpcode() const { return ReturnOpcode; }
240 
241   /// Returns the actual stack pointer adjustment made by an instruction
242   /// as part of a call sequence. By default, only call frame setup/destroy
243   /// instructions adjust the stack, but targets may want to override this
244   /// to enable more fine-grained adjustment, or adjust by a different value.
245   virtual int getSPAdjust(const MachineInstr &MI) const;
246 
247   /// Return true if the instruction is a "coalescable" extension instruction.
248   /// That is, it's like a copy where it's legal for the source to overlap the
249   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
250   /// expected the pre-extension value is available as a subreg of the result
251   /// register. This also returns the sub-register index in SubIdx.
252   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
253                                      Register &DstReg, unsigned &SubIdx) const {
254     return false;
255   }
256 
257   /// If the specified machine instruction is a direct
258   /// load from a stack slot, return the virtual or physical register number of
259   /// the destination along with the FrameIndex of the loaded stack slot.  If
260   /// not, return 0.  This predicate must return 0 if the instruction has
261   /// any side effects other than loading from the stack slot.
262   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
263                                        int &FrameIndex) const {
264     return 0;
265   }
266 
267   /// Optional extension of isLoadFromStackSlot that returns the number of
268   /// bytes loaded from the stack. This must be implemented if a backend
269   /// supports partial stack slot spills/loads to further disambiguate
270   /// what the load does.
271   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
272                                        int &FrameIndex,
273                                        unsigned &MemBytes) const {
274     MemBytes = 0;
275     return isLoadFromStackSlot(MI, FrameIndex);
276   }
277 
278   /// Check for post-frame ptr elimination stack locations as well.
279   /// This uses a heuristic so it isn't reliable for correctness.
280   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
281                                              int &FrameIndex) const {
282     return 0;
283   }
284 
285   /// If the specified machine instruction has a load from a stack slot,
286   /// return true along with the FrameIndices of the loaded stack slot and the
287   /// machine mem operands containing the reference.
288   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
289   /// any instructions that loads from the stack.  This is just a hint, as some
290   /// cases may be missed.
291   virtual bool hasLoadFromStackSlot(
292       const MachineInstr &MI,
293       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
294 
295   /// If the specified machine instruction is a direct
296   /// store to a stack slot, return the virtual or physical register number of
297   /// the source reg along with the FrameIndex of the loaded stack slot.  If
298   /// not, return 0.  This predicate must return 0 if the instruction has
299   /// any side effects other than storing to the stack slot.
300   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
301                                       int &FrameIndex) const {
302     return 0;
303   }
304 
305   /// Optional extension of isStoreToStackSlot that returns the number of
306   /// bytes stored to the stack. This must be implemented if a backend
307   /// supports partial stack slot spills/loads to further disambiguate
308   /// what the store does.
309   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
310                                       int &FrameIndex,
311                                       unsigned &MemBytes) const {
312     MemBytes = 0;
313     return isStoreToStackSlot(MI, FrameIndex);
314   }
315 
316   /// Check for post-frame ptr elimination stack locations as well.
317   /// This uses a heuristic, so it isn't reliable for correctness.
318   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
319                                             int &FrameIndex) const {
320     return 0;
321   }
322 
323   /// If the specified machine instruction has a store to a stack slot,
324   /// return true along with the FrameIndices of the loaded stack slot and the
325   /// machine mem operands containing the reference.
326   /// If not, return false.  Unlike isStoreToStackSlot,
327   /// this returns true for any instructions that stores to the
328   /// stack.  This is just a hint, as some cases may be missed.
329   virtual bool hasStoreToStackSlot(
330       const MachineInstr &MI,
331       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
332 
333   /// Return true if the specified machine instruction
334   /// is a copy of one stack slot to another and has no other effect.
335   /// Provide the identity of the two frame indices.
336   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
337                                int &SrcFrameIndex) const {
338     return false;
339   }
340 
341   /// Compute the size in bytes and offset within a stack slot of a spilled
342   /// register or subregister.
343   ///
344   /// \param [out] Size in bytes of the spilled value.
345   /// \param [out] Offset in bytes within the stack slot.
346   /// \returns true if both Size and Offset are successfully computed.
347   ///
348   /// Not all subregisters have computable spill slots. For example,
349   /// subregisters registers may not be byte-sized, and a pair of discontiguous
350   /// subregisters has no single offset.
351   ///
352   /// Targets with nontrivial bigendian implementations may need to override
353   /// this, particularly to support spilled vector registers.
354   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
355                                  unsigned &Size, unsigned &Offset,
356                                  const MachineFunction &MF) const;
357 
358   /// Return true if the given instruction is terminator that is unspillable,
359   /// according to isUnspillableTerminatorImpl.
360   bool isUnspillableTerminator(const MachineInstr *MI) const {
361     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
362   }
363 
364   /// Returns the size in bytes of the specified MachineInstr, or ~0U
365   /// when this function is not implemented by a target.
366   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
367     return ~0U;
368   }
369 
370   /// Return true if the instruction is as cheap as a move instruction.
371   ///
372   /// Targets for different archs need to override this, and different
373   /// micro-architectures can also be finely tuned inside.
374   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
375     return MI.isAsCheapAsAMove();
376   }
377 
378   /// Return true if the instruction should be sunk by MachineSink.
379   ///
380   /// MachineSink determines on its own whether the instruction is safe to sink;
381   /// this gives the target a hook to override the default behavior with regards
382   /// to which instructions should be sunk.
383   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
384 
385   /// Re-issue the specified 'original' instruction at the
386   /// specific location targeting a new destination register.
387   /// The register in Orig->getOperand(0).getReg() will be substituted by
388   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
389   /// SubIdx.
390   virtual void reMaterialize(MachineBasicBlock &MBB,
391                              MachineBasicBlock::iterator MI, Register DestReg,
392                              unsigned SubIdx, const MachineInstr &Orig,
393                              const TargetRegisterInfo &TRI) const;
394 
395   /// Clones instruction or the whole instruction bundle \p Orig and
396   /// insert into \p MBB before \p InsertBefore. The target may update operands
397   /// that are required to be unique.
398   ///
399   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
400   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
401                                   MachineBasicBlock::iterator InsertBefore,
402                                   const MachineInstr &Orig) const;
403 
404   /// This method must be implemented by targets that
405   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
406   /// may be able to convert a two-address instruction into one or more true
407   /// three-address instructions on demand.  This allows the X86 target (for
408   /// example) to convert ADD and SHL instructions into LEA instructions if they
409   /// would require register copies due to two-addressness.
410   ///
411   /// This method returns a null pointer if the transformation cannot be
412   /// performed, otherwise it returns the last new instruction.
413   ///
414   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
415                                               MachineInstr &MI,
416                                               LiveVariables *LV) const {
417     return nullptr;
418   }
419 
420   // This constant can be used as an input value of operand index passed to
421   // the method findCommutedOpIndices() to tell the method that the
422   // corresponding operand index is not pre-defined and that the method
423   // can pick any commutable operand.
424   static const unsigned CommuteAnyOperandIndex = ~0U;
425 
426   /// This method commutes the operands of the given machine instruction MI.
427   ///
428   /// The operands to be commuted are specified by their indices OpIdx1 and
429   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
430   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
431   /// any arbitrarily chosen commutable operand. If both arguments are set to
432   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
433   /// operands; then commutes them if such operands could be found.
434   ///
435   /// If NewMI is false, MI is modified in place and returned; otherwise, a
436   /// new machine instruction is created and returned.
437   ///
438   /// Do not call this method for a non-commutable instruction or
439   /// for non-commuable operands.
440   /// Even though the instruction is commutable, the method may still
441   /// fail to commute the operands, null pointer is returned in such cases.
442   MachineInstr *
443   commuteInstruction(MachineInstr &MI, bool NewMI = false,
444                      unsigned OpIdx1 = CommuteAnyOperandIndex,
445                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
446 
447   /// Returns true iff the routine could find two commutable operands in the
448   /// given machine instruction.
449   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
450   /// If any of the INPUT values is set to the special value
451   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
452   /// operand, then returns its index in the corresponding argument.
453   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
454   /// looks for 2 commutable operands.
455   /// If INPUT values refer to some operands of MI, then the method simply
456   /// returns true if the corresponding operands are commutable and returns
457   /// false otherwise.
