1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the target machine instruction set to the code generator.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
14 #define LLVM_TARGET_TARGETINSTRINFO_H
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/CodeGen/MIRFormatter.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOutliner.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/MC/MCInstrInfo.h"
31 #include "llvm/Support/BranchProbability.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
38 
39 namespace llvm {
40 
41 class AAResults;
42 class DFAPacketizer;
43 class InstrItineraryData;
44 class LiveIntervals;
45 class LiveVariables;
46 class MachineLoop;
47 class MachineMemOperand;
48 class MachineRegisterInfo;
49 class MCAsmInfo;
50 class MCInst;
51 struct MCSchedModel;
52 class Module;
53 class ScheduleDAG;
54 class ScheduleDAGMI;
55 class ScheduleHazardRecognizer;
56 class SDNode;
57 class SelectionDAG;
58 class RegScavenger;
59 class TargetRegisterClass;
60 class TargetRegisterInfo;
61 class TargetSchedModel;
62 class TargetSubtargetInfo;
63 
64 template <class T> class SmallVectorImpl;
65 
66 using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
67 
68 struct DestSourcePair {
69   const MachineOperand *Destination;
70   const MachineOperand *Source;
71 
72   DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
73       : Destination(&Dest), Source(&Src) {}
74 };
75 
76 /// Used to describe a register and immediate addition.
77 struct RegImmPair {
78   Register Reg;
79   int64_t Imm;
80 
81   RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
82 };
83 
84 /// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
85 /// It holds the register values, the scale value and the displacement.
86 struct ExtAddrMode {
87   Register BaseReg;
88   Register ScaledReg;
89   int64_t Scale;
90   int64_t Displacement;
91 };
92 
93 //---------------------------------------------------------------------------
94 ///
95 /// TargetInstrInfo - Interface to description of machine instruction set
96 ///
97 class TargetInstrInfo : public MCInstrInfo {
98 public:
99   TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
100                   unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
101       : CallFrameSetupOpcode(CFSetupOpcode),
102         CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
103         ReturnOpcode(ReturnOpcode) {}
104   TargetInstrInfo(const TargetInstrInfo &) = delete;
105   TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
106   virtual ~TargetInstrInfo();
107 
108   static bool isGenericOpcode(unsigned Opc) {
109     return Opc <= TargetOpcode::GENERIC_OP_END;
110   }
111 
112   /// Given a machine instruction descriptor, returns the register
113   /// class constraint for OpNum, or NULL.
114   virtual
115   const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
116                                          const TargetRegisterInfo *TRI,
117                                          const MachineFunction &MF) const;
118 
119   /// Return true if the instruction is trivially rematerializable, meaning it
120   /// has no side effects and requires no operands that aren't always available.
121   /// This means the only allowed uses are constants and unallocatable physical
122   /// registers so that the instructions result is independent of the place
123   /// in the function.
124   bool isTriviallyReMaterializable(const MachineInstr &MI,
125                                    AAResults *AA = nullptr) const {
126     return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
127            (MI.getDesc().isRematerializable() &&
128             (isReallyTriviallyReMaterializable(MI, AA) ||
129              isReallyTriviallyReMaterializableGeneric(MI, AA)));
130   }
131 
132 protected:
133   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
134   /// set, this hook lets the target specify whether the instruction is actually
135   /// trivially rematerializable, taking into consideration its operands. This
136   /// predicate must return false if the instruction has any side effects other
137   /// than producing a value, or if it requres any address registers that are
138   /// not always available.
139   /// Requirements must be check as stated in isTriviallyReMaterializable() .
140   virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
141                                                  AAResults *AA) const {
142     return false;
143   }
144 
145   /// This method commutes the operands of the given machine instruction MI.
146   /// The operands to be commuted are specified by their indices OpIdx1 and
147   /// OpIdx2.
148   ///
149   /// If a target has any instructions that are commutable but require
150   /// converting to different instructions or making non-trivial changes
151   /// to commute them, this method can be overloaded to do that.
152   /// The default implementation simply swaps the commutable operands.
153   ///
154   /// If NewMI is false, MI is modified in place and returned; otherwise, a
155   /// new machine instruction is created and returned.
156   ///
157   /// Do not call this method for a non-commutable instruction.
158   /// Even though the instruction is commutable, the method may still
159   /// fail to commute the operands, null pointer is returned in such cases.
160   virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
161                                                unsigned OpIdx1,
162                                                unsigned OpIdx2) const;
163 
164   /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
165   /// operand indices to (ResultIdx1, ResultIdx2).
166   /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
167   /// predefined to some indices or be undefined (designated by the special
168   /// value 'CommuteAnyOperandIndex').
169   /// The predefined result indices cannot be re-defined.
170   /// The function returns true iff after the result pair redefinition
171   /// the fixed result pair is equal to or equivalent to the source pair of
172   /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
173   /// the pairs (x,y) and (y,x) are equivalent.
174   static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
175                                    unsigned CommutableOpIdx1,
176                                    unsigned CommutableOpIdx2);
177 
178 private:
179   /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
180   /// set and the target hook isReallyTriviallyReMaterializable returns false,
181   /// this function does target-independent tests to determine if the
182   /// instruction is really trivially rematerializable.
183   bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
184                                                 AAResults *AA) const;
185 
186 public:
187   /// These methods return the opcode of the frame setup/destroy instructions
188   /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
189   /// order to abstract away the difference between operating with a frame
190   /// pointer and operating without, through the use of these two instructions.
191   ///
192   unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
193   unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
194 
195   /// Returns true if the argument is a frame pseudo instruction.
196   bool isFrameInstr(const MachineInstr &I) const {
197     return I.getOpcode() == getCallFrameSetupOpcode() ||
198            I.getOpcode() == getCallFrameDestroyOpcode();
199   }
200 
201   /// Returns true if the argument is a frame setup pseudo instruction.
202   bool isFrameSetup(const MachineInstr &I) const {
203     return I.getOpcode() == getCallFrameSetupOpcode();
204   }
205 
206   /// Returns size of the frame associated with the given frame instruction.
207   /// For frame setup instruction this is frame that is set up space set up
208   /// after the instruction. For frame destroy instruction this is the frame
209   /// freed by the caller.
210   /// Note, in some cases a call frame (or a part of it) may be prepared prior
211   /// to the frame setup instruction. It occurs in the calls that involve
212   /// inalloca arguments. This function reports only the size of the frame part
213   /// that is set up between the frame setup and destroy pseudo instructions.
214   int64_t getFrameSize(const MachineInstr &I) const {
215     assert(isFrameInstr(I) && "Not a frame instruction");
216     assert(I.getOperand(0).getImm() >= 0);
217     return I.getOperand(0).getImm();
218   }
219 
220   /// Returns the total frame size, which is made up of the space set up inside
221   /// the pair of frame start-stop instructions and the space that is set up
222   /// prior to the pair.
223   int64_t getFrameTotalSize(const MachineInstr &I) const {
224     if (isFrameSetup(I)) {
225       assert(I.getOperand(1).getImm() >= 0 &&
226              "Frame size must not be negative");
227       return getFrameSize(I) + I.getOperand(1).getImm();
228     }
229     return getFrameSize(I);
230   }
231 
232   unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
233   unsigned getReturnOpcode() const { return ReturnOpcode; }
234 
235   /// Returns the actual stack pointer adjustment made by an instruction
236   /// as part of a call sequence. By default, only call frame setup/destroy
237   /// instructions adjust the stack, but targets may want to override this
238   /// to enable more fine-grained adjustment, or adjust by a different value.
239   virtual int getSPAdjust(const MachineInstr &MI) const;
240 
241   /// Return true if the instruction is a "coalescable" extension instruction.
242   /// That is, it's like a copy where it's legal for the source to overlap the
243   /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
244   /// expected the pre-extension value is available as a subreg of the result
245   /// register. This also returns the sub-register index in SubIdx.
246   virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
247                                      Register &DstReg, unsigned &SubIdx) const {
248     return false;
249   }
250 
251   /// If the specified machine instruction is a direct
252   /// load from a stack slot, return the virtual or physical register number of
253   /// the destination along with the FrameIndex of the loaded stack slot.  If
254   /// not, return 0.  This predicate must return 0 if the instruction has
255   /// any side effects other than loading from the stack slot.
256   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
257                                        int &FrameIndex) const {
258     return 0;
259   }
260 
261   /// Optional extension of isLoadFromStackSlot that returns the number of
262   /// bytes loaded from the stack. This must be implemented if a backend
263   /// supports partial stack slot spills/loads to further disambiguate
264   /// what the load does.
265   virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
266                                        int &FrameIndex,
267                                        unsigned &MemBytes) const {
268     MemBytes = 0;
269     return isLoadFromStackSlot(MI, FrameIndex);
270   }
271 
272   /// Check for post-frame ptr elimination stack locations as well.
273   /// This uses a heuristic so it isn't reliable for correctness.
274   virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
275                                              int &FrameIndex) const {
276     return 0;
277   }
278 
279   /// If the specified machine instruction has a load from a stack slot,
280   /// return true along with the FrameIndices of the loaded stack slot and the
281   /// machine mem operands containing the reference.
282   /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
283   /// any instructions that loads from the stack.  This is just a hint, as some
284   /// cases may be missed.
