1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file.  This information is used for a variety of
11 // purposed, especially register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <functional>
33 
34 namespace llvm {
35 
36 class BitVector;
37 class DIExpression;
38 class LiveRegMatrix;
39 class MachineFunction;
40 class MachineInstr;
41 class RegScavenger;
42 class VirtRegMap;
43 class LiveIntervals;
44 class LiveInterval;
45 
46 class TargetRegisterClass {
47 public:
48   using iterator = const MCPhysReg *;
49   using const_iterator = const MCPhysReg *;
50   using sc_iterator = const TargetRegisterClass* const *;
51 
52   // Instance variables filled by tablegen, do not use!
53   const MCRegisterClass *MC;
54   const uint32_t *SubClassMask;
55   const uint16_t *SuperRegIndices;
56   const LaneBitmask LaneMask;
57   /// Classes with a higher priority value are assigned first by register
58   /// allocators using a greedy heuristic. The value is in the range [0,63].
59   const uint8_t AllocationPriority;
60   /// Configurable target specific flags.
61   const uint8_t TSFlags;
62   /// Whether the class supports two (or more) disjunct subregister indices.
63   const bool HasDisjunctSubRegs;
64   /// Whether a combination of subregisters can cover every register in the
65   /// class. See also the CoveredBySubRegs description in Target.td.
66   const bool CoveredBySubRegs;
67   const sc_iterator SuperClasses;
68   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
69 
70   /// Return the register class ID number.
71   unsigned getID() const { return MC->getID(); }
72 
73   /// begin/end - Return all of the registers in this class.
74   ///
75   iterator       begin() const { return MC->begin(); }
76   iterator         end() const { return MC->end(); }
77 
78   /// Return the number of registers in this class.
79   unsigned getNumRegs() const { return MC->getNumRegs(); }
80 
81   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
82   getRegisters() const {
83     return make_range(MC->begin(), MC->end());
84   }
85 
86   /// Return the specified register in the class.
87   MCRegister getRegister(unsigned i) const {
88     return MC->getRegister(i);
89   }
90 
91   /// Return true if the specified register is included in this register class.
92   /// This does not include virtual registers.
93   bool contains(Register Reg) const {
94     /// FIXME: Historically this function has returned false when given vregs
95     ///        but it should probably only receive physical registers
96     if (!Reg.isPhysical())
97       return false;
98     return MC->contains(Reg.asMCReg());
99   }
100 
101   /// Return true if both registers are in this class.
102   bool contains(Register Reg1, Register Reg2) const {
103     /// FIXME: Historically this function has returned false when given a vregs
104     ///        but it should probably only receive physical registers
105     if (!Reg1.isPhysical() || !Reg2.isPhysical())
106       return false;
107     return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
108   }
109 
110   /// Return the cost of copying a value between two registers in this class.
111   /// A negative number means the register class is very expensive
112   /// to copy e.g. status flag register classes.
113   int getCopyCost() const { return MC->getCopyCost(); }
114 
115   /// Return true if this register class may be used to create virtual
116   /// registers.
117   bool isAllocatable() const { return MC->isAllocatable(); }
118 
119   /// Return true if the specified TargetRegisterClass
120   /// is a proper sub-class of this TargetRegisterClass.
121   bool hasSubClass(const TargetRegisterClass *RC) const {
122     return RC != this && hasSubClassEq(RC);
123   }
124 
125   /// Returns true if RC is a sub-class of or equal to this class.
126   bool hasSubClassEq(const TargetRegisterClass *RC) const {
127     unsigned ID = RC->getID();
128     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
129   }
130 
131   /// Return true if the specified TargetRegisterClass is a
132   /// proper super-class of this TargetRegisterClass.
133   bool hasSuperClass(const TargetRegisterClass *RC) const {
134     return RC->hasSubClass(this);
135   }
136 
137   /// Returns true if RC is a super-class of or equal to this class.
138   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
139     return RC->hasSubClassEq(this);
140   }
141 
142   /// Returns a bit vector of subclasses, including this one.
143   /// The vector is indexed by class IDs.
144   ///
145   /// To use it, consider the returned array as a chunk of memory that
146   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
147   /// contains a bitset of the ID of the subclasses in big-endian style.
148 
149   /// I.e., the representation of the memory from left to right at the
150   /// bit level looks like:
151   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
152   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
153   /// Where the number represents the class ID and XXX bits that
154   /// should be ignored.
155   ///
156   /// See the implementation of hasSubClassEq for an example of how it
157   /// can be used.
158   const uint32_t *getSubClassMask() const {
159     return SubClassMask;
160   }
161 
162   /// Returns a 0-terminated list of sub-register indices that project some
163   /// super-register class into this register class. The list has an entry for
164   /// each Idx such that:
165   ///
166   ///   There exists SuperRC where:
167   ///     For all Reg in SuperRC:
168   ///       this->contains(Reg:Idx)
169   const uint16_t *getSuperRegIndices() const {
170     return SuperRegIndices;
171   }
172 
173   /// Returns a NULL-terminated list of super-classes.  The
174   /// classes are ordered by ID which is also a topological ordering from large
175   /// to small classes.  The list does NOT include the current class.
176   sc_iterator getSuperClasses() const {
177     return SuperClasses;
178   }
179 
180   /// Return true if this TargetRegisterClass is a subset
181   /// class of at least one other TargetRegisterClass.
182   bool isASubClass() const {
183     return SuperClasses[0] != nullptr;
184   }
185 
186   /// Returns the preferred order for allocating registers from this register
187   /// class in MF. The raw order comes directly from the .td file and may
188   /// include reserved registers that are not allocatable.