458   ///
459   /// For example, calling this method this way:
460   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
461   ///     findCommutedOpIndices(MI, Op1, Op2);
462   /// can be interpreted as a query asking to find an operand that would be
463   /// commutable with the operand#1.
464   virtual bool findCommutedOpIndices(const MachineInstr &MI,
465                                      unsigned &SrcOpIdx1,
466                                      unsigned &SrcOpIdx2) const;
467 
468   /// Returns true if the target has a preference on the operands order of
469   /// the given machine instruction. And specify if \p Commute is required to
470   /// get the desired operands order.
471   virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
472     return false;
473   }
474 
475   /// A pair composed of a register and a sub-register index.
476   /// Used to give some type checking when modeling Reg:SubReg.
477   struct RegSubRegPair {
478     Register Reg;
479     unsigned SubReg;
480 
481     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
482         : Reg(Reg), SubReg(SubReg) {}
483 
484     bool operator==(const RegSubRegPair& P) const {
485       return Reg == P.Reg && SubReg == P.SubReg;
486     }
487     bool operator!=(const RegSubRegPair& P) const {
488       return !(*this == P);
489     }
490   };
491 
492   /// A pair composed of a pair of a register and a sub-register index,
493   /// and another sub-register index.
494   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
495   struct RegSubRegPairAndIdx : RegSubRegPair {
496     unsigned SubIdx;
497 
498     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
499                         unsigned SubIdx = 0)
500         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
501   };
502 
503   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
504   /// and \p DefIdx.
505   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
506   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
507   /// flag are not added to this list.
508   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
509   /// two elements:
510   /// - %1:sub1, sub0
511   /// - %2<:0>, sub1
512   ///
513   /// \returns true if it is possible to build such an input sequence
514   /// with the pair \p MI, \p DefIdx. False otherwise.
515   ///
516   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
517   ///
518   /// \note The generic implementation does not provide any support for
519   /// MI.isRegSequenceLike(). In other words, one has to override
520   /// getRegSequenceLikeInputs for target specific instructions.
521   bool
522   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
523                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
524 
525   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
526   /// and \p DefIdx.
527   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
528   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
529   /// - %1:sub1, sub0
530   ///
531   /// \returns true if it is possible to build such an input sequence
532   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
533   /// False otherwise.
534   ///
535   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
536   ///
537   /// \note The generic implementation does not provide any support for
538   /// MI.isExtractSubregLike(). In other words, one has to override
539   /// getExtractSubregLikeInputs for target specific instructions.
540   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
541                               RegSubRegPairAndIdx &InputReg) const;
542 
543   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
544   /// and \p DefIdx.
545   /// \p [out] BaseReg and \p [out] InsertedReg contain
546   /// the equivalent inputs of INSERT_SUBREG.
547   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
548   /// - BaseReg: %0:sub0
549   /// - InsertedReg: %1:sub1, sub3
550   ///
551   /// \returns true if it is possible to build such an input sequence
552   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
553   /// False otherwise.
554   ///
555   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
556   ///
557   /// \note The generic implementation does not provide any support for
558   /// MI.isInsertSubregLike(). In other words, one has to override
559   /// getInsertSubregLikeInputs for target specific instructions.
560   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
561                              RegSubRegPair &BaseReg,
562                              RegSubRegPairAndIdx &InsertedReg) const;
563 
564   /// Return true if two machine instructions would produce identical values.
565   /// By default, this is only true when the two instructions
566   /// are deemed identical except for defs. If this function is called when the
567   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
568   /// aggressive checks.
569   virtual bool produceSameValue(const MachineInstr &MI0,
570                                 const MachineInstr &MI1,
571                                 const MachineRegisterInfo *MRI = nullptr) const;
572 
573   /// \returns true if a branch from an instruction with opcode \p BranchOpc
574   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
575   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
576                                      int64_t BrOffset) const {
577     llvm_unreachable("target did not implement");
578   }
579 
580   /// \returns The block that branch instruction \p MI jumps to.
581   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
582     llvm_unreachable("target did not implement");
583   }
584 
585   /// Insert an unconditional indirect branch at the end of \p MBB to \p
586   /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
587   /// the offset of the position to insert the new branch.
588   ///
589   /// \returns The number of bytes added to the block.
590   virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
591                                         MachineBasicBlock &NewDestBB,
592                                         const DebugLoc &DL,
593                                         int64_t BrOffset = 0,
594                                         RegScavenger *RS = nullptr) const {
595     llvm_unreachable("target did not implement");
596   }
597 
598   /// Analyze the branching code at the end of MBB, returning
599   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
600   /// implemented for a target).  Upon success, this returns false and returns
601   /// with the following information in various cases:
602   ///
603   /// 1. If this block ends with no branches (it just falls through to its succ)
604   ///    just return false, leaving TBB/FBB null.
605   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
606   ///    the destination block.
607   /// 3. If this block ends with a conditional branch and it falls through to a
608   ///    successor block, it sets TBB to be the branch destination block and a
609   ///    list of operands that evaluate the condition. These operands can be
610   ///    passed to other TargetInstrInfo methods to create new branches.
611   /// 4. If this block ends with a conditional branch followed by an
612   ///    unconditional branch, it returns the 'true' destination in TBB, the
613   ///    'false' destination in FBB, and a list of operands that evaluate the
614   ///    condition.  These operands can be passed to other TargetInstrInfo
615   ///    methods to create new branches.
616   ///
617   /// Note that removeBranch and insertBranch must be implemented to support
618   /// cases where this method returns success.
619   ///
620   /// If AllowModify is true, then this routine is allowed to modify the basic
621   /// block (e.g. delete instructions after the unconditional branch).
622   ///
623   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
624   /// before calling this function.
625   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
626                              MachineBasicBlock *&FBB,
627                              SmallVectorImpl<MachineOperand> &Cond,
628                              bool AllowModify = false) const {
629     return true;
630   }
631 
632   /// Represents a predicate at the MachineFunction level.  The control flow a
633   /// MachineBranchPredicate represents is:
634   ///
635   ///  Reg = LHS `Predicate` RHS         == ConditionDef
636   ///  if Reg then goto TrueDest else goto FalseDest
637   ///
638   struct MachineBranchPredicate {
639     enum ComparePredicate {
640       PRED_EQ,     // True if two values are equal
641       PRED_NE,     // True if two values are not equal
642       PRED_INVALID // Sentinel value
643     };
644 
645     ComparePredicate Predicate = PRED_INVALID;
646     MachineOperand LHS = MachineOperand::CreateImm(0);
647     MachineOperand RHS = MachineOperand::CreateImm(0);
648     MachineBasicBlock *TrueDest = nullptr;
649     MachineBasicBlock *FalseDest = nullptr;
650     MachineInstr *ConditionDef = nullptr;
651 
652     /// SingleUseCondition is true if ConditionDef is dead except for the
653     /// branch(es) at the end of the basic block.
654     ///
655     bool SingleUseCondition = false;
656 
657     explicit MachineBranchPredicate() = default;
658   };
659 
660   /// Analyze the branching code at the end of MBB and parse it into the
661   /// MachineBranchPredicate structure if possible.  Returns false on success
662   /// and true on failure.
663   ///
664   /// If AllowModify is true, then this routine is allowed to modify the basic
665   /// block (e.g. delete instructions after the unconditional branch).
666   ///
667   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
668                                       MachineBranchPredicate &MBP,
669                                       bool AllowModify = false) const {
670     return true;
671   }
672 
673   /// Remove the branching code at the end of the specific MBB.
674   /// This is only invoked in cases where analyzeBranch returns success. It
675   /// returns the number of instructions that were removed.
676   /// If \p BytesRemoved is non-null, report the change in code size from the
677   /// removed instructions.
678   virtual unsigned removeBranch(MachineBasicBlock &MBB,
679                                 int *BytesRemoved = nullptr) const {
680     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
681   }
682 
683   /// Insert branch code into the end of the specified MachineBasicBlock. The
684   /// operands to this method are the same as those returned by analyzeBranch.
685   /// This is only invoked in cases where analyzeBranch returns success. It
686   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
687   /// report the change in code size from the added instructions.