285   virtual bool hasLoadFromStackSlot(
286       const MachineInstr &MI,
287       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
288 
289   /// If the specified machine instruction is a direct
290   /// store to a stack slot, return the virtual or physical register number of
291   /// the source reg along with the FrameIndex of the loaded stack slot.  If
292   /// not, return 0.  This predicate must return 0 if the instruction has
293   /// any side effects other than storing to the stack slot.
294   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
295                                       int &FrameIndex) const {
296     return 0;
297   }
298 
299   /// Optional extension of isStoreToStackSlot that returns the number of
300   /// bytes stored to the stack. This must be implemented if a backend
301   /// supports partial stack slot spills/loads to further disambiguate
302   /// what the store does.
303   virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
304                                       int &FrameIndex,
305                                       unsigned &MemBytes) const {
306     MemBytes = 0;
307     return isStoreToStackSlot(MI, FrameIndex);
308   }
309 
310   /// Check for post-frame ptr elimination stack locations as well.
311   /// This uses a heuristic, so it isn't reliable for correctness.
312   virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
313                                             int &FrameIndex) const {
314     return 0;
315   }
316 
317   /// If the specified machine instruction has a store to a stack slot,
318   /// return true along with the FrameIndices of the loaded stack slot and the
319   /// machine mem operands containing the reference.
320   /// If not, return false.  Unlike isStoreToStackSlot,
321   /// this returns true for any instructions that stores to the
322   /// stack.  This is just a hint, as some cases may be missed.
323   virtual bool hasStoreToStackSlot(
324       const MachineInstr &MI,
325       SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
326 
327   /// Return true if the specified machine instruction
328   /// is a copy of one stack slot to another and has no other effect.
329   /// Provide the identity of the two frame indices.
330   virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
331                                int &SrcFrameIndex) const {
332     return false;
333   }
334 
335   /// Compute the size in bytes and offset within a stack slot of a spilled
336   /// register or subregister.
337   ///
338   /// \param [out] Size in bytes of the spilled value.
339   /// \param [out] Offset in bytes within the stack slot.
340   /// \returns true if both Size and Offset are successfully computed.
341   ///
342   /// Not all subregisters have computable spill slots. For example,
343   /// subregisters registers may not be byte-sized, and a pair of discontiguous
344   /// subregisters has no single offset.
345   ///
346   /// Targets with nontrivial bigendian implementations may need to override
347   /// this, particularly to support spilled vector registers.
348   virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
349                                  unsigned &Size, unsigned &Offset,
350                                  const MachineFunction &MF) const;
351 
352   /// Return true if the given instruction is terminator that is unspillable,
353   /// according to isUnspillableTerminatorImpl.
354   bool isUnspillableTerminator(const MachineInstr *MI) const {
355     return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
356   }
357 
358   /// Returns the size in bytes of the specified MachineInstr, or ~0U
359   /// when this function is not implemented by a target.
360   virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
361     return ~0U;
362   }
363 
364   /// Return true if the instruction is as cheap as a move instruction.
365   ///
366   /// Targets for different archs need to override this, and different
367   /// micro-architectures can also be finely tuned inside.
368   virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
369     return MI.isAsCheapAsAMove();
370   }
371 
372   /// Return true if the instruction should be sunk by MachineSink.
373   ///
374   /// MachineSink determines on its own whether the instruction is safe to sink;
375   /// this gives the target a hook to override the default behavior with regards
376   /// to which instructions should be sunk.
377   virtual bool shouldSink(const MachineInstr &MI) const { return true; }
378 
379   /// Re-issue the specified 'original' instruction at the
380   /// specific location targeting a new destination register.
381   /// The register in Orig->getOperand(0).getReg() will be substituted by
382   /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
383   /// SubIdx.
384   virtual void reMaterialize(MachineBasicBlock &MBB,
385                              MachineBasicBlock::iterator MI, Register DestReg,
386                              unsigned SubIdx, const MachineInstr &Orig,
387                              const TargetRegisterInfo &TRI) const;
388 
389   /// Clones instruction or the whole instruction bundle \p Orig and
390   /// insert into \p MBB before \p InsertBefore. The target may update operands
391   /// that are required to be unique.
392   ///
393   /// \p Orig must not return true for MachineInstr::isNotDuplicable().
394   virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
395                                   MachineBasicBlock::iterator InsertBefore,
396                                   const MachineInstr &Orig) const;
397 
398   /// This method must be implemented by targets that
399   /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
400   /// may be able to convert a two-address instruction into one or more true
401   /// three-address instructions on demand.  This allows the X86 target (for
402   /// example) to convert ADD and SHL instructions into LEA instructions if they
403   /// would require register copies due to two-addressness.
404   ///
405   /// This method returns a null pointer if the transformation cannot be
406   /// performed, otherwise it returns the last new instruction.
407   ///
408   virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
409                                               MachineInstr &MI,
410                                               LiveVariables *LV) const {
411     return nullptr;
412   }
413 
414   // This constant can be used as an input value of operand index passed to
415   // the method findCommutedOpIndices() to tell the method that the
416   // corresponding operand index is not pre-defined and that the method
417   // can pick any commutable operand.
418   static const unsigned CommuteAnyOperandIndex = ~0U;
419 
420   /// This method commutes the operands of the given machine instruction MI.
421   ///
422   /// The operands to be commuted are specified by their indices OpIdx1 and
423   /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
424   /// 'CommuteAnyOperandIndex', which means that the method is free to choose
425   /// any arbitrarily chosen commutable operand. If both arguments are set to
426   /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
427   /// operands; then commutes them if such operands could be found.
428   ///
429   /// If NewMI is false, MI is modified in place and returned; otherwise, a
430   /// new machine instruction is created and returned.
431   ///
432   /// Do not call this method for a non-commutable instruction or
433   /// for non-commuable operands.
434   /// Even though the instruction is commutable, the method may still
435   /// fail to commute the operands, null pointer is returned in such cases.
436   MachineInstr *
437   commuteInstruction(MachineInstr &MI, bool NewMI = false,
438                      unsigned OpIdx1 = CommuteAnyOperandIndex,
439                      unsigned OpIdx2 = CommuteAnyOperandIndex) const;
440 
441   /// Returns true iff the routine could find two commutable operands in the
442   /// given machine instruction.
443   /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
444   /// If any of the INPUT values is set to the special value
445   /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
446   /// operand, then returns its index in the corresponding argument.
447   /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
448   /// looks for 2 commutable operands.
449   /// If INPUT values refer to some operands of MI, then the method simply
450   /// returns true if the corresponding operands are commutable and returns
451   /// false otherwise.
452   ///
453   /// For example, calling this method this way:
454   ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
455   ///     findCommutedOpIndices(MI, Op1, Op2);
456   /// can be interpreted as a query asking to find an operand that would be
457   /// commutable with the operand#1.
458   virtual bool findCommutedOpIndices(const MachineInstr &MI,
459                                      unsigned &SrcOpIdx1,
460                                      unsigned &SrcOpIdx2) const;
461 
462   /// A pair composed of a register and a sub-register index.
463   /// Used to give some type checking when modeling Reg:SubReg.
464   struct RegSubRegPair {
465     Register Reg;
466     unsigned SubReg;
467 
468     RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
469         : Reg(Reg), SubReg(SubReg) {}
470 
471     bool operator==(const RegSubRegPair& P) const {
472       return Reg == P.Reg && SubReg == P.SubReg;
473     }
474     bool operator!=(const RegSubRegPair& P) const {
475       return !(*this == P);
476     }
477   };
478 
479   /// A pair composed of a pair of a register and a sub-register index,
480   /// and another sub-register index.
481   /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
482   struct RegSubRegPairAndIdx : RegSubRegPair {
483     unsigned SubIdx;
484 
485     RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
486                         unsigned SubIdx = 0)
487         : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
488   };
489 
490   /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
491   /// and \p DefIdx.
492   /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
493   /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
494   /// flag are not added to this list.
495   /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
496   /// two elements:
497   /// - %1:sub1, sub0
498   /// - %2<:0>, sub1
499   ///
500   /// \returns true if it is possible to build such an input sequence
501   /// with the pair \p MI, \p DefIdx. False otherwise.
502   ///
503   /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
504   ///
505   /// \note The generic implementation does not provide any support for
506   /// MI.isRegSequenceLike(). In other words, one has to override
507   /// getRegSequenceLikeInputs for target specific instructions.
508   bool
509   getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
510                        SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
511 
512   /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
513   /// and \p DefIdx.
514   /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
515   /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
516   /// - %1:sub1, sub0
517   ///
518   /// \returns true if it is possible to build such an input sequence
519   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
520   /// False otherwise.
521   ///
522   /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
523   ///
524   /// \note The generic implementation does not provide any support for
525   /// MI.isExtractSubregLike(). In other words, one has to override
526   /// getExtractSubregLikeInputs for target specific instructions.
527   bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
528                               RegSubRegPairAndIdx &InputReg) const;
529 
530   /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
531   /// and \p DefIdx.
532   /// \p [out] BaseReg and \p [out] InsertedReg contain
533   /// the equivalent inputs of INSERT_SUBREG.
534   /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
535   /// - BaseReg: %0:sub0
536   /// - InsertedReg: %1:sub1, sub3
537   ///
538   /// \returns true if it is possible to build such an input sequence
539   /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
540   /// False otherwise.