189   /// Register allocators should also make sure to allocate
190   /// callee-saved registers only after all the volatiles are used. The
191   /// RegisterClassInfo class provides filtered allocation orders with
192   /// callee-saved registers moved to the end.
193   ///
194   /// The MachineFunction argument can be used to tune the allocatable
195   /// registers based on the characteristics of the function, subtarget, or
196   /// other criteria.
197   ///
198   /// By default, this method returns all registers in the class.
199   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
200     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
201   }
202 
203   /// Returns the combination of all lane masks of register in this class.
204   /// The lane masks of the registers are the combination of all lane masks
205   /// of their subregisters. Returns 1 if there are no subregisters.
206   LaneBitmask getLaneMask() const {
207     return LaneMask;
208   }
209 };
210 
211 /// Extra information, not in MCRegisterDesc, about registers.
212 /// These are used by codegen, not by MC.
213 struct TargetRegisterInfoDesc {
214   const uint8_t *CostPerUse; // Extra cost of instructions using register.
215   unsigned NumCosts; // Number of cost values associated with each register.
216   const bool
217       *InAllocatableClass; // Register belongs to an allocatable regclass.
218 };
219 
220 /// Each TargetRegisterClass has a per register weight, and weight
221 /// limit which must be less than the limits of its pressure sets.
222 struct RegClassWeight {
223   unsigned RegWeight;
224   unsigned WeightLimit;
225 };
226 
227 /// TargetRegisterInfo base class - We assume that the target defines a static
228 /// array of TargetRegisterDesc objects that represent all of the machine
229 /// registers that the target has.  As such, we simply have to track a pointer
230 /// to this array so that we can turn register number into a register
231 /// descriptor.
232 ///
233 class TargetRegisterInfo : public MCRegisterInfo {
234 public:
235   using regclass_iterator = const TargetRegisterClass * const *;
236   using vt_iterator = const MVT::SimpleValueType *;
237   struct RegClassInfo {
238     unsigned RegSize, SpillSize, SpillAlignment;
239     vt_iterator VTList;
240   };
241 private:
242   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
243   const char *const *SubRegIndexNames;        // Names of subreg indexes.
244   // Pointer to array of lane masks, one per sub-reg index.
245   const LaneBitmask *SubRegIndexLaneMasks;
246 
247   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
248   LaneBitmask CoveringLanes;
249   const RegClassInfo *const RCInfos;
250   unsigned HwMode;
251 
252 protected:
253   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
254                      regclass_iterator RCB,
255                      regclass_iterator RCE,
256                      const char *const *SRINames,
257                      const LaneBitmask *SRILaneMasks,
258                      LaneBitmask CoveringLanes,
259                      const RegClassInfo *const RCIs,
260                      unsigned Mode = 0);
261   virtual ~TargetRegisterInfo();
262 
263 public:
264   // Register numbers can represent physical registers, virtual registers, and
265   // sometimes stack slots. The unsigned values are divided into these ranges:
266   //
267   //   0           Not a register, can be used as a sentinel.
268   //   [1;2^30)    Physical registers assigned by TableGen.
269   //   [2^30;2^31) Stack slots. (Rarely used.)
270   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
271   //
272   // Further sentinels can be allocated from the small negative integers.
273   // DenseMapInfo<unsigned> uses -1u and -2u.
274 
275   /// Return the size in bits of a register from class RC.
276   unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
277     return getRegClassInfo(RC).RegSize;
278   }
279 
280   /// Return the size in bytes of the stack slot allocated to hold a spilled
281   /// copy of a register from class RC.
282   unsigned getSpillSize(const TargetRegisterClass &RC) const {
283     return getRegClassInfo(RC).SpillSize / 8;
284   }
285 
286   /// Return the minimum required alignment in bytes for a spill slot for
287   /// a register of this class.
288   Align getSpillAlign(const TargetRegisterClass &RC) const {
289     return Align(getRegClassInfo(RC).SpillAlignment / 8);
290   }
291 
292   /// Return true if the given TargetRegisterClass has the ValueType T.
293   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
294     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
295       if (MVT(*I) == T)
296         return true;
297     return false;
298   }
299 
300   /// Return true if the given TargetRegisterClass is compatible with LLT T.
301   bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const {
302     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
303       MVT VT(*I);
304       if (VT == MVT::Untyped)
305         return true;
306 
307       if (LLT(VT) == T)
308         return true;
309     }
310     return false;
311   }
312 
313   /// Loop over all of the value types that can be represented by values
314   /// in the given register class.
315   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
316     return getRegClassInfo(RC).VTList;
317   }
318 
319   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
320     vt_iterator I = legalclasstypes_begin(RC);
321     while (*I != MVT::Other)
322       ++I;
323     return I;
324   }
325 
326   /// Returns the Register Class of a physical register of the given type,
327   /// picking the most sub register class of the right type that contains this
328   /// physreg.
329   const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
330                                                     MVT VT = MVT::Other) const;
331 
332   /// Returns the Register Class of a physical register of the given type,
333   /// picking the most sub register class of the right type that contains this
334   /// physreg. If there is no register class compatible with the given type,
335   /// returns nullptr.
336   const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg,
337                                                        LLT Ty = LLT()) const;
338 
339   /// Return the maximal subclass of the given register class that is
340   /// allocatable or NULL.
341   const TargetRegisterClass *
342     getAllocatableClass(const TargetRegisterClass *RC) const;
343 
344   /// Returns a bitset indexed by register number indicating if a register is
345   /// allocatable or not. If a register class is specified, returns the subset
346   /// for the class.