688   ///
689   /// It is also invoked by tail merging to add unconditional branches in
690   /// cases where analyzeBranch doesn't apply because there was no original
691   /// branch to analyze.  At least this much must be implemented, else tail
692   /// merging needs to be disabled.
693   ///
694   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
695   /// before calling this function.
696   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
697                                 MachineBasicBlock *FBB,
698                                 ArrayRef<MachineOperand> Cond,
699                                 const DebugLoc &DL,
700                                 int *BytesAdded = nullptr) const {
701     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
702   }
703 
704   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
705                                      MachineBasicBlock *DestBB,
706                                      const DebugLoc &DL,
707                                      int *BytesAdded = nullptr) const {
708     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
709                         BytesAdded);
710   }
711 
712   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
713   /// implementations to query attributes of the loop being pipelined and to
714   /// apply target-specific updates to the loop once pipelining is complete.
715   class PipelinerLoopInfo {
716   public:
717     virtual ~PipelinerLoopInfo();
718     /// Return true if the given instruction should not be pipelined and should
719     /// be ignored. An example could be a loop comparison, or induction variable
720     /// update with no users being pipelined.
721     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
722 
723     /// Create a condition to determine if the trip count of the loop is greater
724     /// than TC.
725     ///
726     /// If the trip count is statically known to be greater than TC, return
727     /// true. If the trip count is statically known to be not greater than TC,
728     /// return false. Otherwise return nullopt and fill out Cond with the test
729     /// condition.
730     virtual Optional<bool>
731     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
732                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
733 
734     /// Modify the loop such that the trip count is
735     /// OriginalTC + TripCountAdjust.
736     virtual void adjustTripCount(int TripCountAdjust) = 0;
737 
738     /// Called when the loop's preheader has been modified to NewPreheader.
739     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
740 
741     /// Called when the loop is being removed. Any instructions in the preheader
742     /// should be removed.
743     ///
744     /// Once this function is called, no other functions on this object are
745     /// valid; the loop has been removed.
746     virtual void disposed() = 0;
747   };
748 
749   /// Analyze loop L, which must be a single-basic-block loop, and if the
750   /// conditions can be understood enough produce a PipelinerLoopInfo object.
751   virtual std::unique_ptr<PipelinerLoopInfo>
752   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
753     return nullptr;
754   }
755 
756   /// Analyze the loop code, return true if it cannot be understood. Upon
757   /// success, this function returns false and returns information about the
758   /// induction variable and compare instruction used at the end.
759   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
760                            MachineInstr *&CmpInst) const {
761     return true;
762   }
763 
764   /// Generate code to reduce the loop iteration by one and check if the loop
765   /// is finished.  Return the value/register of the new loop count.  We need
766   /// this function when peeling off one or more iterations of a loop. This
767   /// function assumes the nth iteration is peeled first.
768   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
769                                    MachineBasicBlock &PreHeader,
770                                    MachineInstr *IndVar, MachineInstr &Cmp,
771                                    SmallVectorImpl<MachineOperand> &Cond,
772                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
773                                    unsigned Iter, unsigned MaxIter) const {
774     llvm_unreachable("Target didn't implement ReduceLoopCount");
775   }
776 
777   /// Delete the instruction OldInst and everything after it, replacing it with
778   /// an unconditional branch to NewDest. This is used by the tail merging pass.
779   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
780                                        MachineBasicBlock *NewDest) const;
781 
782   /// Return true if it's legal to split the given basic
783   /// block at the specified instruction (i.e. instruction would be the start
784   /// of a new basic block).
785   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
786                                    MachineBasicBlock::iterator MBBI) const {
787     return true;
788   }
789 
790   /// Return true if it's profitable to predicate
791   /// instructions with accumulated instruction latency of "NumCycles"
792   /// of the specified basic block, where the probability of the instructions
793   /// being executed is given by Probability, and Confidence is a measure
794   /// of our confidence that it will be properly predicted.
795   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
796                                    unsigned ExtraPredCycles,
797                                    BranchProbability Probability) const {
798     return false;
799   }
800 
801   /// Second variant of isProfitableToIfCvt. This one
802   /// checks for the case where two basic blocks from true and false path
803   /// of a if-then-else (diamond) are predicated on mutually exclusive
804   /// predicates, where the probability of the true path being taken is given
805   /// by Probability, and Confidence is a measure of our confidence that it
806   /// will be properly predicted.
807   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
808                                    unsigned ExtraTCycles,
809                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
810                                    unsigned ExtraFCycles,
811                                    BranchProbability Probability) const {
812     return false;
813   }
814 
815   /// Return true if it's profitable for if-converter to duplicate instructions
816   /// of specified accumulated instruction latencies in the specified MBB to
817   /// enable if-conversion.
818   /// The probability of the instructions being executed is given by
819   /// Probability, and Confidence is a measure of our confidence that it
820   /// will be properly predicted.
821   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
822                                          unsigned NumCycles,
823                                          BranchProbability Probability) const {
824     return false;
825   }
826 
827   /// Return the increase in code size needed to predicate a contiguous run of
828   /// NumInsts instructions.
829   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
830                                                     unsigned NumInsts) const {
831     return 0;
832   }
833 
834   /// Return an estimate for the code size reduction (in bytes) which will be
835   /// caused by removing the given branch instruction during if-conversion.
836   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
837     return getInstSizeInBytes(MI);
838   }
839 
840   /// Return true if it's profitable to unpredicate
841   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
842   /// exclusive predicates.
843   /// e.g.
844   ///   subeq  r0, r1, #1
845   ///   addne  r0, r1, #1
846   /// =>
847   ///   sub    r0, r1, #1
848   ///   addne  r0, r1, #1
849   ///
850   /// This may be profitable is conditional instructions are always executed.
851   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
852                                          MachineBasicBlock &FMBB) const {
853     return false;
854   }
855 
856   /// Return true if it is possible to insert a select
857   /// instruction that chooses between TrueReg and FalseReg based on the
858   /// condition code in Cond.
859   ///
860   /// When successful, also return the latency in cycles from TrueReg,
861   /// FalseReg, and Cond to the destination register. In most cases, a select
862   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
863   ///
864   /// Some x86 implementations have 2-cycle cmov instructions.
865   ///
866   /// @param MBB         Block where select instruction would be inserted.
867   /// @param Cond        Condition returned by analyzeBranch.
868   /// @param DstReg      Virtual dest register that the result should write to.
869   /// @param TrueReg     Virtual register to select when Cond is true.
870   /// @param FalseReg    Virtual register to select when Cond is false.
871   /// @param CondCycles  Latency from Cond+Branch to select output.
872   /// @param TrueCycles  Latency from TrueReg to select output.
873   /// @param FalseCycles Latency from FalseReg to select output.
874   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
875                                ArrayRef<MachineOperand> Cond, Register DstReg,
876                                Register TrueReg, Register FalseReg,
877                                int &CondCycles, int &TrueCycles,
878                                int &FalseCycles) const {
879     return false;
880   }
881 
882   /// Insert a select instruction into MBB before I that will copy TrueReg to
883   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
884   ///
885   /// This function can only be called after canInsertSelect() returned true.
886   /// The condition in Cond comes from analyzeBranch, and it can be assumed
887   /// that the same flags or registers required by Cond are available at the
888   /// insertion point.
889   ///
890   /// @param MBB      Block where select instruction should be inserted.
891   /// @param I        Insertion point.
892   /// @param DL       Source location for debugging.
893   /// @param DstReg   Virtual register to be defined by select instruction.
894   /// @param Cond     Condition as computed by analyzeBranch.
895   /// @param TrueReg  Virtual register to copy when Cond is true.
896   /// @param FalseReg Virtual register to copy when Cons is false.
897   virtual void insertSelect(MachineBasicBlock &MBB,
898                             MachineBasicBlock::iterator I, const DebugLoc &DL,
899                             Register DstReg, ArrayRef<MachineOperand> Cond,
900                             Register TrueReg, Register FalseReg) const {
901     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
902   }
903 
904   /// Analyze the given select instruction, returning true if
905   /// it cannot be understood. It is assumed that MI->isSelect() is true.
906   ///
907   /// When successful, return the controlling condition and the operands that
908   /// determine the true and false result values.