541   ///
542   /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
543   ///
544   /// \note The generic implementation does not provide any support for
545   /// MI.isInsertSubregLike(). In other words, one has to override
546   /// getInsertSubregLikeInputs for target specific instructions.
547   bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
548                              RegSubRegPair &BaseReg,
549                              RegSubRegPairAndIdx &InsertedReg) const;
550 
551   /// Return true if two machine instructions would produce identical values.
552   /// By default, this is only true when the two instructions
553   /// are deemed identical except for defs. If this function is called when the
554   /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
555   /// aggressive checks.
556   virtual bool produceSameValue(const MachineInstr &MI0,
557                                 const MachineInstr &MI1,
558                                 const MachineRegisterInfo *MRI = nullptr) const;
559 
560   /// \returns true if a branch from an instruction with opcode \p BranchOpc
561   ///  bytes is capable of jumping to a position \p BrOffset bytes away.
562   virtual bool isBranchOffsetInRange(unsigned BranchOpc,
563                                      int64_t BrOffset) const {
564     llvm_unreachable("target did not implement");
565   }
566 
567   /// \returns The block that branch instruction \p MI jumps to.
568   virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
569     llvm_unreachable("target did not implement");
570   }
571 
572   /// Insert an unconditional indirect branch at the end of \p MBB to \p
573   /// NewDestBB.  \p BrOffset indicates the offset of \p NewDestBB relative to
574   /// the offset of the position to insert the new branch.
575   ///
576   /// \returns The number of bytes added to the block.
577   virtual unsigned insertIndirectBranch(MachineBasicBlock &MBB,
578                                         MachineBasicBlock &NewDestBB,
579                                         const DebugLoc &DL,
580                                         int64_t BrOffset = 0,
581                                         RegScavenger *RS = nullptr) const {
582     llvm_unreachable("target did not implement");
583   }
584 
585   /// Analyze the branching code at the end of MBB, returning
586   /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
587   /// implemented for a target).  Upon success, this returns false and returns
588   /// with the following information in various cases:
589   ///
590   /// 1. If this block ends with no branches (it just falls through to its succ)
591   ///    just return false, leaving TBB/FBB null.
592   /// 2. If this block ends with only an unconditional branch, it sets TBB to be
593   ///    the destination block.
594   /// 3. If this block ends with a conditional branch and it falls through to a
595   ///    successor block, it sets TBB to be the branch destination block and a
596   ///    list of operands that evaluate the condition. These operands can be
597   ///    passed to other TargetInstrInfo methods to create new branches.
598   /// 4. If this block ends with a conditional branch followed by an
599   ///    unconditional branch, it returns the 'true' destination in TBB, the
600   ///    'false' destination in FBB, and a list of operands that evaluate the
601   ///    condition.  These operands can be passed to other TargetInstrInfo
602   ///    methods to create new branches.
603   ///
604   /// Note that removeBranch and insertBranch must be implemented to support
605   /// cases where this method returns success.
606   ///
607   /// If AllowModify is true, then this routine is allowed to modify the basic
608   /// block (e.g. delete instructions after the unconditional branch).
609   ///
610   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
611   /// before calling this function.
612   virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
613                              MachineBasicBlock *&FBB,
614                              SmallVectorImpl<MachineOperand> &Cond,
615                              bool AllowModify = false) const {
616     return true;
617   }
618 
619   /// Represents a predicate at the MachineFunction level.  The control flow a
620   /// MachineBranchPredicate represents is:
621   ///
622   ///  Reg = LHS `Predicate` RHS         == ConditionDef
623   ///  if Reg then goto TrueDest else goto FalseDest
624   ///
625   struct MachineBranchPredicate {
626     enum ComparePredicate {
627       PRED_EQ,     // True if two values are equal
628       PRED_NE,     // True if two values are not equal
629       PRED_INVALID // Sentinel value
630     };
631 
632     ComparePredicate Predicate = PRED_INVALID;
633     MachineOperand LHS = MachineOperand::CreateImm(0);
634     MachineOperand RHS = MachineOperand::CreateImm(0);
635     MachineBasicBlock *TrueDest = nullptr;
636     MachineBasicBlock *FalseDest = nullptr;
637     MachineInstr *ConditionDef = nullptr;
638 
639     /// SingleUseCondition is true if ConditionDef is dead except for the
640     /// branch(es) at the end of the basic block.
641     ///
642     bool SingleUseCondition = false;
643 
644     explicit MachineBranchPredicate() = default;
645   };
646 
647   /// Analyze the branching code at the end of MBB and parse it into the
648   /// MachineBranchPredicate structure if possible.  Returns false on success
649   /// and true on failure.
650   ///
651   /// If AllowModify is true, then this routine is allowed to modify the basic
652   /// block (e.g. delete instructions after the unconditional branch).
653   ///
654   virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
655                                       MachineBranchPredicate &MBP,
656                                       bool AllowModify = false) const {
657     return true;
658   }
659 
660   /// Remove the branching code at the end of the specific MBB.
661   /// This is only invoked in cases where analyzeBranch returns success. It
662   /// returns the number of instructions that were removed.
663   /// If \p BytesRemoved is non-null, report the change in code size from the
664   /// removed instructions.
665   virtual unsigned removeBranch(MachineBasicBlock &MBB,
666                                 int *BytesRemoved = nullptr) const {
667     llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
668   }
669 
670   /// Insert branch code into the end of the specified MachineBasicBlock. The
671   /// operands to this method are the same as those returned by analyzeBranch.
672   /// This is only invoked in cases where analyzeBranch returns success. It
673   /// returns the number of instructions inserted. If \p BytesAdded is non-null,
674   /// report the change in code size from the added instructions.
675   ///
676   /// It is also invoked by tail merging to add unconditional branches in
677   /// cases where analyzeBranch doesn't apply because there was no original
678   /// branch to analyze.  At least this much must be implemented, else tail
679   /// merging needs to be disabled.
680   ///
681   /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
682   /// before calling this function.
683   virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
684                                 MachineBasicBlock *FBB,
685                                 ArrayRef<MachineOperand> Cond,
686                                 const DebugLoc &DL,
687                                 int *BytesAdded = nullptr) const {
688     llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
689   }
690 
691   unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
692                                      MachineBasicBlock *DestBB,
693                                      const DebugLoc &DL,
694                                      int *BytesAdded = nullptr) const {
695     return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
696                         BytesAdded);
697   }
698 
699   /// Object returned by analyzeLoopForPipelining. Allows software pipelining
700   /// implementations to query attributes of the loop being pipelined and to
701   /// apply target-specific updates to the loop once pipelining is complete.
702   class PipelinerLoopInfo {
703   public:
704     virtual ~PipelinerLoopInfo();
705     /// Return true if the given instruction should not be pipelined and should
706     /// be ignored. An example could be a loop comparison, or induction variable
707     /// update with no users being pipelined.
708     virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
709 
710     /// Create a condition to determine if the trip count of the loop is greater
711     /// than TC.
712     ///
713     /// If the trip count is statically known to be greater than TC, return
714     /// true. If the trip count is statically known to be not greater than TC,
715     /// return false. Otherwise return nullopt and fill out Cond with the test
716     /// condition.
717     virtual Optional<bool>
718     createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
719                                     SmallVectorImpl<MachineOperand> &Cond) = 0;
720 
721     /// Modify the loop such that the trip count is
722     /// OriginalTC + TripCountAdjust.
723     virtual void adjustTripCount(int TripCountAdjust) = 0;
724 
725     /// Called when the loop's preheader has been modified to NewPreheader.
726     virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
727 
728     /// Called when the loop is being removed. Any instructions in the preheader
729     /// should be removed.
730     ///
731     /// Once this function is called, no other functions on this object are
732     /// valid; the loop has been removed.
733     virtual void disposed() = 0;
734   };
735 
736   /// Analyze loop L, which must be a single-basic-block loop, and if the
737   /// conditions can be understood enough produce a PipelinerLoopInfo object.
738   virtual std::unique_ptr<PipelinerLoopInfo>
739   analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
740     return nullptr;
741   }
742 
743   /// Analyze the loop code, return true if it cannot be understood. Upon
744   /// success, this function returns false and returns information about the
745   /// induction variable and compare instruction used at the end.
746   virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
747                            MachineInstr *&CmpInst) const {
748     return true;
749   }
750 
751   /// Generate code to reduce the loop iteration by one and check if the loop
752   /// is finished.  Return the value/register of the new loop count.  We need
753   /// this function when peeling off one or more iterations of a loop. This
754   /// function assumes the nth iteration is peeled first.
755   virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
756                                    MachineBasicBlock &PreHeader,
757                                    MachineInstr *IndVar, MachineInstr &Cmp,
758                                    SmallVectorImpl<MachineOperand> &Cond,
759                                    SmallVectorImpl<MachineInstr *> &PrevInsts,
760                                    unsigned Iter, unsigned MaxIter) const {
761     llvm_unreachable("Target didn't implement ReduceLoopCount");
762   }
763 
764   /// Delete the instruction OldInst and everything after it, replacing it with
765   /// an unconditional branch to NewDest. This is used by the tail merging pass.
766   virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
767                                        MachineBasicBlock *NewDest) const;
768 
769   /// Return true if it's legal to split the given basic
770   /// block at the specified instruction (i.e. instruction would be the start
771   /// of a new basic block).