347   BitVector getAllocatableSet(const MachineFunction &MF,
348                               const TargetRegisterClass *RC = nullptr) const;
349 
350   /// Get a list of cost values for all registers that correspond to the index
351   /// returned by RegisterCostTableIndex.
352   ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const {
353     unsigned Idx = getRegisterCostTableIndex(MF);
354     unsigned NumRegs = getNumRegs();
355     assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
356 
357     return makeArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
358   }
359 
360   /// Return true if the register is in the allocation of any register class.
361   bool isInAllocatableClass(MCRegister RegNo) const {
362     return InfoDesc->InAllocatableClass[RegNo];
363   }
364 
365   /// Return the human-readable symbolic target-specific
366   /// name for the specified SubRegIndex.
367   const char *getSubRegIndexName(unsigned SubIdx) const {
368     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
369            "This is not a subregister index");
370     return SubRegIndexNames[SubIdx-1];
371   }
372 
373   /// Return a bitmask representing the parts of a register that are covered by
374   /// SubIdx \see LaneBitmask.
375   ///
376   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
377   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
378     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
379     return SubRegIndexLaneMasks[SubIdx];
380   }
381 
382   /// Try to find one or more subregister indexes to cover \p LaneMask.
383   ///
384   /// If this is possible, returns true and appends the best matching set of
385   /// indexes to \p Indexes. If this is not possible, returns false.
386   bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI,
387                                 const TargetRegisterClass *RC,
388                                 LaneBitmask LaneMask,
389                                 SmallVectorImpl<unsigned> &Indexes) const;
390 
391   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
392   /// used to determine if sub-registers overlap - they can't be used to
393   /// determine if a set of sub-registers completely cover another
394   /// sub-register.
395   ///
396   /// The X86 general purpose registers have two lanes corresponding to the
397   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
398   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
399   /// sub_32bit sub-register.
400   ///
401   /// On the other hand, the ARM NEON lanes fully cover their registers: The
402   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
403   /// This is related to the CoveredBySubRegs property on register definitions.
404   ///
405   /// This function returns a bit mask of lanes that completely cover their
406   /// sub-registers. More precisely, given:
407   ///
408   ///   Covering = getCoveringLanes();
409   ///   MaskA = getSubRegIndexLaneMask(SubA);
410   ///   MaskB = getSubRegIndexLaneMask(SubB);
411   ///
412   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
413   /// SubB.
414   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
415 
416   /// Returns true if the two registers are equal or alias each other.
417   /// The registers may be virtual registers.
418   bool regsOverlap(Register regA, Register regB) const {
419     if (regA == regB) return true;
420     if (!regA.isPhysical() || !regB.isPhysical())
421       return false;
422 
423     // Regunits are numerically ordered. Find a common unit.
424     MCRegUnitIterator RUA(regA.asMCReg(), this);
425     MCRegUnitIterator RUB(regB.asMCReg(), this);
426     do {
427       if (*RUA == *RUB) return true;
428       if (*RUA < *RUB) ++RUA;
429       else             ++RUB;
430     } while (RUA.isValid() && RUB.isValid());
431     return false;
432   }
433 
434   /// Returns true if Reg contains RegUnit.
435   bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
436     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
437       if (Register(*Units) == RegUnit)
438         return true;
439     return false;
440   }
441 
442   /// Returns the original SrcReg unless it is the target of a copy-like
443   /// operation, in which case we chain backwards through all such operations
444   /// to the ultimate source register.  If a physical register is encountered,
445   /// we stop the search.
446   virtual Register lookThruCopyLike(Register SrcReg,
447                                     const MachineRegisterInfo *MRI) const;
448 
449   /// Find the original SrcReg unless it is the target of a copy-like operation,
450   /// in which case we chain backwards through all such operations to the
451   /// ultimate source register. If a physical register is encountered, we stop
452   /// the search.
453   /// Return the original SrcReg if all the definitions in the chain only have
454   /// one user and not a physical register.
455   virtual Register
456   lookThruSingleUseCopyChain(Register SrcReg,
457                              const MachineRegisterInfo *MRI) const;
458 
459   /// Return a null-terminated list of all of the callee-saved registers on
460   /// this target. The register should be in the order of desired callee-save
461   /// stack frame offset. The first register is closest to the incoming stack
462   /// pointer if stack grows down, and vice versa.
463   /// Notice: This function does not take into account disabled CSRs.
464   ///         In most cases you will want to use instead the function
465   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
466   virtual const MCPhysReg*
467   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
468 
469   /// Return a mask of call-preserved registers for the given calling convention
470   /// on the current function. The mask should include all call-preserved
471   /// aliases. This is used by the register allocator to determine which
472   /// registers can be live across a call.
473   ///
474   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
475   /// A set bit indicates that all bits of the corresponding register are
476   /// preserved across the function call.  The bit mask is expected to be
477   /// sub-register complete, i.e. if A is preserved, so are all its
478   /// sub-registers.
479   ///
480   /// Bits are numbered from the LSB, so the bit for physical register Reg can
481   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
482   ///
483   /// A NULL pointer means that no register mask will be used, and call
484   /// instructions should use implicit-def operands to indicate call clobbered
485   /// registers.
486   ///
487   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
488                                                CallingConv::ID) const {
489     // The default mask clobbers everything.  All targets should override.
490     return nullptr;
491   }
492 
493   /// Return a register mask for the registers preserved by the unwinder,
494   /// or nullptr if no custom mask is needed.
495   virtual const uint32_t *
496   getCustomEHPadPreservedMask(const MachineFunction &MF) const {
497     return nullptr;
498   }
499 
500   /// Return a register mask that clobbers everything.