909   ///
910   ///   Result = SELECT Cond, TrueOp, FalseOp
911   ///
912   /// Some targets can optimize select instructions, for example by predicating
913   /// the instruction defining one of the operands. Such targets should set
914   /// Optimizable.
915   ///
916   /// @param         MI Select instruction to analyze.
917   /// @param Cond    Condition controlling the select.
918   /// @param TrueOp  Operand number of the value selected when Cond is true.
919   /// @param FalseOp Operand number of the value selected when Cond is false.
920   /// @param Optimizable Returned as true if MI is optimizable.
921   /// @returns False on success.
922   virtual bool analyzeSelect(const MachineInstr &MI,
923                              SmallVectorImpl<MachineOperand> &Cond,
924                              unsigned &TrueOp, unsigned &FalseOp,
925                              bool &Optimizable) const {
926     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
927     return true;
928   }
929 
930   /// Given a select instruction that was understood by
931   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
932   /// merging it with one of its operands. Returns NULL on failure.
933   ///
934   /// When successful, returns the new select instruction. The client is
935   /// responsible for deleting MI.
936   ///
937   /// If both sides of the select can be optimized, PreferFalse is used to pick
938   /// a side.
939   ///
940   /// @param MI          Optimizable select instruction.
941   /// @param NewMIs     Set that record all MIs in the basic block up to \p
942   /// MI. Has to be updated with any newly created MI or deleted ones.
943   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
944   /// @returns Optimized instruction or NULL.
945   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
946                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
947                                        bool PreferFalse = false) const {
948     // This function must be implemented if Optimizable is ever set.
949     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
950   }
951 
952   /// Emit instructions to copy a pair of physical registers.
953   ///
954   /// This function should support copies within any legal register class as
955   /// well as any cross-class copies created during instruction selection.
956   ///
957   /// The source and destination registers may overlap, which may require a
958   /// careful implementation when multiple copy instructions are required for
959   /// large registers. See for example the ARM target.
960   virtual void copyPhysReg(MachineBasicBlock &MBB,
961                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
962                            MCRegister DestReg, MCRegister SrcReg,
963                            bool KillSrc) const {
964     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
965   }
966 
967   /// Allow targets to tell MachineVerifier whether a specific register
968   /// MachineOperand can be used as part of PC-relative addressing.
969   /// PC-relative addressing modes in many CISC architectures contain
970   /// (non-PC) registers as offsets or scaling values, which inherently
971   /// tags the corresponding MachineOperand with OPERAND_PCREL.
972   ///
973   /// @param MO The MachineOperand in question. MO.isReg() should always
974   /// be true.
975   /// @return Whether this operand is allowed to be used PC-relatively.
976   virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
977     return false;
978   }
979 
980 protected:
981   /// Target-dependent implementation for IsCopyInstr.
982   /// If the specific machine instruction is a instruction that moves/copies
983   /// value from one register to another register return destination and source
984   /// registers as machine operands.
985   virtual Optional<DestSourcePair>
986   isCopyInstrImpl(const MachineInstr &MI) const {
987     return None;
988   }
989 
990   /// Return true if the given terminator MI is not expected to spill. This
991   /// sets the live interval as not spillable and adjusts phi node lowering to
992   /// not introduce copies after the terminator. Use with care, these are
993   /// currently used for hardware loop intrinsics in very controlled situations,
994   /// created prior to registry allocation in loops that only have single phi
995   /// users for the terminators value. They may run out of registers if not used
996   /// carefully.
997   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
998     return false;
999   }
1000 
1001 public:
1002   /// If the specific machine instruction is a instruction that moves/copies
1003   /// value from one register to another register return destination and source
1004   /// registers as machine operands.
1005   /// For COPY-instruction the method naturally returns destination and source
1006   /// registers as machine operands, for all other instructions the method calls
1007   /// target-dependent implementation.
1008   Optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1009     if (MI.isCopy()) {
1010       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1011     }
1012     return isCopyInstrImpl(MI);
1013   }
1014 
1015   /// If the specific machine instruction is an instruction that adds an
1016   /// immediate value and a physical register, and stores the result in
1017   /// the given physical register \c Reg, return a pair of the source
1018   /// register and the offset which has been added.
1019   virtual Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1020                                               Register Reg) const {
1021     return None;
1022   }
1023 
1024   /// Returns true if MI is an instruction that defines Reg to have a constant
1025   /// value and the value is recorded in ImmVal. The ImmVal is a result that
1026   /// should be interpreted as modulo size of Reg.
1027   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1028                                        const Register Reg,
1029                                        int64_t &ImmVal) const {
1030     return false;
1031   }
1032 
1033   /// Store the specified register of the given register class to the specified
1034   /// stack frame index. The store instruction is to be added to the given
1035   /// machine basic block before the specified machine instruction. If isKill
1036   /// is true, the register operand is the last use and must be marked kill.
1037   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1038                                    MachineBasicBlock::iterator MI,
1039                                    Register SrcReg, bool isKill, int FrameIndex,
1040                                    const TargetRegisterClass *RC,
1041                                    const TargetRegisterInfo *TRI) const {
1042     llvm_unreachable("Target didn't implement "
1043                      "TargetInstrInfo::storeRegToStackSlot!");
1044   }
1045 
1046   /// Load the specified register of the given register class from the specified
1047   /// stack frame index. The load instruction is to be added to the given
1048   /// machine basic block before the specified machine instruction.
1049   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1050                                     MachineBasicBlock::iterator MI,
1051                                     Register DestReg, int FrameIndex,
1052                                     const TargetRegisterClass *RC,
1053                                     const TargetRegisterInfo *TRI) const {
1054     llvm_unreachable("Target didn't implement "
1055                      "TargetInstrInfo::loadRegFromStackSlot!");
1056   }
1057 
1058   /// This function is called for all pseudo instructions
1059   /// that remain after register allocation. Many pseudo instructions are
1060   /// created to help register allocation. This is the place to convert them
1061   /// into real instructions. The target can edit MI in place, or it can insert
1062   /// new instructions and erase MI. The function should return true if
1063   /// anything was changed.
1064   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1065 
1066   /// Check whether the target can fold a load that feeds a subreg operand
1067   /// (or a subreg operand that feeds a store).
1068   /// For example, X86 may want to return true if it can fold
1069   /// movl (%esp), %eax
1070   /// subb, %al, ...
1071   /// Into:
1072   /// subb (%esp), ...
1073   ///
1074   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1075   /// reject subregs - but since this behavior used to be enforced in the
1076   /// target-independent code, moving this responsibility to the targets
1077   /// has the potential of causing nasty silent breakage in out-of-tree targets.
1078   virtual bool isSubregFoldable() const { return false; }
1079 
1080   /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1081   /// operands which can't be folded into stack references. Operands outside
1082   /// of the range are most likely foldable but it is not guaranteed.
1083   /// These instructions are unique in that stack references for some operands
1084   /// have the same execution cost (e.g. none) as the unfolded register forms.
1085   /// The ranged return is guaranteed to include all operands which can't be
1086   /// folded at zero cost.
1087   virtual std::pair<unsigned, unsigned>
1088   getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1089 
1090   /// Attempt to fold a load or store of the specified stack
1091   /// slot into the specified machine instruction for the specified operand(s).
1092   /// If this is possible, a new instruction is returned with the specified
1093   /// operand folded, otherwise NULL is returned.
1094   /// The new instruction is inserted before MI, and the client is responsible
1095   /// for removing the old instruction.
1096   /// If VRM is passed, the assigned physregs can be inspected by target to
1097   /// decide on using an opcode (note that those assignments can still change).
1098   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1099                                   int FI,
1100                                   LiveIntervals *LIS = nullptr,
1101                                   VirtRegMap *VRM = nullptr) const;
1102 
1103   /// Same as the previous version except it allows folding of any load and
1104   /// store from / to any address, not just from a specific stack slot.
1105   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1106                                   MachineInstr &LoadMI,
1107                                   LiveIntervals *LIS = nullptr) const;
1108 
1109   /// Return true when there is potentially a faster code sequence
1110   /// for an instruction chain ending in \p Root. All potential patterns are
1111   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1112   /// order since the pattern evaluator stops checking as soon as it finds a
1113   /// faster sequence.