772   virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
773                                    MachineBasicBlock::iterator MBBI) const {
774     return true;
775   }
776 
777   /// Return true if it's profitable to predicate
778   /// instructions with accumulated instruction latency of "NumCycles"
779   /// of the specified basic block, where the probability of the instructions
780   /// being executed is given by Probability, and Confidence is a measure
781   /// of our confidence that it will be properly predicted.
782   virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
783                                    unsigned ExtraPredCycles,
784                                    BranchProbability Probability) const {
785     return false;
786   }
787 
788   /// Second variant of isProfitableToIfCvt. This one
789   /// checks for the case where two basic blocks from true and false path
790   /// of a if-then-else (diamond) are predicated on mutually exclusive
791   /// predicates, where the probability of the true path being taken is given
792   /// by Probability, and Confidence is a measure of our confidence that it
793   /// will be properly predicted.
794   virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
795                                    unsigned ExtraTCycles,
796                                    MachineBasicBlock &FMBB, unsigned NumFCycles,
797                                    unsigned ExtraFCycles,
798                                    BranchProbability Probability) const {
799     return false;
800   }
801 
802   /// Return true if it's profitable for if-converter to duplicate instructions
803   /// of specified accumulated instruction latencies in the specified MBB to
804   /// enable if-conversion.
805   /// The probability of the instructions being executed is given by
806   /// Probability, and Confidence is a measure of our confidence that it
807   /// will be properly predicted.
808   virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
809                                          unsigned NumCycles,
810                                          BranchProbability Probability) const {
811     return false;
812   }
813 
814   /// Return the increase in code size needed to predicate a contiguous run of
815   /// NumInsts instructions.
816   virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
817                                                     unsigned NumInsts) const {
818     return 0;
819   }
820 
821   /// Return an estimate for the code size reduction (in bytes) which will be
822   /// caused by removing the given branch instruction during if-conversion.
823   virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
824     return getInstSizeInBytes(MI);
825   }
826 
827   /// Return true if it's profitable to unpredicate
828   /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
829   /// exclusive predicates.
830   /// e.g.
831   ///   subeq  r0, r1, #1
832   ///   addne  r0, r1, #1
833   /// =>
834   ///   sub    r0, r1, #1
835   ///   addne  r0, r1, #1
836   ///
837   /// This may be profitable is conditional instructions are always executed.
838   virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
839                                          MachineBasicBlock &FMBB) const {
840     return false;
841   }
842 
843   /// Return true if it is possible to insert a select
844   /// instruction that chooses between TrueReg and FalseReg based on the
845   /// condition code in Cond.
846   ///
847   /// When successful, also return the latency in cycles from TrueReg,
848   /// FalseReg, and Cond to the destination register. In most cases, a select
849   /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
850   ///
851   /// Some x86 implementations have 2-cycle cmov instructions.
852   ///
853   /// @param MBB         Block where select instruction would be inserted.
854   /// @param Cond        Condition returned by analyzeBranch.
855   /// @param DstReg      Virtual dest register that the result should write to.
856   /// @param TrueReg     Virtual register to select when Cond is true.
857   /// @param FalseReg    Virtual register to select when Cond is false.
858   /// @param CondCycles  Latency from Cond+Branch to select output.
859   /// @param TrueCycles  Latency from TrueReg to select output.
860   /// @param FalseCycles Latency from FalseReg to select output.
861   virtual bool canInsertSelect(const MachineBasicBlock &MBB,
862                                ArrayRef<MachineOperand> Cond, Register DstReg,
863                                Register TrueReg, Register FalseReg,
864                                int &CondCycles, int &TrueCycles,
865                                int &FalseCycles) const {
866     return false;
867   }
868 
869   /// Insert a select instruction into MBB before I that will copy TrueReg to
870   /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
871   ///
872   /// This function can only be called after canInsertSelect() returned true.
873   /// The condition in Cond comes from analyzeBranch, and it can be assumed
874   /// that the same flags or registers required by Cond are available at the
875   /// insertion point.
876   ///
877   /// @param MBB      Block where select instruction should be inserted.
878   /// @param I        Insertion point.
879   /// @param DL       Source location for debugging.
880   /// @param DstReg   Virtual register to be defined by select instruction.
881   /// @param Cond     Condition as computed by analyzeBranch.
882   /// @param TrueReg  Virtual register to copy when Cond is true.
883   /// @param FalseReg Virtual register to copy when Cons is false.
884   virtual void insertSelect(MachineBasicBlock &MBB,
885                             MachineBasicBlock::iterator I, const DebugLoc &DL,
886                             Register DstReg, ArrayRef<MachineOperand> Cond,
887                             Register TrueReg, Register FalseReg) const {
888     llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
889   }
890 
891   /// Analyze the given select instruction, returning true if
892   /// it cannot be understood. It is assumed that MI->isSelect() is true.
893   ///
894   /// When successful, return the controlling condition and the operands that
895   /// determine the true and false result values.
896   ///
897   ///   Result = SELECT Cond, TrueOp, FalseOp
898   ///
899   /// Some targets can optimize select instructions, for example by predicating
900   /// the instruction defining one of the operands. Such targets should set
901   /// Optimizable.
902   ///
903   /// @param         MI Select instruction to analyze.
904   /// @param Cond    Condition controlling the select.
905   /// @param TrueOp  Operand number of the value selected when Cond is true.
906   /// @param FalseOp Operand number of the value selected when Cond is false.
907   /// @param Optimizable Returned as true if MI is optimizable.
908   /// @returns False on success.
909   virtual bool analyzeSelect(const MachineInstr &MI,
910                              SmallVectorImpl<MachineOperand> &Cond,
911                              unsigned &TrueOp, unsigned &FalseOp,
912                              bool &Optimizable) const {
913     assert(MI.getDesc().isSelect() && "MI must be a select instruction");
914     return true;
915   }
916 
917   /// Given a select instruction that was understood by
918   /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
919   /// merging it with one of its operands. Returns NULL on failure.
920   ///
921   /// When successful, returns the new select instruction. The client is
922   /// responsible for deleting MI.
923   ///
924   /// If both sides of the select can be optimized, PreferFalse is used to pick
925   /// a side.
926   ///
927   /// @param MI          Optimizable select instruction.
928   /// @param NewMIs     Set that record all MIs in the basic block up to \p
929   /// MI. Has to be updated with any newly created MI or deleted ones.
930   /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
931   /// @returns Optimized instruction or NULL.
932   virtual MachineInstr *optimizeSelect(MachineInstr &MI,
933                                        SmallPtrSetImpl<MachineInstr *> &NewMIs,
934                                        bool PreferFalse = false) const {
935     // This function must be implemented if Optimizable is ever set.
936     llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
937   }
938 
939   /// Emit instructions to copy a pair of physical registers.
940   ///
941   /// This function should support copies within any legal register class as
942   /// well as any cross-class copies created during instruction selection.
943   ///
944   /// The source and destination registers may overlap, which may require a
945   /// careful implementation when multiple copy instructions are required for
946   /// large registers. See for example the ARM target.
947   virtual void copyPhysReg(MachineBasicBlock &MBB,
948                            MachineBasicBlock::iterator MI, const DebugLoc &DL,
949                            MCRegister DestReg, MCRegister SrcReg,
950                            bool KillSrc) const {
951     llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
952   }
953 
954 protected:
955   /// Target-dependent implementation for IsCopyInstr.
956   /// If the specific machine instruction is a instruction that moves/copies
957   /// value from one register to another register return destination and source
958   /// registers as machine operands.
959   virtual Optional<DestSourcePair>
960   isCopyInstrImpl(const MachineInstr &MI) const {
961     return None;
962   }
963 
964   /// Return true if the given terminator MI is not expected to spill. This
965   /// sets the live interval as not spillable and adjusts phi node lowering to
966   /// not introduce copies after the terminator. Use with care, these are
967   /// currently used for hardware loop intrinsics in very controlled situations,
968   /// created prior to registry allocation in loops that only have single phi
969   /// users for the terminators value. They may run out of registers if not used
970   /// carefully.
971   virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
972     return false;
973   }
974 
975 public:
976   /// If the specific machine instruction is a instruction that moves/copies
977   /// value from one register to another register return destination and source
978   /// registers as machine operands.
979   /// For COPY-instruction the method naturally returns destination and source
980   /// registers as machine operands, for all other instructions the method calls
981   /// target-dependent implementation.
982   Optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
983     if (MI.isCopy()) {
984       return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
985     }
986     return isCopyInstrImpl(MI);
987   }
988 
989   /// If the specific machine instruction is an instruction that adds an
990   /// immediate value and a physical register, and stores the result in
991   /// the given physical register \c Reg, return a pair of the source
992   /// register and the offset which has been added.
993   virtual Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
994                                               Register Reg) const {
995     return None;
996   }
997 
998   /// Returns true if MI is an instruction that defines Reg to have a constant
999   /// value and the value is recorded in ImmVal. The ImmVal is a result that
1000   /// should be interpreted as modulo size of Reg.