501   virtual const uint32_t *getNoPreservedMask() const {
502     llvm_unreachable("target does not provide no preserved mask");
503   }
504 
505   /// Return a list of all of the registers which are clobbered "inside" a call
506   /// to the given function. For example, these might be needed for PLT
507   /// sequences of long-branch veneers.
508   virtual ArrayRef<MCPhysReg>
509   getIntraCallClobberedRegs(const MachineFunction *MF) const {
510     return {};
511   }
512 
513   /// Return true if all bits that are set in mask \p mask0 are also set in
514   /// \p mask1.
515   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
516 
517   /// Return all the call-preserved register masks defined for this target.
518   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
519   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
520 
521   /// Returns a bitset indexed by physical register number indicating if a
522   /// register is a special register that has particular uses and should be
523   /// considered unavailable at all times, e.g. stack pointer, return address.
524   /// A reserved register:
525   /// - is not allocatable
526   /// - is considered always live
527   /// - is ignored by liveness tracking
528   /// It is often necessary to reserve the super registers of a reserved
529   /// register as well, to avoid them getting allocated indirectly. You may use
530   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
531   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
532 
533   /// Returns false if we can't guarantee that Physreg, specified as an IR asm
534   /// clobber constraint, will be preserved across the statement.
535   virtual bool isAsmClobberable(const MachineFunction &MF,
536                                 MCRegister PhysReg) const {
537     return true;
538   }
539 
540   /// Returns true if PhysReg cannot be written to in inline asm statements.
541   virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
542                                       unsigned PhysReg) const {
543     return false;
544   }
545 
546   /// Returns true if PhysReg is unallocatable and constant throughout the
547   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
548   virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
549 
550   /// Returns true if the register class is considered divergent.
551   virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
552     return false;
553   }
554 
555   /// Physical registers that may be modified within a function but are
556   /// guaranteed to be restored before any uses. This is useful for targets that
557   /// have call sequences where a GOT register may be updated by the caller
558   /// prior to a call and is guaranteed to be restored (also by the caller)
559   /// after the call.
560   virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
561                                         const MachineFunction &MF) const {
562     return false;
563   }
564 
565   /// This is a wrapper around getCallPreservedMask().
566   /// Return true if the register is preserved after the call.
567   virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
568                                     const MachineFunction &MF) const;
569 
570   /// Prior to adding the live-out mask to a stackmap or patchpoint
571   /// instruction, provide the target the opportunity to adjust it (mainly to
572   /// remove pseudo-registers that should be ignored).
573   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
574 
575   /// Return a super-register of the specified register
576   /// Reg so its sub-register of index SubIdx is Reg.
577   MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
578                                  const TargetRegisterClass *RC) const {
579     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
580   }
581 
582   /// Return a subclass of the specified register
583   /// class A so that each register in it has a sub-register of the
584   /// specified sub-register index which is in the specified register class B.
585   ///
586   /// TableGen will synthesize missing A sub-classes.
587   virtual const TargetRegisterClass *
588   getMatchingSuperRegClass(const TargetRegisterClass *A,
589                            const TargetRegisterClass *B, unsigned Idx) const;
590 
591   // For a copy-like instruction that defines a register of class DefRC with
592   // subreg index DefSubReg, reading from another source with class SrcRC and
593   // subregister SrcSubReg return true if this is a preferable copy
594   // instruction or an earlier use should be used.
595   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
596                                     unsigned DefSubReg,
597                                     const TargetRegisterClass *SrcRC,
598                                     unsigned SrcSubReg) const;
599 
600   /// Returns the largest legal sub-class of RC that
601   /// supports the sub-register index Idx.
602   /// If no such sub-class exists, return NULL.
603   /// If all registers in RC already have an Idx sub-register, return RC.
604   ///
605   /// TableGen generates a version of this function that is good enough in most
606   /// cases.  Targets can override if they have constraints that TableGen
607   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
608   /// supported by the full GR32 register class in 64-bit mode, but only by the
609   /// GR32_ABCD regiister class in 32-bit mode.
610   ///
611   /// TableGen will synthesize missing RC sub-classes.
612   virtual const TargetRegisterClass *
613   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
614     assert(Idx == 0 && "Target has no sub-registers");
615     return RC;
616   }
617 
618   /// Return the subregister index you get from composing
619   /// two subregister indices.
620   ///
621   /// The special null sub-register index composes as the identity.
622   ///
623   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
624   /// returns c. Note that composeSubRegIndices does not tell you about illegal
625   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
626   /// b, composeSubRegIndices doesn't tell you.
627   ///
628   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
629   /// ssub_0:S0 - ssub_3:S3 subregs.
630   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
631   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
632     if (!a) return b;
633     if (!b) return a;
634     return composeSubRegIndicesImpl(a, b);
635   }
636 
637   /// Transforms a LaneMask computed for one subregister to the lanemask that
638   /// would have been computed when composing the subsubregisters with IdxA
639   /// first. @sa composeSubRegIndices()
640   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
641                                          LaneBitmask Mask) const {
642     if (!IdxA)
643       return Mask;
644     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
645   }
646 
647   /// Transform a lanemask given for a virtual register to the corresponding
648   /// lanemask before using subregister with index \p IdxA.
649   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
650   /// valie lane mask (no invalid bits set) the following holds:
651   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
652   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
653   /// => X1 == Mask
654   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
655                                                 LaneBitmask LaneMask) const {
656     if (!IdxA)
657       return LaneMask;
658     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
659   }
660 
661   /// Debugging helper: dump register in human readable form to dbgs() stream.