1114   /// \param Root - Instruction that could be combined with one of its operands
1115   /// \param Patterns - Vector of possible combination patterns
1116   virtual bool
1117   getMachineCombinerPatterns(MachineInstr &Root,
1118                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
1119                              bool DoRegPressureReduce) const;
1120 
1121   /// Return true if target supports reassociation of instructions in machine
1122   /// combiner pass to reduce register pressure for a given BB.
1123   virtual bool
1124   shouldReduceRegisterPressure(MachineBasicBlock *MBB,
1125                                RegisterClassInfo *RegClassInfo) const {
1126     return false;
1127   }
1128 
1129   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1130   virtual void
1131   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1132                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1133 
1134   /// Return true when a code sequence can improve throughput. It
1135   /// should be called only for instructions in loops.
1136   /// \param Pattern - combiner pattern
1137   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1138 
1139   /// Return true if the input \P Inst is part of a chain of dependent ops
1140   /// that are suitable for reassociation, otherwise return false.
1141   /// If the instruction's operands must be commuted to have a previous
1142   /// instruction of the same type define the first source operand, \P Commuted
1143   /// will be set to true.
1144   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1145 
1146   /// Return true when \P Inst is both associative and commutative.
1147   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
1148     return false;
1149   }
1150 
1151   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1152   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1153                                        const MachineBasicBlock *MBB) const;
1154 
1155   /// Return true when \P Inst has reassociable sibling.
1156   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
1157 
1158   /// When getMachineCombinerPatterns() finds patterns, this function generates
1159   /// the instructions that could replace the original code sequence. The client
1160   /// has to decide whether the actual replacement is beneficial or not.
1161   /// \param Root - Instruction that could be combined with one of its operands
1162   /// \param Pattern - Combination pattern for Root
1163   /// \param InsInstrs - Vector of new instructions that implement P
1164   /// \param DelInstrs - Old instructions, including Root, that could be
1165   /// replaced by InsInstr
1166   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1167   /// InsInstr that defines it
1168   virtual void genAlternativeCodeSequence(
1169       MachineInstr &Root, MachineCombinerPattern Pattern,
1170       SmallVectorImpl<MachineInstr *> &InsInstrs,
1171       SmallVectorImpl<MachineInstr *> &DelInstrs,
1172       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1173 
1174   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1175   /// reduce critical path length.
1176   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1177                       MachineCombinerPattern Pattern,
1178                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1179                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1180                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1181 
1182   /// The limit on resource length extension we accept in MachineCombiner Pass.
1183   virtual int getExtendResourceLenLimit() const { return 0; }
1184 
1185   /// This is an architecture-specific helper function of reassociateOps.
1186   /// Set special operand attributes for new instructions after reassociation.
1187   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1188                                      MachineInstr &NewMI1,
1189                                      MachineInstr &NewMI2) const {}
1190 
1191   virtual void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const {}
1192 
1193   /// Return true when a target supports MachineCombiner.
1194   virtual bool useMachineCombiner() const { return false; }
1195 
1196   /// Return true if the given SDNode can be copied during scheduling
1197   /// even if it has glue.
1198   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1199 
1200 protected:
1201   /// Target-dependent implementation for foldMemoryOperand.
1202   /// Target-independent code in foldMemoryOperand will
1203   /// take care of adding a MachineMemOperand to the newly created instruction.
1204   /// The instruction and any auxiliary instructions necessary will be inserted
1205   /// at InsertPt.
1206   virtual MachineInstr *
1207   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1208                         ArrayRef<unsigned> Ops,
1209                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1210                         LiveIntervals *LIS = nullptr,
1211                         VirtRegMap *VRM = nullptr) const {
1212     return nullptr;
1213   }
1214 
1215   /// Target-dependent implementation for foldMemoryOperand.
1216   /// Target-independent code in foldMemoryOperand will
1217   /// take care of adding a MachineMemOperand to the newly created instruction.
1218   /// The instruction and any auxiliary instructions necessary will be inserted
1219   /// at InsertPt.
1220   virtual MachineInstr *foldMemoryOperandImpl(
1221       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1222       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1223       LiveIntervals *LIS = nullptr) const {
1224     return nullptr;
1225   }
1226 
1227   /// Target-dependent implementation of getRegSequenceInputs.
1228   ///
1229   /// \returns true if it is possible to build the equivalent
1230   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1231   ///
1232   /// \pre MI.isRegSequenceLike().
1233   ///
1234   /// \see TargetInstrInfo::getRegSequenceInputs.
1235   virtual bool getRegSequenceLikeInputs(
1236       const MachineInstr &MI, unsigned DefIdx,
1237       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1238     return false;
1239   }
1240 
1241   /// Target-dependent implementation of getExtractSubregInputs.
1242   ///
1243   /// \returns true if it is possible to build the equivalent
1244   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1245   ///
1246   /// \pre MI.isExtractSubregLike().
1247   ///
1248   /// \see TargetInstrInfo::getExtractSubregInputs.
1249   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1250                                           unsigned DefIdx,
1251                                           RegSubRegPairAndIdx &InputReg) const {
1252     return false;
1253   }
1254 
1255   /// Target-dependent implementation of getInsertSubregInputs.
1256   ///
1257   /// \returns true if it is possible to build the equivalent
1258   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1259   ///
1260   /// \pre MI.isInsertSubregLike().
1261   ///
1262   /// \see TargetInstrInfo::getInsertSubregInputs.
1263   virtual bool
1264   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1265                             RegSubRegPair &BaseReg,
1266                             RegSubRegPairAndIdx &InsertedReg) const {
1267     return false;
1268   }
1269 
1270 public:
1271   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1272   /// (e.g. stack) the target returns the corresponding address space.
1273   virtual unsigned
1274   getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
1275     return 0;
1276   }
1277 
1278   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1279   /// a store or a load and a store into two or more instruction. If this is
1280   /// possible, returns true as well as the new instructions by reference.
1281   virtual bool
1282   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1283                       bool UnfoldLoad, bool UnfoldStore,
1284                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1285     return false;
1286   }
1287 
1288   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1289                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1290     return false;
1291   }
1292 
1293   /// Returns the opcode of the would be new
1294   /// instruction after load / store are unfolded from an instruction of the
1295   /// specified opcode. It returns zero if the specified unfolding is not
1296   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1297   /// index of the operand which will hold the register holding the loaded
1298   /// value.
1299   virtual unsigned
1300   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1301                              unsigned *LoadRegIndex = nullptr) const {
1302     return 0;
1303   }
1304 
1305   /// This is used by the pre-regalloc scheduler to determine if two loads are
1306   /// loading from the same base address. It should only return true if the base
1307   /// pointers are the same and the only differences between the two addresses
1308   /// are the offset. It also returns the offsets by reference.
1309   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1310                                        int64_t &Offset1,
1311                                        int64_t &Offset2) const {
1312     return false;
1313   }
1314 
1315   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1316   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1317   /// On some targets if two loads are loading from
1318   /// addresses in the same cache line, it's better if they are scheduled
1319   /// together. This function takes two integers that represent the load offsets
1320   /// from the common base address. It returns true if it decides it's desirable
1321   /// to schedule the two loads together. "NumLoads" is the number of loads that
1322   /// have already been scheduled after Load1.
1323   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1324                                        int64_t Offset1, int64_t Offset2,
1325                                        unsigned NumLoads) const {
1326     return false;
1327   }
1328 
1329   /// Get the base operand and byte offset of an instruction that reads/writes
1330   /// memory. This is a convenience function for callers that are only prepared
1331   /// to handle a single base operand.
1332   bool getMemOperandWithOffset(const MachineInstr &MI,
1333                                const MachineOperand *&BaseOp, int64_t &Offset,
1334                                bool &OffsetIsScalable,
1335                                const TargetRegisterInfo *TRI) const;
1336 
1337   /// Get zero or more base operands and the byte offset of an instruction that
1338   /// reads/writes memory. Note that there may be zero base operands if the
1339   /// instruction accesses a constant address.
1340   /// It returns false if MI does not read/write memory.
1341   /// It returns false if base operands and offset could not be determined.
1342   /// It is not guaranteed to always recognize base operands and offsets in all
1343   /// cases.