1001   virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1002                                        const Register Reg,
1003                                        int64_t &ImmVal) const {
1004     return false;
1005   }
1006 
1007   /// Store the specified register of the given register class to the specified
1008   /// stack frame index. The store instruction is to be added to the given
1009   /// machine basic block before the specified machine instruction. If isKill
1010   /// is true, the register operand is the last use and must be marked kill.
1011   virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1012                                    MachineBasicBlock::iterator MI,
1013                                    Register SrcReg, bool isKill, int FrameIndex,
1014                                    const TargetRegisterClass *RC,
1015                                    const TargetRegisterInfo *TRI) const {
1016     llvm_unreachable("Target didn't implement "
1017                      "TargetInstrInfo::storeRegToStackSlot!");
1018   }
1019 
1020   /// Load the specified register of the given register class from the specified
1021   /// stack frame index. The load instruction is to be added to the given
1022   /// machine basic block before the specified machine instruction.
1023   virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1024                                     MachineBasicBlock::iterator MI,
1025                                     Register DestReg, int FrameIndex,
1026                                     const TargetRegisterClass *RC,
1027                                     const TargetRegisterInfo *TRI) const {
1028     llvm_unreachable("Target didn't implement "
1029                      "TargetInstrInfo::loadRegFromStackSlot!");
1030   }
1031 
1032   /// This function is called for all pseudo instructions
1033   /// that remain after register allocation. Many pseudo instructions are
1034   /// created to help register allocation. This is the place to convert them
1035   /// into real instructions. The target can edit MI in place, or it can insert
1036   /// new instructions and erase MI. The function should return true if
1037   /// anything was changed.
1038   virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1039 
1040   /// Check whether the target can fold a load that feeds a subreg operand
1041   /// (or a subreg operand that feeds a store).
1042   /// For example, X86 may want to return true if it can fold
1043   /// movl (%esp), %eax
1044   /// subb, %al, ...
1045   /// Into:
1046   /// subb (%esp), ...
1047   ///
1048   /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1049   /// reject subregs - but since this behavior used to be enforced in the
1050   /// target-independent code, moving this responsibility to the targets
1051   /// has the potential of causing nasty silent breakage in out-of-tree targets.
1052   virtual bool isSubregFoldable() const { return false; }
1053 
1054   /// Attempt to fold a load or store of the specified stack
1055   /// slot into the specified machine instruction for the specified operand(s).
1056   /// If this is possible, a new instruction is returned with the specified
1057   /// operand folded, otherwise NULL is returned.
1058   /// The new instruction is inserted before MI, and the client is responsible
1059   /// for removing the old instruction.
1060   /// If VRM is passed, the assigned physregs can be inspected by target to
1061   /// decide on using an opcode (note that those assignments can still change).
1062   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1063                                   int FI,
1064                                   LiveIntervals *LIS = nullptr,
1065                                   VirtRegMap *VRM = nullptr) const;
1066 
1067   /// Same as the previous version except it allows folding of any load and
1068   /// store from / to any address, not just from a specific stack slot.
1069   MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1070                                   MachineInstr &LoadMI,
1071                                   LiveIntervals *LIS = nullptr) const;
1072 
1073   /// Return true when there is potentially a faster code sequence
1074   /// for an instruction chain ending in \p Root. All potential patterns are
1075   /// returned in the \p Pattern vector. Pattern should be sorted in priority
1076   /// order since the pattern evaluator stops checking as soon as it finds a
1077   /// faster sequence.
1078   /// \param Root - Instruction that could be combined with one of its operands
1079   /// \param Patterns - Vector of possible combination patterns
1080   virtual bool
1081   getMachineCombinerPatterns(MachineInstr &Root,
1082                              SmallVectorImpl<MachineCombinerPattern> &Patterns,
1083                              bool DoRegPressureReduce) const;
1084 
1085   /// Return true if target supports reassociation of instructions in machine
1086   /// combiner pass to reduce register pressure for a given BB.
1087   virtual bool
1088   shouldReduceRegisterPressure(MachineBasicBlock *MBB,
1089                                RegisterClassInfo *RegClassInfo) const {
1090     return false;
1091   }
1092 
1093   /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1094   virtual void
1095   finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1096                     SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1097 
1098   /// Return true when a code sequence can improve throughput. It
1099   /// should be called only for instructions in loops.
1100   /// \param Pattern - combiner pattern
1101   virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1102 
1103   /// Return true if the input \P Inst is part of a chain of dependent ops
1104   /// that are suitable for reassociation, otherwise return false.
1105   /// If the instruction's operands must be commuted to have a previous
1106   /// instruction of the same type define the first source operand, \P Commuted
1107   /// will be set to true.
1108   bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1109 
1110   /// Return true when \P Inst is both associative and commutative.
1111   virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
1112     return false;
1113   }
1114 
1115   /// Return true when \P Inst has reassociable operands in the same \P MBB.
1116   virtual bool hasReassociableOperands(const MachineInstr &Inst,
1117                                        const MachineBasicBlock *MBB) const;
1118 
1119   /// Return true when \P Inst has reassociable sibling.
1120   bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
1121 
1122   /// When getMachineCombinerPatterns() finds patterns, this function generates
1123   /// the instructions that could replace the original code sequence. The client
1124   /// has to decide whether the actual replacement is beneficial or not.
1125   /// \param Root - Instruction that could be combined with one of its operands
1126   /// \param Pattern - Combination pattern for Root
1127   /// \param InsInstrs - Vector of new instructions that implement P
1128   /// \param DelInstrs - Old instructions, including Root, that could be
1129   /// replaced by InsInstr
1130   /// \param InstIdxForVirtReg - map of virtual register to instruction in
1131   /// InsInstr that defines it
1132   virtual void genAlternativeCodeSequence(
1133       MachineInstr &Root, MachineCombinerPattern Pattern,
1134       SmallVectorImpl<MachineInstr *> &InsInstrs,
1135       SmallVectorImpl<MachineInstr *> &DelInstrs,
1136       DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1137 
1138   /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1139   /// reduce critical path length.
1140   void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1141                       MachineCombinerPattern Pattern,
1142                       SmallVectorImpl<MachineInstr *> &InsInstrs,
1143                       SmallVectorImpl<MachineInstr *> &DelInstrs,
1144                       DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1145 
1146   /// The limit on resource length extension we accept in MachineCombiner Pass.
1147   virtual int getExtendResourceLenLimit() const { return 0; }
1148 
1149   /// This is an architecture-specific helper function of reassociateOps.
1150   /// Set special operand attributes for new instructions after reassociation.
1151   virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1152                                      MachineInstr &NewMI1,
1153                                      MachineInstr &NewMI2) const {}
1154 
1155   virtual void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const {}
1156 
1157   /// Return true when a target supports MachineCombiner.
1158   virtual bool useMachineCombiner() const { return false; }
1159 
1160   /// Return true if the given SDNode can be copied during scheduling
1161   /// even if it has glue.
1162   virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1163 
1164 protected:
1165   /// Target-dependent implementation for foldMemoryOperand.
1166   /// Target-independent code in foldMemoryOperand will
1167   /// take care of adding a MachineMemOperand to the newly created instruction.
1168   /// The instruction and any auxiliary instructions necessary will be inserted
1169   /// at InsertPt.
1170   virtual MachineInstr *
1171   foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1172                         ArrayRef<unsigned> Ops,
1173                         MachineBasicBlock::iterator InsertPt, int FrameIndex,
1174                         LiveIntervals *LIS = nullptr,
1175                         VirtRegMap *VRM = nullptr) const {
1176     return nullptr;
1177   }
1178 
1179   /// Target-dependent implementation for foldMemoryOperand.
1180   /// Target-independent code in foldMemoryOperand will
1181   /// take care of adding a MachineMemOperand to the newly created instruction.
1182   /// The instruction and any auxiliary instructions necessary will be inserted
1183   /// at InsertPt.
1184   virtual MachineInstr *foldMemoryOperandImpl(
1185       MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1186       MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1187       LiveIntervals *LIS = nullptr) const {
1188     return nullptr;
1189   }
1190 
1191   /// Target-dependent implementation of getRegSequenceInputs.
1192   ///
1193   /// \returns true if it is possible to build the equivalent
1194   /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1195   ///
1196   /// \pre MI.isRegSequenceLike().
1197   ///
1198   /// \see TargetInstrInfo::getRegSequenceInputs.
1199   virtual bool getRegSequenceLikeInputs(
1200       const MachineInstr &MI, unsigned DefIdx,
1201       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1202     return false;
1203   }
1204 
1205   /// Target-dependent implementation of getExtractSubregInputs.
1206   ///
1207   /// \returns true if it is possible to build the equivalent
1208   /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1209   ///
1210   /// \pre MI.isExtractSubregLike().
1211   ///
1212   /// \see TargetInstrInfo::getExtractSubregInputs.
1213   virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1214                                           unsigned DefIdx,
1215                                           RegSubRegPairAndIdx &InputReg) const {
1216     return false;
1217   }
1218 
1219   /// Target-dependent implementation of getInsertSubregInputs.
1220   ///
1221   /// \returns true if it is possible to build the equivalent
1222   /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1223   ///
1224   /// \pre MI.isInsertSubregLike().
1225   ///
1226   /// \see TargetInstrInfo::getInsertSubregInputs.