662   static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
663                       const TargetRegisterInfo *TRI = nullptr);
664 
665 protected:
666   /// Overridden by TableGen in targets that have sub-registers.
667   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
668     llvm_unreachable("Target has no sub-registers");
669   }
670 
671   /// Overridden by TableGen in targets that have sub-registers.
672   virtual LaneBitmask
673   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
674     llvm_unreachable("Target has no sub-registers");
675   }
676 
677   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
678                                                             LaneBitmask) const {
679     llvm_unreachable("Target has no sub-registers");
680   }
681 
682   /// Return the register cost table index. This implementation is sufficient
683   /// for most architectures and can be overriden by targets in case there are
684   /// multiple cost values associated with each register.
685   virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
686     return 0;
687   }
688 
689 public:
690   /// Find a common super-register class if it exists.
691   ///
692   /// Find a register class, SuperRC and two sub-register indices, PreA and
693   /// PreB, such that:
694   ///
695   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
696   ///
697   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
698   ///
699   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
700   ///
701   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
702   /// requirements, and there is no register class with a smaller spill size
703   /// that satisfies the requirements.
704   ///
705   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
706   ///
707   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
708   /// that case, the returned register class will be a sub-class of the
709   /// corresponding argument register class.
710   ///
711   /// The function returns NULL if no register class can be found.
712   const TargetRegisterClass*
713   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
714                          const TargetRegisterClass *RCB, unsigned SubB,
715                          unsigned &PreA, unsigned &PreB) const;
716 
717   //===--------------------------------------------------------------------===//
718   // Register Class Information
719   //
720 protected:
721   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
722     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
723   }
724 
725 public:
726   /// Register class iterators
727   regclass_iterator regclass_begin() const { return RegClassBegin; }
728   regclass_iterator regclass_end() const { return RegClassEnd; }
729   iterator_range<regclass_iterator> regclasses() const {
730     return make_range(regclass_begin(), regclass_end());
731   }
732 
733   unsigned getNumRegClasses() const {
734     return (unsigned)(regclass_end()-regclass_begin());
735   }
736 
737   /// Returns the register class associated with the enumeration value.
738   /// See class MCOperandInfo.
739   const TargetRegisterClass *getRegClass(unsigned i) const {
740     assert(i < getNumRegClasses() && "Register Class ID out of range");
741     return RegClassBegin[i];
742   }
743 
744   /// Returns the name of the register class.
745   const char *getRegClassName(const TargetRegisterClass *Class) const {
746     return MCRegisterInfo::getRegClassName(Class->MC);
747   }
748 
749   /// Find the largest common subclass of A and B.
750   /// Return NULL if there is no common subclass.
751   const TargetRegisterClass *
752   getCommonSubClass(const TargetRegisterClass *A,
753                     const TargetRegisterClass *B) const;
754 
755   /// Returns a TargetRegisterClass used for pointer values.
756   /// If a target supports multiple different pointer register classes,
757   /// kind specifies which one is indicated.
758   virtual const TargetRegisterClass *
759   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
760     llvm_unreachable("Target didn't implement getPointerRegClass!");
761   }
762 
763   /// Returns a legal register class to copy a register in the specified class
764   /// to or from. If it is possible to copy the register directly without using
765   /// a cross register class copy, return the specified RC. Returns NULL if it
766   /// is not possible to copy between two registers of the specified class.
767   virtual const TargetRegisterClass *
768   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
769     return RC;
770   }
771 
772   /// Returns the largest super class of RC that is legal to use in the current
773   /// sub-target and has the same spill size.
774   /// The returned register class can be used to create virtual registers which
775   /// means that all its registers can be copied and spilled.
776   virtual const TargetRegisterClass *
777   getLargestLegalSuperClass(const TargetRegisterClass *RC,
778                             const MachineFunction &) const {
779     /// The default implementation is very conservative and doesn't allow the
780     /// register allocator to inflate register classes.
781     return RC;
782   }
783 
784   /// Return the register pressure "high water mark" for the specific register
785   /// class. The scheduler is in high register pressure mode (for the specific
786   /// register class) if it goes over the limit.
787   ///
788   /// Note: this is the old register pressure model that relies on a manually
789   /// specified representative register class per value type.
790   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
791                                        MachineFunction &MF) const {
792     return 0;
793   }
794 
795   /// Return a heuristic for the machine scheduler to compare the profitability
796   /// of increasing one register pressure set versus another.  The scheduler
797   /// will prefer increasing the register pressure of the set which returns
798   /// the largest value for this function.
799   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
800                                           unsigned PSetID) const {
801     return PSetID;
802   }
803 
804   /// Get the weight in units of pressure for this register class.
805   virtual const RegClassWeight &getRegClassWeight(
806     const TargetRegisterClass *RC) const = 0;
807 
808   /// Returns size in bits of a phys/virtual/generic register.
809   unsigned getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
810 
811   /// Get the weight in units of pressure for this register unit.
812   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
813 
814   /// Get the number of dimensions of register pressure.
815   virtual unsigned getNumRegPressureSets() const = 0;
816 
817   /// Get the name of this register unit pressure set.
818   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
819 
820   /// Get the register unit pressure limit for this dimension.
821   /// This limit must be adjusted dynamically for reserved registers.
822   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
823                                           unsigned Idx) const = 0;
824 
825   /// Get the dimensions of register pressure impacted by this register class.
826   /// Returns a -1 terminated array of pressure set IDs.
827   virtual const int *getRegClassPressureSets(
828     const TargetRegisterClass *RC) const = 0;
829 
830   /// Get the dimensions of register pressure impacted by this register unit.
831   /// Returns a -1 terminated array of pressure set IDs.