1344   virtual bool getMemOperandsWithOffsetWidth(
1345       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1346       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1347       const TargetRegisterInfo *TRI) const {
1348     return false;
1349   }
1350 
1351   /// Return true if the instruction contains a base register and offset. If
1352   /// true, the function also sets the operand position in the instruction
1353   /// for the base register and offset.
1354   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1355                                         unsigned &BasePos,
1356                                         unsigned &OffsetPos) const {
1357     return false;
1358   }
1359 
1360   /// Target dependent implementation to get the values constituting the address
1361   /// MachineInstr that is accessing memory. These values are returned as a
1362   /// struct ExtAddrMode which contains all relevant information to make up the
1363   /// address.
1364   virtual Optional<ExtAddrMode>
1365   getAddrModeFromMemoryOp(const MachineInstr &MemI,
1366                           const TargetRegisterInfo *TRI) const {
1367     return None;
1368   }
1369 
1370   /// Returns true if MI's Def is NullValueReg, and the MI
1371   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1372   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1373   /// function can return true even if becomes zero. Specifically cases such as
1374   /// NullValueReg = shl NullValueReg, 63.
1375   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1376                                        const Register NullValueReg,
1377                                        const TargetRegisterInfo *TRI) const {
1378     return false;
1379   }
1380 
1381   /// If the instruction is an increment of a constant value, return the amount.
1382   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1383     return false;
1384   }
1385 
1386   /// Returns true if the two given memory operations should be scheduled
1387   /// adjacent. Note that you have to add:
1388   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1389   /// or
1390   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1391   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1392   ///
1393   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1394   /// \p NumLoads is the number of loads that will be in the cluster if this
1395   /// hook returns true.
1396   /// \p NumBytes is the number of bytes that will be loaded from all the
1397   /// clustered loads if this hook returns true.
1398   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1399                                    ArrayRef<const MachineOperand *> BaseOps2,
1400                                    unsigned NumLoads, unsigned NumBytes) const {
1401     llvm_unreachable("target did not implement shouldClusterMemOps()");
1402   }
1403 
1404   /// Reverses the branch condition of the specified condition list,
1405   /// returning false on success and true if it cannot be reversed.
1406   virtual bool
1407   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1408     return true;
1409   }
1410 
1411   /// Insert a noop into the instruction stream at the specified point.
1412   virtual void insertNoop(MachineBasicBlock &MBB,
1413                           MachineBasicBlock::iterator MI) const;
1414 
1415   /// Insert noops into the instruction stream at the specified point.
1416   virtual void insertNoops(MachineBasicBlock &MBB,
1417                            MachineBasicBlock::iterator MI,
1418                            unsigned Quantity) const;
1419 
1420   /// Return the noop instruction to use for a noop.
1421   virtual MCInst getNop() const;
1422 
1423   /// Return true for post-incremented instructions.
1424   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1425 
1426   /// Returns true if the instruction is already predicated.
1427   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1428 
1429   // Returns a MIRPrinter comment for this machine operand.
1430   virtual std::string
1431   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1432                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1433 
1434   /// Returns true if the instruction is a
1435   /// terminator instruction that has not been predicated.
1436   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1437 
1438   /// Returns true if MI is an unconditional tail call.
1439   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1440     return false;
1441   }
1442 
1443   /// Returns true if the tail call can be made conditional on BranchCond.
1444   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1445                                           const MachineInstr &TailCall) const {
1446     return false;
1447   }
1448 
1449   /// Replace the conditional branch in MBB with a conditional tail call.
1450   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1451                                          SmallVectorImpl<MachineOperand> &Cond,
1452                                          const MachineInstr &TailCall) const {
1453     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1454   }
1455 
1456   /// Convert the instruction into a predicated instruction.
1457   /// It returns true if the operation was successful.
1458   virtual bool PredicateInstruction(MachineInstr &MI,
1459                                     ArrayRef<MachineOperand> Pred) const;
1460 
1461   /// Returns true if the first specified predicate
1462   /// subsumes the second, e.g. GE subsumes GT.
1463   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1464                                  ArrayRef<MachineOperand> Pred2) const {
1465     return false;
1466   }
1467 
1468   /// If the specified instruction defines any predicate
1469   /// or condition code register(s) used for predication, returns true as well
1470   /// as the definition predicate(s) by reference.
1471   /// SkipDead should be set to false at any point that dead
1472   /// predicate instructions should be considered as being defined.
1473   /// A dead predicate instruction is one that is guaranteed to be removed
1474   /// after a call to PredicateInstruction.
1475   virtual bool ClobbersPredicate(MachineInstr &MI,
1476                                  std::vector<MachineOperand> &Pred,
1477                                  bool SkipDead) const {
1478     return false;
1479   }
1480 
1481   /// Return true if the specified instruction can be predicated.
1482   /// By default, this returns true for every instruction with a
1483   /// PredicateOperand.
1484   virtual bool isPredicable(const MachineInstr &MI) const {
1485     return MI.getDesc().isPredicable();
1486   }
1487 
1488   /// Return true if it's safe to move a machine
1489   /// instruction that defines the specified register class.
1490   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1491     return true;
1492   }
1493 
1494   /// Test if the given instruction should be considered a scheduling boundary.
1495   /// This primarily includes labels and terminators.
1496   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1497                                     const MachineBasicBlock *MBB,
1498                                     const MachineFunction &MF) const;
1499 
1500   /// Measure the specified inline asm to determine an approximation of its
1501   /// length.
1502   virtual unsigned getInlineAsmLength(
1503     const char *Str, const MCAsmInfo &MAI,
1504     const TargetSubtargetInfo *STI = nullptr) const;
1505 
1506   /// Allocate and return a hazard recognizer to use for this target when
1507   /// scheduling the machine instructions before register allocation.
1508   virtual ScheduleHazardRecognizer *
1509   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1510                                const ScheduleDAG *DAG) const;
1511 
1512   /// Allocate and return a hazard recognizer to use for this target when
1513   /// scheduling the machine instructions before register allocation.
1514   virtual ScheduleHazardRecognizer *
1515   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1516                                  const ScheduleDAGMI *DAG) const;
1517 
1518   /// Allocate and return a hazard recognizer to use for this target when
1519   /// scheduling the machine instructions after register allocation.
1520   virtual ScheduleHazardRecognizer *
1521   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1522                                      const ScheduleDAG *DAG) const;
1523 
1524   /// Allocate and return a hazard recognizer to use for by non-scheduling
1525   /// passes.
1526   virtual ScheduleHazardRecognizer *
1527   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1528     return nullptr;
1529   }
1530 
1531   /// Provide a global flag for disabling the PreRA hazard recognizer that
1532   /// targets may choose to honor.
1533   bool usePreRAHazardRecognizer() const;
1534 
1535   /// For a comparison instruction, return the source registers
1536   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1537   /// compares against in CmpValue. Return true if the comparison instruction
1538   /// can be analyzed.
1539   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1540                               Register &SrcReg2, int &Mask, int &Value) const {
1541     return false;
1542   }
1543 
1544   /// See if the comparison instruction can be converted
1545   /// into something more efficient. E.g., on ARM most instructions can set the
1546   /// flags register, obviating the need for a separate CMP.
1547   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1548                                     Register SrcReg2, int Mask, int Value,
1549                                     const MachineRegisterInfo *MRI) const {
1550     return false;
1551   }
1552   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1553 
1554   /// Try to remove the load by folding it to a register operand at the use.
1555   /// We fold the load instructions if and only if the
1556   /// def and use are in the same BB. We only look at one load and see
1557   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1558   /// defined by the load we are trying to fold. DefMI returns the machine
1559   /// instruction that defines FoldAsLoadDefReg, and the function returns
1560   /// the machine instruction generated due to folding.
1561   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1562                                           const MachineRegisterInfo *MRI,
1563                                           Register &FoldAsLoadDefReg,
1564                                           MachineInstr *&DefMI) const {
1565     return nullptr;
1566   }
1567 
1568   /// 'Reg' is known to be defined by a move immediate instruction,
1569   /// try to fold the immediate into the use instruction.
1570   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1571   /// then the caller may assume that DefMI has been erased from its parent
1572   /// block. The caller may assume that it will not be erased by this
1573   /// function otherwise.