1227   virtual bool
1228   getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1229                             RegSubRegPair &BaseReg,
1230                             RegSubRegPairAndIdx &InsertedReg) const {
1231     return false;
1232   }
1233 
1234 public:
1235   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1236   /// (e.g. stack) the target returns the corresponding address space.
1237   virtual unsigned
1238   getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
1239     return 0;
1240   }
1241 
1242   /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1243   /// a store or a load and a store into two or more instruction. If this is
1244   /// possible, returns true as well as the new instructions by reference.
1245   virtual bool
1246   unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1247                       bool UnfoldLoad, bool UnfoldStore,
1248                       SmallVectorImpl<MachineInstr *> &NewMIs) const {
1249     return false;
1250   }
1251 
1252   virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1253                                    SmallVectorImpl<SDNode *> &NewNodes) const {
1254     return false;
1255   }
1256 
1257   /// Returns the opcode of the would be new
1258   /// instruction after load / store are unfolded from an instruction of the
1259   /// specified opcode. It returns zero if the specified unfolding is not
1260   /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1261   /// index of the operand which will hold the register holding the loaded
1262   /// value.
1263   virtual unsigned
1264   getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1265                              unsigned *LoadRegIndex = nullptr) const {
1266     return 0;
1267   }
1268 
1269   /// This is used by the pre-regalloc scheduler to determine if two loads are
1270   /// loading from the same base address. It should only return true if the base
1271   /// pointers are the same and the only differences between the two addresses
1272   /// are the offset. It also returns the offsets by reference.
1273   virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1274                                        int64_t &Offset1,
1275                                        int64_t &Offset2) const {
1276     return false;
1277   }
1278 
1279   /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1280   /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1281   /// On some targets if two loads are loading from
1282   /// addresses in the same cache line, it's better if they are scheduled
1283   /// together. This function takes two integers that represent the load offsets
1284   /// from the common base address. It returns true if it decides it's desirable
1285   /// to schedule the two loads together. "NumLoads" is the number of loads that
1286   /// have already been scheduled after Load1.
1287   virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1288                                        int64_t Offset1, int64_t Offset2,
1289                                        unsigned NumLoads) const {
1290     return false;
1291   }
1292 
1293   /// Get the base operand and byte offset of an instruction that reads/writes
1294   /// memory. This is a convenience function for callers that are only prepared
1295   /// to handle a single base operand.
1296   bool getMemOperandWithOffset(const MachineInstr &MI,
1297                                const MachineOperand *&BaseOp, int64_t &Offset,
1298                                bool &OffsetIsScalable,
1299                                const TargetRegisterInfo *TRI) const;
1300 
1301   /// Get zero or more base operands and the byte offset of an instruction that
1302   /// reads/writes memory. Note that there may be zero base operands if the
1303   /// instruction accesses a constant address.
1304   /// It returns false if MI does not read/write memory.
1305   /// It returns false if base operands and offset could not be determined.
1306   /// It is not guaranteed to always recognize base operands and offsets in all
1307   /// cases.
1308   virtual bool getMemOperandsWithOffsetWidth(
1309       const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1310       int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1311       const TargetRegisterInfo *TRI) const {
1312     return false;
1313   }
1314 
1315   /// Return true if the instruction contains a base register and offset. If
1316   /// true, the function also sets the operand position in the instruction
1317   /// for the base register and offset.
1318   virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1319                                         unsigned &BasePos,
1320                                         unsigned &OffsetPos) const {
1321     return false;
1322   }
1323 
1324   /// Target dependent implementation to get the values constituting the address
1325   /// MachineInstr that is accessing memory. These values are returned as a
1326   /// struct ExtAddrMode which contains all relevant information to make up the
1327   /// address.
1328   virtual Optional<ExtAddrMode>
1329   getAddrModeFromMemoryOp(const MachineInstr &MemI,
1330                           const TargetRegisterInfo *TRI) const {
1331     return None;
1332   }
1333 
1334   /// Returns true if MI's Def is NullValueReg, and the MI
1335   /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1336   /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1337   /// function can return true even if becomes zero. Specifically cases such as
1338   /// NullValueReg = shl NullValueReg, 63.
1339   virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1340                                        const Register NullValueReg,
1341                                        const TargetRegisterInfo *TRI) const {
1342     return false;
1343   }
1344 
1345   /// If the instruction is an increment of a constant value, return the amount.
1346   virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1347     return false;
1348   }
1349 
1350   /// Returns true if the two given memory operations should be scheduled
1351   /// adjacent. Note that you have to add:
1352   ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1353   /// or
1354   ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1355   /// to TargetPassConfig::createMachineScheduler() to have an effect.
1356   ///
1357   /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1358   /// \p NumLoads is the number of loads that will be in the cluster if this
1359   /// hook returns true.
1360   /// \p NumBytes is the number of bytes that will be loaded from all the
1361   /// clustered loads if this hook returns true.
1362   virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1363                                    ArrayRef<const MachineOperand *> BaseOps2,
1364                                    unsigned NumLoads, unsigned NumBytes) const {
1365     llvm_unreachable("target did not implement shouldClusterMemOps()");
1366   }
1367 
1368   /// Reverses the branch condition of the specified condition list,
1369   /// returning false on success and true if it cannot be reversed.
1370   virtual bool
1371   reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1372     return true;
1373   }
1374 
1375   /// Insert a noop into the instruction stream at the specified point.
1376   virtual void insertNoop(MachineBasicBlock &MBB,
1377                           MachineBasicBlock::iterator MI) const;
1378 
1379   /// Insert noops into the instruction stream at the specified point.
1380   virtual void insertNoops(MachineBasicBlock &MBB,
1381                            MachineBasicBlock::iterator MI,
1382                            unsigned Quantity) const;
1383 
1384   /// Return the noop instruction to use for a noop.
1385   virtual void getNoop(MCInst &NopInst) const;
1386 
1387   /// Return true for post-incremented instructions.
1388   virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1389 
1390   /// Returns true if the instruction is already predicated.
1391   virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1392 
1393   // Returns a MIRPrinter comment for this machine operand.
1394   virtual std::string
1395   createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1396                           unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1397 
1398   /// Returns true if the instruction is a
1399   /// terminator instruction that has not been predicated.
1400   bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1401 
1402   /// Returns true if MI is an unconditional tail call.
1403   virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1404     return false;
1405   }
1406 
1407   /// Returns true if the tail call can be made conditional on BranchCond.
1408   virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1409                                           const MachineInstr &TailCall) const {
1410     return false;
1411   }
1412 
1413   /// Replace the conditional branch in MBB with a conditional tail call.
1414   virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1415                                          SmallVectorImpl<MachineOperand> &Cond,
1416                                          const MachineInstr &TailCall) const {
1417     llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1418   }
1419 
1420   /// Convert the instruction into a predicated instruction.
1421   /// It returns true if the operation was successful.
1422   virtual bool PredicateInstruction(MachineInstr &MI,
1423                                     ArrayRef<MachineOperand> Pred) const;
1424 
1425   /// Returns true if the first specified predicate
1426   /// subsumes the second, e.g. GE subsumes GT.
1427   virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1428                                  ArrayRef<MachineOperand> Pred2) const {
1429     return false;
1430   }
1431 
1432   /// If the specified instruction defines any predicate
1433   /// or condition code register(s) used for predication, returns true as well
1434   /// as the definition predicate(s) by reference.
1435   /// SkipDead should be set to false at any point that dead
1436   /// predicate instructions should be considered as being defined.
1437   /// A dead predicate instruction is one that is guaranteed to be removed
1438   /// after a call to PredicateInstruction.
1439   virtual bool ClobbersPredicate(MachineInstr &MI,
1440                                  std::vector<MachineOperand> &Pred,
1441                                  bool SkipDead) const {
1442     return false;
1443   }
1444 
1445   /// Return true if the specified instruction can be predicated.
1446   /// By default, this returns true for every instruction with a
1447   /// PredicateOperand.
1448   virtual bool isPredicable(const MachineInstr &MI) const {
1449     return MI.getDesc().isPredicable();
1450   }
1451 
1452   /// Return true if it's safe to move a machine
1453   /// instruction that defines the specified register class.
1454   virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1455     return true;
1456   }
1457 
1458   /// Test if the given instruction should be considered a scheduling boundary.
1459   /// This primarily includes labels and terminators.
1460   virtual bool isSchedulingBoundary(const MachineInstr &MI,
1461                                     const MachineBasicBlock *MBB,
1462                                     const MachineFunction &MF) const;
1463 
1464   /// Measure the specified inline asm to determine an approximation of its
1465   /// length.
1466   virtual unsigned getInlineAsmLength(
1467     const char *Str, const MCAsmInfo &MAI,
1468     const TargetSubtargetInfo *STI = nullptr) const;
1469 
1470   /// Allocate and return a hazard recognizer to use for this target when
1471   /// scheduling the machine instructions before register allocation.
1472   virtual ScheduleHazardRecognizer *
1473   CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1474                                const ScheduleDAG *DAG) const;
1475 
1476   /// Allocate and return a hazard recognizer to use for this target when
1477   /// scheduling the machine instructions before register allocation.
1478   virtual ScheduleHazardRecognizer *
1479   CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1480                                  const ScheduleDAGMI *DAG) const;
1481 
1482   /// Allocate and return a hazard recognizer to use for this target when
1483   /// scheduling the machine instructions after register allocation.