832   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
833 
834   /// Get a list of 'hint' registers that the register allocator should try
835   /// first when allocating a physical register for the virtual register
836   /// VirtReg. These registers are effectively moved to the front of the
837   /// allocation order. If true is returned, regalloc will try to only use
838   /// hints to the greatest extent possible even if it means spilling.
839   ///
840   /// The Order argument is the allocation order for VirtReg's register class
841   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
842   /// come from Order, and they must not be reserved.
843   ///
844   /// The default implementation of this function will only add target
845   /// independent register allocation hints. Targets that override this
846   /// function should typically call this default implementation as well and
847   /// expect to see generic copy hints added.
848   virtual bool
849   getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
850                         SmallVectorImpl<MCPhysReg> &Hints,
851                         const MachineFunction &MF,
852                         const VirtRegMap *VRM = nullptr,
853                         const LiveRegMatrix *Matrix = nullptr) const;
854 
855   /// A callback to allow target a chance to update register allocation hints
856   /// when a register is "changed" (e.g. coalesced) to another register.
857   /// e.g. On ARM, some virtual registers should target register pairs,
858   /// if one of pair is coalesced to another register, the allocation hint of
859   /// the other half of the pair should be changed to point to the new register.
860   virtual void updateRegAllocHint(Register Reg, Register NewReg,
861                                   MachineFunction &MF) const {
862     // Do nothing.
863   }
864 
865   /// Allow the target to reverse allocation order of local live ranges. This
866   /// will generally allocate shorter local live ranges first. For targets with
867   /// many registers, this could reduce regalloc compile time by a large
868   /// factor. It is disabled by default for three reasons:
869   /// (1) Top-down allocation is simpler and easier to debug for targets that
870   /// don't benefit from reversing the order.
871   /// (2) Bottom-up allocation could result in poor evicition decisions on some
872   /// targets affecting the performance of compiled code.
873   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
874   virtual bool reverseLocalAssignment() const { return false; }
875 
876   /// Allow the target to override the cost of using a callee-saved register for
877   /// the first time. Default value of 0 means we will use a callee-saved
878   /// register if it is available.
879   virtual unsigned getCSRFirstUseCost() const { return 0; }
880 
881   /// Returns true if the target requires (and can make use of) the register
882   /// scavenger.
883   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
884     return false;
885   }
886 
887   /// Returns true if the target wants to use frame pointer based accesses to
888   /// spill to the scavenger emergency spill slot.
889   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
890     return true;
891   }
892 
893   /// Returns true if the target requires post PEI scavenging of registers for
894   /// materializing frame index constants.
895   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
896     return false;
897   }
898 
899   /// Returns true if the target requires using the RegScavenger directly for
900   /// frame elimination despite using requiresFrameIndexScavenging.
901   virtual bool requiresFrameIndexReplacementScavenging(
902       const MachineFunction &MF) const {
903     return false;
904   }
905 
906   /// Returns true if the target wants the LocalStackAllocation pass to be run
907   /// and virtual base registers used for more efficient stack access.
908   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
909     return false;
910   }
911 
912   /// Return true if target has reserved a spill slot in the stack frame of
913   /// the given function for the specified register. e.g. On x86, if the frame
914   /// register is required, the first fixed stack object is reserved as its
915   /// spill slot. This tells PEI not to create a new stack frame
916   /// object for the given register. It should be called only after
917   /// determineCalleeSaves().
918   virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
919                                     int &FrameIdx) const {
920     return false;
921   }
922 
923   /// Returns true if the live-ins should be tracked after register allocation.
924   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
925     return true;
926   }
927 
928   /// True if the stack can be realigned for the target.
929   virtual bool canRealignStack(const MachineFunction &MF) const;
930 
931   /// True if storage within the function requires the stack pointer to be
932   /// aligned more than the normal calling convention calls for.
933   virtual bool shouldRealignStack(const MachineFunction &MF) const;
934 
935   /// True if stack realignment is required and still possible.
936   bool hasStackRealignment(const MachineFunction &MF) const {
937     return shouldRealignStack(MF) && canRealignStack(MF);
938   }
939 
940   /// Get the offset from the referenced frame index in the instruction,
941   /// if there is one.
942   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
943                                            int Idx) const {
944     return 0;
945   }
946 
947   /// Returns true if the instruction's frame index reference would be better
948   /// served by a base register other than FP or SP.
949   /// Used by LocalStackFrameAllocation to determine which frame index
950   /// references it should create new base registers for.
951   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
952     return false;
953   }
954 
955   /// Insert defining instruction(s) for a pointer to FrameIdx before
956   /// insertion point I. Return materialized frame pointer.
957   virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB,
958                                                 int FrameIdx,
959                                                 int64_t Offset) const {
960     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
961                      "target");
962   }
963 
964   /// Resolve a frame index operand of an instruction
965   /// to reference the indicated base register plus offset instead.
966   virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
967                                  int64_t Offset) const {
968     llvm_unreachable("resolveFrameIndex does not exist on this target");
969   }
970 
971   /// Determine whether a given base register plus offset immediate is
972   /// encodable to resolve a frame index.
973   virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
974                                   int64_t Offset) const {
975     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
976   }
977 
978   /// Gets the DWARF expression opcodes for \p Offset.
979   virtual void getOffsetOpcodes(const StackOffset &Offset,
980                                 SmallVectorImpl<uint64_t> &Ops) const;
981 
982   /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
983   DIExpression *
984   prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
985                           const StackOffset &Offset) const;
986 
987   /// Spill the register so it can be used by the register scavenger.
988   /// Return true if the register was spilled, false otherwise.