1574   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1575                              Register Reg, MachineRegisterInfo *MRI) const {
1576     return false;
1577   }
1578 
1579   /// Return the number of u-operations the given machine
1580   /// instruction will be decoded to on the target cpu. The itinerary's
1581   /// IssueWidth is the number of microops that can be dispatched each
1582   /// cycle. An instruction with zero microops takes no dispatch resources.
1583   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1584                                   const MachineInstr &MI) const;
1585 
1586   /// Return true for pseudo instructions that don't consume any
1587   /// machine resources in their current form. These are common cases that the
1588   /// scheduler should consider free, rather than conservatively handling them
1589   /// as instructions with no itinerary.
1590   bool isZeroCost(unsigned Opcode) const {
1591     return Opcode <= TargetOpcode::COPY;
1592   }
1593 
1594   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1595                                 SDNode *DefNode, unsigned DefIdx,
1596                                 SDNode *UseNode, unsigned UseIdx) const;
1597 
1598   /// Compute and return the use operand latency of a given pair of def and use.
1599   /// In most cases, the static scheduling itinerary was enough to determine the
1600   /// operand latency. But it may not be possible for instructions with variable
1601   /// number of defs / uses.
1602   ///
1603   /// This is a raw interface to the itinerary that may be directly overridden
1604   /// by a target. Use computeOperandLatency to get the best estimate of
1605   /// latency.
1606   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1607                                 const MachineInstr &DefMI, unsigned DefIdx,
1608                                 const MachineInstr &UseMI,
1609                                 unsigned UseIdx) const;
1610 
1611   /// Compute the instruction latency of a given instruction.
1612   /// If the instruction has higher cost when predicated, it's returned via
1613   /// PredCost.
1614   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1615                                    const MachineInstr &MI,
1616                                    unsigned *PredCost = nullptr) const;
1617 
1618   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1619 
1620   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1621                               SDNode *Node) const;
1622 
1623   /// Return the default expected latency for a def based on its opcode.
1624   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1625                              const MachineInstr &DefMI) const;
1626 
1627   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1628                                const MachineInstr &DefMI) const;
1629 
1630   /// Return true if this opcode has high latency to its result.
1631   virtual bool isHighLatencyDef(int opc) const { return false; }
1632 
1633   /// Compute operand latency between a def of 'Reg'
1634   /// and a use in the current loop. Return true if the target considered
1635   /// it 'high'. This is used by optimization passes such as machine LICM to
1636   /// determine whether it makes sense to hoist an instruction out even in a
1637   /// high register pressure situation.
1638   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1639                                      const MachineRegisterInfo *MRI,
1640                                      const MachineInstr &DefMI, unsigned DefIdx,
1641                                      const MachineInstr &UseMI,
1642                                      unsigned UseIdx) const {
1643     return false;
1644   }
1645 
1646   /// Compute operand latency of a def of 'Reg'. Return true
1647   /// if the target considered it 'low'.
1648   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1649                                 const MachineInstr &DefMI,
1650                                 unsigned DefIdx) const;
1651 
1652   /// Perform target-specific instruction verification.
1653   virtual bool verifyInstruction(const MachineInstr &MI,
1654                                  StringRef &ErrInfo) const {
1655     return true;
1656   }
1657 
1658   /// Return the current execution domain and bit mask of
1659   /// possible domains for instruction.
1660   ///
1661   /// Some micro-architectures have multiple execution domains, and multiple
1662   /// opcodes that perform the same operation in different domains.  For
1663   /// example, the x86 architecture provides the por, orps, and orpd
1664   /// instructions that all do the same thing.  There is a latency penalty if a
1665   /// register is written in one domain and read in another.
1666   ///
1667   /// This function returns a pair (domain, mask) containing the execution
1668   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1669   /// function can be used to change the opcode to one of the domains in the
1670   /// bit mask.  Instructions whose execution domain can't be changed should
1671   /// return a 0 mask.
1672   ///
1673   /// The execution domain numbers don't have any special meaning except domain
1674   /// 0 is used for instructions that are not associated with any interesting
1675   /// execution domain.
1676   ///
1677   virtual std::pair<uint16_t, uint16_t>
1678   getExecutionDomain(const MachineInstr &MI) const {
1679     return std::make_pair(0, 0);
1680   }
1681 
1682   /// Change the opcode of MI to execute in Domain.
1683   ///
1684   /// The bit (1 << Domain) must be set in the mask returned from
1685   /// getExecutionDomain(MI).
1686   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1687 
1688   /// Returns the preferred minimum clearance
1689   /// before an instruction with an unwanted partial register update.
1690   ///
1691   /// Some instructions only write part of a register, and implicitly need to
1692   /// read the other parts of the register.  This may cause unwanted stalls
1693   /// preventing otherwise unrelated instructions from executing in parallel in
1694   /// an out-of-order CPU.
1695   ///
1696   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1697   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1698   /// the instruction needs to wait for the old value of the register to become
1699   /// available:
1700   ///
1701   ///   addps %xmm1, %xmm0
1702   ///   movaps %xmm0, (%rax)
1703   ///   cvtsi2ss %rbx, %xmm0
1704   ///
1705   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1706   /// instruction before it can issue, even though the high bits of %xmm0
1707   /// probably aren't needed.
1708   ///
1709   /// This hook returns the preferred clearance before MI, measured in
1710   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1711   /// instructions before MI.  It should only return a positive value for
1712   /// unwanted dependencies.  If the old bits of the defined register have
1713   /// useful values, or if MI is determined to otherwise read the dependency,
1714   /// the hook should return 0.
1715   ///
1716   /// The unwanted dependency may be handled by:
1717   ///
1718   /// 1. Allocating the same register for an MI def and use.  That makes the
1719   ///    unwanted dependency identical to a required dependency.
1720   ///
1721   /// 2. Allocating a register for the def that has no defs in the previous N
1722   ///    instructions.
1723   ///
1724   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1725   ///    allows the target to insert a dependency breaking instruction.
1726   ///
1727   virtual unsigned
1728   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1729                                const TargetRegisterInfo *TRI) const {
1730     // The default implementation returns 0 for no partial register dependency.
1731     return 0;
1732   }
1733 
1734   /// Return the minimum clearance before an instruction that reads an
1735   /// unused register.
1736   ///
1737   /// For example, AVX instructions may copy part of a register operand into
1738   /// the unused high bits of the destination register.
1739   ///
1740   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1741   ///
1742   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1743   /// false dependence on any previous write to %xmm0.
1744   ///
1745   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1746   /// does not take an operand index. Instead sets \p OpNum to the index of the
1747   /// unused register.
1748   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1749                                         const TargetRegisterInfo *TRI) const {
1750     // The default implementation returns 0 for no undef register dependency.
1751     return 0;
1752   }
1753 
1754   /// Insert a dependency-breaking instruction
1755   /// before MI to eliminate an unwanted dependency on OpNum.
1756   ///
1757   /// If it wasn't possible to avoid a def in the last N instructions before MI
1758   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1759   /// unwanted dependency.
1760   ///
1761   /// On x86, an xorps instruction can be used as a dependency breaker:
1762   ///
1763   ///   addps %xmm1, %xmm0
1764   ///   movaps %xmm0, (%rax)
1765   ///   xorps %xmm0, %xmm0
1766   ///   cvtsi2ss %rbx, %xmm0
1767   ///
1768   /// An <imp-kill> operand should be added to MI if an instruction was
1769   /// inserted.  This ties the instructions together in the post-ra scheduler.
1770   ///
1771   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1772                                          const TargetRegisterInfo *TRI) const {}
1773 
1774   /// Create machine specific model for scheduling.
1775   virtual DFAPacketizer *
1776   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1777     return nullptr;
1778   }
1779 
1780   /// Sometimes, it is possible for the target
1781   /// to tell, even without aliasing information, that two MIs access different
1782   /// memory addresses. This function returns true if two MIs access different
1783   /// memory addresses and false otherwise.
1784   ///
1785   /// Assumes any physical registers used to compute addresses have the same
1786   /// value for both instructions. (This is the most useful assumption for
1787   /// post-RA scheduling.)
1788   ///
1789   /// See also MachineInstr::mayAlias, which is implemented on top of this
1790   /// function.