1484   virtual ScheduleHazardRecognizer *
1485   CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1486                                      const ScheduleDAG *DAG) const;
1487 
1488   /// Allocate and return a hazard recognizer to use for by non-scheduling
1489   /// passes.
1490   virtual ScheduleHazardRecognizer *
1491   CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1492     return nullptr;
1493   }
1494 
1495   /// Provide a global flag for disabling the PreRA hazard recognizer that
1496   /// targets may choose to honor.
1497   bool usePreRAHazardRecognizer() const;
1498 
1499   /// For a comparison instruction, return the source registers
1500   /// in SrcReg and SrcReg2 if having two register operands, and the value it
1501   /// compares against in CmpValue. Return true if the comparison instruction
1502   /// can be analyzed.
1503   virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1504                               Register &SrcReg2, int &Mask, int &Value) const {
1505     return false;
1506   }
1507 
1508   /// See if the comparison instruction can be converted
1509   /// into something more efficient. E.g., on ARM most instructions can set the
1510   /// flags register, obviating the need for a separate CMP.
1511   virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1512                                     Register SrcReg2, int Mask, int Value,
1513                                     const MachineRegisterInfo *MRI) const {
1514     return false;
1515   }
1516   virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1517 
1518   /// Try to remove the load by folding it to a register operand at the use.
1519   /// We fold the load instructions if and only if the
1520   /// def and use are in the same BB. We only look at one load and see
1521   /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1522   /// defined by the load we are trying to fold. DefMI returns the machine
1523   /// instruction that defines FoldAsLoadDefReg, and the function returns
1524   /// the machine instruction generated due to folding.
1525   virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1526                                           const MachineRegisterInfo *MRI,
1527                                           Register &FoldAsLoadDefReg,
1528                                           MachineInstr *&DefMI) const {
1529     return nullptr;
1530   }
1531 
1532   /// 'Reg' is known to be defined by a move immediate instruction,
1533   /// try to fold the immediate into the use instruction.
1534   /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1535   /// then the caller may assume that DefMI has been erased from its parent
1536   /// block. The caller may assume that it will not be erased by this
1537   /// function otherwise.
1538   virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1539                              Register Reg, MachineRegisterInfo *MRI) const {
1540     return false;
1541   }
1542 
1543   /// Return the number of u-operations the given machine
1544   /// instruction will be decoded to on the target cpu. The itinerary's
1545   /// IssueWidth is the number of microops that can be dispatched each
1546   /// cycle. An instruction with zero microops takes no dispatch resources.
1547   virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1548                                   const MachineInstr &MI) const;
1549 
1550   /// Return true for pseudo instructions that don't consume any
1551   /// machine resources in their current form. These are common cases that the
1552   /// scheduler should consider free, rather than conservatively handling them
1553   /// as instructions with no itinerary.
1554   bool isZeroCost(unsigned Opcode) const {
1555     return Opcode <= TargetOpcode::COPY;
1556   }
1557 
1558   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1559                                 SDNode *DefNode, unsigned DefIdx,
1560                                 SDNode *UseNode, unsigned UseIdx) const;
1561 
1562   /// Compute and return the use operand latency of a given pair of def and use.
1563   /// In most cases, the static scheduling itinerary was enough to determine the
1564   /// operand latency. But it may not be possible for instructions with variable
1565   /// number of defs / uses.
1566   ///
1567   /// This is a raw interface to the itinerary that may be directly overridden
1568   /// by a target. Use computeOperandLatency to get the best estimate of
1569   /// latency.
1570   virtual int getOperandLatency(const InstrItineraryData *ItinData,
1571                                 const MachineInstr &DefMI, unsigned DefIdx,
1572                                 const MachineInstr &UseMI,
1573                                 unsigned UseIdx) const;
1574 
1575   /// Compute the instruction latency of a given instruction.
1576   /// If the instruction has higher cost when predicated, it's returned via
1577   /// PredCost.
1578   virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1579                                    const MachineInstr &MI,
1580                                    unsigned *PredCost = nullptr) const;
1581 
1582   virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1583 
1584   virtual int getInstrLatency(const InstrItineraryData *ItinData,
1585                               SDNode *Node) const;
1586 
1587   /// Return the default expected latency for a def based on its opcode.
1588   unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1589                              const MachineInstr &DefMI) const;
1590 
1591   int computeDefOperandLatency(const InstrItineraryData *ItinData,
1592                                const MachineInstr &DefMI) const;
1593 
1594   /// Return true if this opcode has high latency to its result.
1595   virtual bool isHighLatencyDef(int opc) const { return false; }
1596 
1597   /// Compute operand latency between a def of 'Reg'
1598   /// and a use in the current loop. Return true if the target considered
1599   /// it 'high'. This is used by optimization passes such as machine LICM to
1600   /// determine whether it makes sense to hoist an instruction out even in a
1601   /// high register pressure situation.
1602   virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1603                                      const MachineRegisterInfo *MRI,
1604                                      const MachineInstr &DefMI, unsigned DefIdx,
1605                                      const MachineInstr &UseMI,
1606                                      unsigned UseIdx) const {
1607     return false;
1608   }
1609 
1610   /// Compute operand latency of a def of 'Reg'. Return true
1611   /// if the target considered it 'low'.
1612   virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1613                                 const MachineInstr &DefMI,
1614                                 unsigned DefIdx) const;
1615 
1616   /// Perform target-specific instruction verification.
1617   virtual bool verifyInstruction(const MachineInstr &MI,
1618                                  StringRef &ErrInfo) const {
1619     return true;
1620   }
1621 
1622   /// Return the current execution domain and bit mask of
1623   /// possible domains for instruction.
1624   ///
1625   /// Some micro-architectures have multiple execution domains, and multiple
1626   /// opcodes that perform the same operation in different domains.  For
1627   /// example, the x86 architecture provides the por, orps, and orpd
1628   /// instructions that all do the same thing.  There is a latency penalty if a
1629   /// register is written in one domain and read in another.
1630   ///
1631   /// This function returns a pair (domain, mask) containing the execution
1632   /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1633   /// function can be used to change the opcode to one of the domains in the
1634   /// bit mask.  Instructions whose execution domain can't be changed should
1635   /// return a 0 mask.
1636   ///
1637   /// The execution domain numbers don't have any special meaning except domain
1638   /// 0 is used for instructions that are not associated with any interesting
1639   /// execution domain.
1640   ///
1641   virtual std::pair<uint16_t, uint16_t>
1642   getExecutionDomain(const MachineInstr &MI) const {
1643     return std::make_pair(0, 0);
1644   }
1645 
1646   /// Change the opcode of MI to execute in Domain.
1647   ///
1648   /// The bit (1 << Domain) must be set in the mask returned from
1649   /// getExecutionDomain(MI).
1650   virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1651 
1652   /// Returns the preferred minimum clearance
1653   /// before an instruction with an unwanted partial register update.
1654   ///
1655   /// Some instructions only write part of a register, and implicitly need to
1656   /// read the other parts of the register.  This may cause unwanted stalls
1657   /// preventing otherwise unrelated instructions from executing in parallel in
1658   /// an out-of-order CPU.
1659   ///
1660   /// For example, the x86 instruction cvtsi2ss writes its result to bits
1661   /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1662   /// the instruction needs to wait for the old value of the register to become
1663   /// available:
1664   ///
1665   ///   addps %xmm1, %xmm0
1666   ///   movaps %xmm0, (%rax)
1667   ///   cvtsi2ss %rbx, %xmm0
1668   ///
1669   /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1670   /// instruction before it can issue, even though the high bits of %xmm0
1671   /// probably aren't needed.
1672   ///
1673   /// This hook returns the preferred clearance before MI, measured in
1674   /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1675   /// instructions before MI.  It should only return a positive value for
1676   /// unwanted dependencies.  If the old bits of the defined register have
1677   /// useful values, or if MI is determined to otherwise read the dependency,
1678   /// the hook should return 0.
1679   ///
1680   /// The unwanted dependency may be handled by:
1681   ///
1682   /// 1. Allocating the same register for an MI def and use.  That makes the
1683   ///    unwanted dependency identical to a required dependency.
1684   ///
1685   /// 2. Allocating a register for the def that has no defs in the previous N
1686   ///    instructions.
1687   ///
1688   /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1689   ///    allows the target to insert a dependency breaking instruction.
1690   ///
1691   virtual unsigned
1692   getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1693                                const TargetRegisterInfo *TRI) const {
1694     // The default implementation returns 0 for no partial register dependency.
1695     return 0;
1696   }
1697 
1698   /// Return the minimum clearance before an instruction that reads an
1699   /// unused register.
1700   ///
1701   /// For example, AVX instructions may copy part of a register operand into
1702   /// the unused high bits of the destination register.
1703   ///
1704   /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1705   ///
1706   /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1707   /// false dependence on any previous write to %xmm0.
1708   ///
1709   /// This hook works similarly to getPartialRegUpdateClearance, except that it
1710   /// does not take an operand index. Instead sets \p OpNum to the index of the
1711   /// unused register.
1712   virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1713                                         const TargetRegisterInfo *TRI) const {
1714     // The default implementation returns 0 for no undef register dependency.
1715     return 0;
1716   }
1717 
1718   /// Insert a dependency-breaking instruction
1719   /// before MI to eliminate an unwanted dependency on OpNum.