989   /// If this function does not spill the register, the scavenger
990   /// will instead spill it to the emergency spill slot.
991   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
992                                      MachineBasicBlock::iterator I,
993                                      MachineBasicBlock::iterator &UseMI,
994                                      const TargetRegisterClass *RC,
995                                      Register Reg) const {
996     return false;
997   }
998 
999   /// This method must be overriden to eliminate abstract frame indices from
1000   /// instructions which may use them. The instruction referenced by the
1001   /// iterator contains an MO_FrameIndex operand which must be eliminated by
1002   /// this method. This method may modify or replace the specified instruction,
1003   /// as long as it keeps the iterator pointing at the finished product.
1004   /// SPAdj is the SP adjustment due to call frame setup instruction.
1005   /// FIOperandNum is the FI operand number.
1006   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
1007                                    int SPAdj, unsigned FIOperandNum,
1008                                    RegScavenger *RS = nullptr) const = 0;
1009 
1010   /// Return the assembly name for \p Reg.
1011   virtual StringRef getRegAsmName(MCRegister Reg) const {
1012     // FIXME: We are assuming that the assembly name is equal to the TableGen
1013     // name converted to lower case
1014     //
1015     // The TableGen name is the name of the definition for this register in the
1016     // target's tablegen files.  For example, the TableGen name of
1017     // def EAX : Register <...>; is "EAX"
1018     return StringRef(getName(Reg));
1019   }
1020 
1021   //===--------------------------------------------------------------------===//
1022   /// Subtarget Hooks
1023 
1024   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
1025   virtual bool shouldCoalesce(MachineInstr *MI,
1026                               const TargetRegisterClass *SrcRC,
1027                               unsigned SubReg,
1028                               const TargetRegisterClass *DstRC,
1029                               unsigned DstSubReg,
1030                               const TargetRegisterClass *NewRC,
1031                               LiveIntervals &LIS) const
1032   { return true; }
1033 
1034   /// Region split has a high compile time cost especially for large live range.
1035   /// This method is used to decide whether or not \p VirtReg should
1036   /// go through this expensive splitting heuristic.
1037   virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1038                                            const LiveInterval &VirtReg) const;
1039 
1040   /// Last chance recoloring has a high compile time cost especially for
1041   /// targets with a lot of registers.
1042   /// This method is used to decide whether or not \p VirtReg should
1043   /// go through this expensive heuristic.
1044   /// When this target hook is hit, by returning false, there is a high
1045   /// chance that the register allocation will fail altogether (usually with
1046   /// "ran out of registers").
1047   /// That said, this error usually points to another problem in the
1048   /// optimization pipeline.
1049   virtual bool
1050   shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
1051                                           const LiveInterval &VirtReg) const {
1052     return true;
1053   }
1054 
1055   /// Deferred spilling delays the spill insertion of a virtual register
1056   /// after every other allocation. By deferring the spilling, it is
1057   /// sometimes possible to eliminate that spilling altogether because
1058   /// something else could have been eliminated, thus leaving some space
1059   /// for the virtual register.
1060   /// However, this comes with a compile time impact because it adds one
1061   /// more stage to the greedy register allocator.
1062   /// This method is used to decide whether \p VirtReg should use the deferred
1063   /// spilling stage instead of being spilled right away.
1064   virtual bool
1065   shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1066                                       const LiveInterval &VirtReg) const {
1067     return false;
1068   }
1069 
1070   //===--------------------------------------------------------------------===//
1071   /// Debug information queries.
1072 
1073   /// getFrameRegister - This method should return the register used as a base
1074   /// for values allocated in the current stack frame.
1075   virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1076 
1077   /// Mark a register and all its aliases as reserved in the given set.
1078   void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1079 
1080   /// Returns true if for every register in the set all super registers are part
1081   /// of the set as well.
1082   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1083       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1084 
1085   virtual const TargetRegisterClass *
1086   getConstrainedRegClassForOperand(const MachineOperand &MO,
1087                                    const MachineRegisterInfo &MRI) const {
1088     return nullptr;
1089   }
1090 
1091   /// Returns the physical register number of sub-register "Index"
1092   /// for physical register RegNo. Return zero if the sub-register does not
1093   /// exist.
1094   inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1095     return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1096   }
1097 
1098   /// Some targets have non-allocatable registers that aren't technically part
1099   /// of the explicit callee saved register list, but should be handled as such
1100   /// in certain cases.
1101   virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const {
1102     return false;
1103   }
1104 };
1105 
1106 //===----------------------------------------------------------------------===//
1107 //                           SuperRegClassIterator
1108 //===----------------------------------------------------------------------===//
1109 //
1110 // Iterate over the possible super-registers for a given register class. The
1111 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1112 // possible classes of super-registers.
1113 //
1114 // Each bit mask will have at least one set bit, and each set bit in Mask
1115 // corresponds to a SuperRC such that:
1116 //
1117 //   For all Reg in SuperRC: Reg:Idx is in RC.
1118 //
1119 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1120 // also satisfies the above requirement, assuming Reg:0 == Reg.
1121 //
1122 class SuperRegClassIterator {
1123   const unsigned RCMaskWords;
1124   unsigned SubReg = 0;
1125   const uint16_t *Idx;
1126   const uint32_t *Mask;
1127 
1128 public:
1129   /// Create a SuperRegClassIterator that visits all the super-register classes
1130   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1131   SuperRegClassIterator(const TargetRegisterClass *RC,
1132                         const TargetRegisterInfo *TRI,
1133                         bool IncludeSelf = false)
1134     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1135       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1136     if (!IncludeSelf)
1137       ++*this;
1138   }
1139 
1140   /// Returns true if this iterator is still pointing at a valid entry.