1791   virtual bool
1792   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1793                                   const MachineInstr &MIb) const {
1794     assert(MIa.mayLoadOrStore() &&
1795            "MIa must load from or modify a memory location");
1796     assert(MIb.mayLoadOrStore() &&
1797            "MIb must load from or modify a memory location");
1798     return false;
1799   }
1800 
1801   /// Return the value to use for the MachineCSE's LookAheadLimit,
1802   /// which is a heuristic used for CSE'ing phys reg defs.
1803   virtual unsigned getMachineCSELookAheadLimit() const {
1804     // The default lookahead is small to prevent unprofitable quadratic
1805     // behavior.
1806     return 5;
1807   }
1808 
1809   /// Return the maximal number of alias checks on memory operands. For
1810   /// instructions with more than one memory operands, the alias check on a
1811   /// single MachineInstr pair has quadratic overhead and results in
1812   /// unacceptable performance in the worst case. The limit here is to clamp
1813   /// that maximal checks performed. Usually, that's the product of memory
1814   /// operand numbers from that pair of MachineInstr to be checked. For
1815   /// instance, with two MachineInstrs with 4 and 5 memory operands
1816   /// correspondingly, a total of 20 checks are required. With this limit set to
1817   /// 16, their alias check is skipped. We choose to limit the product instead
1818   /// of the individual instruction as targets may have special MachineInstrs
1819   /// with a considerably high number of memory operands, such as `ldm` in ARM.
1820   /// Setting this limit per MachineInstr would result in either too high
1821   /// overhead or too rigid restriction.
1822   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1823 
1824   /// Return an array that contains the ids of the target indices (used for the
1825   /// TargetIndex machine operand) and their names.
1826   ///
1827   /// MIR Serialization is able to serialize only the target indices that are
1828   /// defined by this method.
1829   virtual ArrayRef<std::pair<int, const char *>>
1830   getSerializableTargetIndices() const {
1831     return None;
1832   }
1833 
1834   /// Decompose the machine operand's target flags into two values - the direct
1835   /// target flag value and any of bit flags that are applied.
1836   virtual std::pair<unsigned, unsigned>
1837   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1838     return std::make_pair(0u, 0u);
1839   }
1840 
1841   /// Return an array that contains the direct target flag values and their
1842   /// names.
1843   ///
1844   /// MIR Serialization is able to serialize only the target flags that are
1845   /// defined by this method.
1846   virtual ArrayRef<std::pair<unsigned, const char *>>
1847   getSerializableDirectMachineOperandTargetFlags() const {
1848     return None;
1849   }
1850 
1851   /// Return an array that contains the bitmask target flag values and their
1852   /// names.
1853   ///
1854   /// MIR Serialization is able to serialize only the target flags that are
1855   /// defined by this method.
1856   virtual ArrayRef<std::pair<unsigned, const char *>>
1857   getSerializableBitmaskMachineOperandTargetFlags() const {
1858     return None;
1859   }
1860 
1861   /// Return an array that contains the MMO target flag values and their
1862   /// names.
1863   ///
1864   /// MIR Serialization is able to serialize only the MMO target flags that are
1865   /// defined by this method.
1866   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1867   getSerializableMachineMemOperandTargetFlags() const {
1868     return None;
1869   }
1870 
1871   /// Determines whether \p Inst is a tail call instruction. Override this
1872   /// method on targets that do not properly set MCID::Return and MCID::Call on
1873   /// tail call instructions."
1874   virtual bool isTailCall(const MachineInstr &Inst) const {
1875     return Inst.isReturn() && Inst.isCall();
1876   }
1877 
1878   /// True if the instruction is bound to the top of its basic block and no
1879   /// other instructions shall be inserted before it. This can be implemented
1880   /// to prevent register allocator to insert spills before such instructions.
1881   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1882     return false;
1883   }
1884 
1885   /// During PHI eleimination lets target to make necessary checks and
1886   /// insert the copy to the PHI destination register in a target specific
1887   /// manner.
1888   virtual MachineInstr *createPHIDestinationCopy(
1889       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1890       const DebugLoc &DL, Register Src, Register Dst) const {
1891     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1892         .addReg(Src);
1893   }
1894 
1895   /// During PHI eleimination lets target to make necessary checks and
1896   /// insert the copy to the PHI destination register in a target specific
1897   /// manner.
1898   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1899                                             MachineBasicBlock::iterator InsPt,
1900                                             const DebugLoc &DL, Register Src,
1901                                             unsigned SrcSubReg,
1902                                             Register Dst) const {
1903     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1904         .addReg(Src, 0, SrcSubReg);
1905   }
1906 
1907   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1908   /// information for a set of outlining candidates.
1909   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1910       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1911     llvm_unreachable(
1912         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1913   }
1914 
1915   /// Returns how or if \p MI should be outlined.
1916   virtual outliner::InstrType
1917   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1918     llvm_unreachable(
1919         "Target didn't implement TargetInstrInfo::getOutliningType!");
1920   }
1921 
1922   /// Optional target hook that returns true if \p MBB is safe to outline from,
1923   /// and returns any target-specific information in \p Flags.
1924   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1925                                       unsigned &Flags) const {
1926     return true;
1927   }
1928 
1929   /// Insert a custom frame for outlined functions.
1930   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1931                                   const outliner::OutlinedFunction &OF) const {
1932     llvm_unreachable(
1933         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1934   }
1935 
1936   /// Insert a call to an outlined function into the program.
1937   /// Returns an iterator to the spot where we inserted the call. This must be
1938   /// implemented by the target.
1939   virtual MachineBasicBlock::iterator
1940   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1941                      MachineBasicBlock::iterator &It, MachineFunction &MF,
1942                      const outliner::Candidate &C) const {
1943     llvm_unreachable(
1944         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1945   }
1946 
1947   /// Return true if the function can safely be outlined from.
1948   /// A function \p MF is considered safe for outlining if an outlined function
1949   /// produced from instructions in F will produce a program which produces the
1950   /// same output for any set of given inputs.
1951   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1952                                            bool OutlineFromLinkOnceODRs) const {
1953     llvm_unreachable("Target didn't implement "
1954                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1955   }
1956 
1957   /// Return true if the function should be outlined from by default.
1958   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1959     return false;
1960   }
1961 
1962   /// Produce the expression describing the \p MI loading a value into
1963   /// the physical register \p Reg. This hook should only be used with
1964   /// \p MIs belonging to VReg-less functions.
1965   virtual Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
1966                                                          Register Reg) const;
1967 
1968   /// Given the generic extension instruction \p ExtMI, returns true if this
1969   /// extension is a likely candidate for being folded into an another
1970   /// instruction.
1971   virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
1972                                         MachineRegisterInfo &MRI) const {
1973     return false;
1974   }
1975 
1976   /// Return MIR formatter to format/parse MIR operands.  Target can override
1977   /// this virtual function and return target specific MIR formatter.
1978   virtual const MIRFormatter *getMIRFormatter() const {
1979     if (!Formatter.get())
1980       Formatter = std::make_unique<MIRFormatter>();
1981     return Formatter.get();
1982   }
1983 
1984   /// Returns the target-specific default value for tail duplication.
1985   /// This value will be used if the tail-dup-placement-threshold argument is
1986   /// not provided.
1987   virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
1988     return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
1989   }
1990 
1991   /// Returns the callee operand from the given \p MI.
1992   virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
1993     return MI.getOperand(0);
1994   }
1995 
1996 private:
1997   mutable std::unique_ptr<MIRFormatter> Formatter;
1998   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1999   unsigned CatchRetOpcode;
2000   unsigned ReturnOpcode;
2001 };
2002 
2003 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2004 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2005   using RegInfo = DenseMapInfo<unsigned>;
2006 
2007   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2008     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2009                                           RegInfo::getEmptyKey());
2010   }
2011 
2012   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2013     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2014                                           RegInfo::getTombstoneKey());
2015   }
2016 
2017   /// Reuse getHashValue implementation from
2018   /// std::pair<unsigned, unsigned>.
2019   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2020     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2021     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2022   }
2023 
2024   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2025                       const TargetInstrInfo::RegSubRegPair &RHS) {
2026     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2027            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2028   }
2029 };
2030 
2031 } // end namespace llvm
2032 
2033 #endif // LLVM_CODEGEN_TARGETINSTRINFO_H
2034