1720   ///
1721   /// If it wasn't possible to avoid a def in the last N instructions before MI
1722   /// (see getPartialRegUpdateClearance), this hook will be called to break the
1723   /// unwanted dependency.
1724   ///
1725   /// On x86, an xorps instruction can be used as a dependency breaker:
1726   ///
1727   ///   addps %xmm1, %xmm0
1728   ///   movaps %xmm0, (%rax)
1729   ///   xorps %xmm0, %xmm0
1730   ///   cvtsi2ss %rbx, %xmm0
1731   ///
1732   /// An <imp-kill> operand should be added to MI if an instruction was
1733   /// inserted.  This ties the instructions together in the post-ra scheduler.
1734   ///
1735   virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1736                                          const TargetRegisterInfo *TRI) const {}
1737 
1738   /// Create machine specific model for scheduling.
1739   virtual DFAPacketizer *
1740   CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1741     return nullptr;
1742   }
1743 
1744   /// Sometimes, it is possible for the target
1745   /// to tell, even without aliasing information, that two MIs access different
1746   /// memory addresses. This function returns true if two MIs access different
1747   /// memory addresses and false otherwise.
1748   ///
1749   /// Assumes any physical registers used to compute addresses have the same
1750   /// value for both instructions. (This is the most useful assumption for
1751   /// post-RA scheduling.)
1752   ///
1753   /// See also MachineInstr::mayAlias, which is implemented on top of this
1754   /// function.
1755   virtual bool
1756   areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1757                                   const MachineInstr &MIb) const {
1758     assert(MIa.mayLoadOrStore() &&
1759            "MIa must load from or modify a memory location");
1760     assert(MIb.mayLoadOrStore() &&
1761            "MIb must load from or modify a memory location");
1762     return false;
1763   }
1764 
1765   /// Return the value to use for the MachineCSE's LookAheadLimit,
1766   /// which is a heuristic used for CSE'ing phys reg defs.
1767   virtual unsigned getMachineCSELookAheadLimit() const {
1768     // The default lookahead is small to prevent unprofitable quadratic
1769     // behavior.
1770     return 5;
1771   }
1772 
1773   /// Return the maximal number of alias checks on memory operands. For
1774   /// instructions with more than one memory operands, the alias check on a
1775   /// single MachineInstr pair has quadratic overhead and results in
1776   /// unacceptable performance in the worst case. The limit here is to clamp
1777   /// that maximal checks performed. Usually, that's the product of memory
1778   /// operand numbers from that pair of MachineInstr to be checked. For
1779   /// instance, with two MachineInstrs with 4 and 5 memory operands
1780   /// correspondingly, a total of 20 checks are required. With this limit set to
1781   /// 16, their alias check is skipped. We choose to limit the product instead
1782   /// of the individual instruction as targets may have special MachineInstrs
1783   /// with a considerably high number of memory operands, such as `ldm` in ARM.
1784   /// Setting this limit per MachineInstr would result in either too high
1785   /// overhead or too rigid restriction.
1786   virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1787 
1788   /// Return an array that contains the ids of the target indices (used for the
1789   /// TargetIndex machine operand) and their names.
1790   ///
1791   /// MIR Serialization is able to serialize only the target indices that are
1792   /// defined by this method.
1793   virtual ArrayRef<std::pair<int, const char *>>
1794   getSerializableTargetIndices() const {
1795     return None;
1796   }
1797 
1798   /// Decompose the machine operand's target flags into two values - the direct
1799   /// target flag value and any of bit flags that are applied.
1800   virtual std::pair<unsigned, unsigned>
1801   decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1802     return std::make_pair(0u, 0u);
1803   }
1804 
1805   /// Return an array that contains the direct target flag values and their
1806   /// names.
1807   ///
1808   /// MIR Serialization is able to serialize only the target flags that are
1809   /// defined by this method.
1810   virtual ArrayRef<std::pair<unsigned, const char *>>
1811   getSerializableDirectMachineOperandTargetFlags() const {
1812     return None;
1813   }
1814 
1815   /// Return an array that contains the bitmask target flag values and their
1816   /// names.
1817   ///
1818   /// MIR Serialization is able to serialize only the target flags that are
1819   /// defined by this method.
1820   virtual ArrayRef<std::pair<unsigned, const char *>>
1821   getSerializableBitmaskMachineOperandTargetFlags() const {
1822     return None;
1823   }
1824 
1825   /// Return an array that contains the MMO target flag values and their
1826   /// names.
1827   ///
1828   /// MIR Serialization is able to serialize only the MMO target flags that are
1829   /// defined by this method.
1830   virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1831   getSerializableMachineMemOperandTargetFlags() const {
1832     return None;
1833   }
1834 
1835   /// Determines whether \p Inst is a tail call instruction. Override this
1836   /// method on targets that do not properly set MCID::Return and MCID::Call on
1837   /// tail call instructions."
1838   virtual bool isTailCall(const MachineInstr &Inst) const {
1839     return Inst.isReturn() && Inst.isCall();
1840   }
1841 
1842   /// True if the instruction is bound to the top of its basic block and no
1843   /// other instructions shall be inserted before it. This can be implemented
1844   /// to prevent register allocator to insert spills before such instructions.
1845   virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1846     return false;
1847   }
1848 
1849   /// During PHI eleimination lets target to make necessary checks and
1850   /// insert the copy to the PHI destination register in a target specific
1851   /// manner.
1852   virtual MachineInstr *createPHIDestinationCopy(
1853       MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1854       const DebugLoc &DL, Register Src, Register Dst) const {
1855     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1856         .addReg(Src);
1857   }
1858 
1859   /// During PHI eleimination lets target to make necessary checks and
1860   /// insert the copy to the PHI destination register in a target specific
1861   /// manner.
1862   virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1863                                             MachineBasicBlock::iterator InsPt,
1864                                             const DebugLoc &DL, Register Src,
1865                                             unsigned SrcSubReg,
1866                                             Register Dst) const {
1867     return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1868         .addReg(Src, 0, SrcSubReg);
1869   }
1870 
1871   /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1872   /// information for a set of outlining candidates.
1873   virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1874       std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1875     llvm_unreachable(
1876         "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1877   }
1878 
1879   /// Returns how or if \p MI should be outlined.
1880   virtual outliner::InstrType
1881   getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1882     llvm_unreachable(
1883         "Target didn't implement TargetInstrInfo::getOutliningType!");
1884   }
1885 
1886   /// Optional target hook that returns true if \p MBB is safe to outline from,
1887   /// and returns any target-specific information in \p Flags.
1888   virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1889                                       unsigned &Flags) const {
1890     return true;
1891   }
1892 
1893   /// Insert a custom frame for outlined functions.
1894   virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1895                                   const outliner::OutlinedFunction &OF) const {
1896     llvm_unreachable(
1897         "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1898   }
1899 
1900   /// Insert a call to an outlined function into the program.
1901   /// Returns an iterator to the spot where we inserted the call. This must be
1902   /// implemented by the target.
1903   virtual MachineBasicBlock::iterator
1904   insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1905                      MachineBasicBlock::iterator &It, MachineFunction &MF,
1906                      const outliner::Candidate &C) const {
1907     llvm_unreachable(
1908         "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1909   }
1910 
1911   /// Return true if the function can safely be outlined from.
1912   /// A function \p MF is considered safe for outlining if an outlined function
1913   /// produced from instructions in F will produce a program which produces the
1914   /// same output for any set of given inputs.
1915   virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1916                                            bool OutlineFromLinkOnceODRs) const {
1917     llvm_unreachable("Target didn't implement "
1918                      "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1919   }
1920 
1921   /// Return true if the function should be outlined from by default.
1922   virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1923     return false;
1924   }
1925 
1926   /// Produce the expression describing the \p MI loading a value into
1927   /// the physical register \p Reg. This hook should only be used with
1928   /// \p MIs belonging to VReg-less functions.
1929   virtual Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
1930                                                          Register Reg) const;
1931 
1932   /// Return MIR formatter to format/parse MIR operands.  Target can override
1933   /// this virtual function and return target specific MIR formatter.
1934   virtual const MIRFormatter *getMIRFormatter() const {
1935     if (!Formatter.get())
1936       Formatter = std::make_unique<MIRFormatter>();
1937     return Formatter.get();
1938   }
1939 
1940 private:
1941   mutable std::unique_ptr<MIRFormatter> Formatter;
1942   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1943   unsigned CatchRetOpcode;
1944   unsigned ReturnOpcode;
1945 };
1946 
1947 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1948 template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
1949   using RegInfo = DenseMapInfo<unsigned>;
1950 
1951   static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
1952     return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1953                                           RegInfo::getEmptyKey());
1954   }
1955 
1956   static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
1957     return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1958                                           RegInfo::getTombstoneKey());
1959   }
1960 
1961   /// Reuse getHashValue implementation from
1962   /// std::pair<unsigned, unsigned>.
1963   static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
1964     std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
1965     return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
1966   }
1967 
1968   static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
1969                       const TargetInstrInfo::RegSubRegPair &RHS) {
1970     return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
1971            RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
1972   }
1973 };
1974 
1975 } // end namespace llvm
1976 
1977 #endif // LLVM_TARGET_TARGETINSTRINFO_H
1978