1141   bool isValid() const { return Idx; }
1142 
1143   /// Returns the current sub-register index.
1144   unsigned getSubReg() const { return SubReg; }
1145 
1146   /// Returns the bit mask of register classes that getSubReg() projects into
1147   /// RC.
1148   /// See TargetRegisterClass::getSubClassMask() for how to use it.
1149   const uint32_t *getMask() const { return Mask; }
1150 
1151   /// Advance iterator to the next entry.
1152   void operator++() {
1153     assert(isValid() && "Cannot move iterator past end.");
1154     Mask += RCMaskWords;
1155     SubReg = *Idx++;
1156     if (!SubReg)
1157       Idx = nullptr;
1158   }
1159 };
1160 
1161 //===----------------------------------------------------------------------===//
1162 //                           BitMaskClassIterator
1163 //===----------------------------------------------------------------------===//
1164 /// This class encapuslates the logic to iterate over bitmask returned by
1165 /// the various RegClass related APIs.
1166 /// E.g., this class can be used to iterate over the subclasses provided by
1167 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1168 class BitMaskClassIterator {
1169   /// Total number of register classes.
1170   const unsigned NumRegClasses;
1171   /// Base index of CurrentChunk.
1172   /// In other words, the number of bit we read to get at the
1173   /// beginning of that chunck.
1174   unsigned Base = 0;
1175   /// Adjust base index of CurrentChunk.
1176   /// Base index + how many bit we read within CurrentChunk.
1177   unsigned Idx = 0;
1178   /// Current register class ID.
1179   unsigned ID = 0;
1180   /// Mask we are iterating over.
1181   const uint32_t *Mask;
1182   /// Current chunk of the Mask we are traversing.
1183   uint32_t CurrentChunk;
1184 
1185   /// Move ID to the next set bit.
1186   void moveToNextID() {
1187     // If the current chunk of memory is empty, move to the next one,
1188     // while making sure we do not go pass the number of register
1189     // classes.
1190     while (!CurrentChunk) {
1191       // Move to the next chunk.
1192       Base += 32;
1193       if (Base >= NumRegClasses) {
1194         ID = NumRegClasses;
1195         return;
1196       }
1197       CurrentChunk = *++Mask;
1198       Idx = Base;
1199     }
1200     // Otherwise look for the first bit set from the right
1201     // (representation of the class ID is big endian).
1202     // See getSubClassMask for more details on the representation.
1203     unsigned Offset = countTrailingZeros(CurrentChunk);
1204     // Add the Offset to the adjusted base number of this chunk: Idx.
1205     // This is the ID of the register class.
1206     ID = Idx + Offset;
1207 
1208     // Consume the zeros, if any, and the bit we just read
1209     // so that we are at the right spot for the next call.
1210     // Do not do Offset + 1 because Offset may be 31 and 32
1211     // will be UB for the shift, though in that case we could
1212     // have make the chunk being equal to 0, but that would
1213     // have introduced a if statement.
1214     moveNBits(Offset);
1215     moveNBits(1);
1216   }
1217 
1218   /// Move \p NumBits Bits forward in CurrentChunk.
1219   void moveNBits(unsigned NumBits) {
1220     assert(NumBits < 32 && "Undefined behavior spotted!");
1221     // Consume the bit we read for the next call.
1222     CurrentChunk >>= NumBits;
1223     // Adjust the base for the chunk.
1224     Idx += NumBits;
1225   }
1226 
1227 public:
1228   /// Create a BitMaskClassIterator that visits all the register classes
1229   /// represented by \p Mask.
1230   ///
1231   /// \pre \p Mask != nullptr
1232   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1233       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1234     // Move to the first ID.
1235     moveToNextID();
1236   }
1237 
1238   /// Returns true if this iterator is still pointing at a valid entry.
1239   bool isValid() const { return getID() != NumRegClasses; }
1240 
1241   /// Returns the current register class ID.
1242   unsigned getID() const { return ID; }
1243 
1244   /// Advance iterator to the next entry.
1245   void operator++() {
1246     assert(isValid() && "Cannot move iterator past end.");
1247     moveToNextID();
1248   }
1249 };
1250 
1251 // This is useful when building IndexedMaps keyed on virtual registers
1252 struct VirtReg2IndexFunctor {
1253   using argument_type = Register;
1254   unsigned operator()(Register Reg) const {
1255     return Register::virtReg2Index(Reg);
1256   }
1257 };
1258 
1259 /// Prints virtual and physical registers with or without a TRI instance.
1260 ///
1261 /// The format is:
1262 ///   %noreg          - NoRegister
1263 ///   %5              - a virtual register.
1264 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1265 ///   %eax            - a physical register
1266 ///   %physreg17      - a physical register when no TRI instance given.
1267 ///
1268 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1269 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1270                    unsigned SubIdx = 0,
1271                    const MachineRegisterInfo *MRI = nullptr);
1272 
1273 /// Create Printable object to print register units on a \ref raw_ostream.
1274 ///
1275 /// Register units are named after their root registers:
1276 ///
1277 ///   al      - Single root.
1278 ///   fp0~st7 - Dual roots.
1279 ///
1280 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1281 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1282 
1283 /// Create Printable object to print virtual registers and physical
1284 /// registers on a \ref raw_ostream.
1285 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1286 
1287 /// Create Printable object to print register classes or register banks
1288 /// on a \ref raw_ostream.
1289 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1290                               const TargetRegisterInfo *TRI);
1291 
1292 } // end namespace llvm
1293 
1294 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1295