1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/OperandTraits.h"
31 #include "llvm/IR/User.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include <cassert>
37 #include <cstddef>
38 #include <cstdint>
39 #include <optional>
40 
41 namespace llvm {
42 
43 template <class ConstantClass> struct ConstantAggrKeyType;
44 
45 /// Base class for constants with no operands.
46 ///
47 /// These constants have no operands; they represent their data directly.
48 /// Since they can be in use by unrelated modules (and are never based on
49 /// GlobalValues), it never makes sense to RAUW them.
50 class ConstantData : public Constant {
51   friend class Constant;
52 
53   Value *handleOperandChangeImpl(Value *From, Value *To) {
54     llvm_unreachable("Constant data does not have operands!");
55   }
56 
57 protected:
58   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
59 
60   void *operator new(size_t S) { return User::operator new(S, 0); }
61 
62 public:
63   void operator delete(void *Ptr) { User::operator delete(Ptr); }
64 
65   ConstantData(const ConstantData &) = delete;
66 
67   /// Methods to support type inquiry through isa, cast, and dyn_cast.
68   static bool classof(const Value *V) {
69     return V->getValueID() >= ConstantDataFirstVal &&
70            V->getValueID() <= ConstantDataLastVal;
71   }
72 };
73 
74 //===----------------------------------------------------------------------===//
75 /// This is the shared class of boolean and integer constants. This class
76 /// represents both boolean and integral constants.
77 /// Class for constant integers.
78 class ConstantInt final : public ConstantData {
79   friend class Constant;
80 
81   APInt Val;
82 
83   ConstantInt(IntegerType *Ty, const APInt &V);
84 
85   void destroyConstantImpl();
86 
87 public:
88   ConstantInt(const ConstantInt &) = delete;
89 
90   static ConstantInt *getTrue(LLVMContext &Context);
91   static ConstantInt *getFalse(LLVMContext &Context);
92   static ConstantInt *getBool(LLVMContext &Context, bool V);
93   static Constant *getTrue(Type *Ty);
94   static Constant *getFalse(Type *Ty);
95   static Constant *getBool(Type *Ty, bool V);
96 
97   /// If Ty is a vector type, return a Constant with a splat of the given
98   /// value. Otherwise return a ConstantInt for the given value.
99   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
100 
101   /// Return a ConstantInt with the specified integer value for the specified
102   /// type. If the type is wider than 64 bits, the value will be zero-extended
103   /// to fit the type, unless IsSigned is true, in which case the value will
104   /// be interpreted as a 64-bit signed integer and sign-extended to fit
105   /// the type.
106   /// Get a ConstantInt for a specific value.
107   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
108 
109   /// Return a ConstantInt with the specified value for the specified type. The
110   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
111   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
112   /// signed value for the type Ty.
113   /// Get a ConstantInt for a specific signed value.
114   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
115   static Constant *getSigned(Type *Ty, int64_t V);
116 
117   /// Return a ConstantInt with the specified value and an implied Type. The
118   /// type is the integer type that corresponds to the bit width of the value.
119   static ConstantInt *get(LLVMContext &Context, const APInt &V);
120 
121   /// Return a ConstantInt constructed from the string strStart with the given
122   /// radix.
123   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
124 
125   /// If Ty is a vector type, return a Constant with a splat of the given
126   /// value. Otherwise return a ConstantInt for the given value.
127   static Constant *get(Type *Ty, const APInt &V);
128 
129   /// Return the constant as an APInt value reference. This allows clients to
130   /// obtain a full-precision copy of the value.
131   /// Return the constant's value.
132   inline const APInt &getValue() const { return Val; }
133 
134   /// getBitWidth - Return the bitwidth of this constant.
135   unsigned getBitWidth() const { return Val.getBitWidth(); }
136 
137   /// Return the constant as a 64-bit unsigned integer value after it
138   /// has been zero extended as appropriate for the type of this constant. Note
139   /// that this method can assert if the value does not fit in 64 bits.
140   /// Return the zero extended value.
141   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
142 
143   /// Return the constant as a 64-bit integer value after it has been sign
144   /// extended as appropriate for the type of this constant. Note that
145   /// this method can assert if the value does not fit in 64 bits.
146   /// Return the sign extended value.
147   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
148 
149   /// Return the constant as an llvm::MaybeAlign.
150   /// Note that this method can assert if the value does not fit in 64 bits or
151   /// is not a power of two.
152   inline MaybeAlign getMaybeAlignValue() const {
153     return MaybeAlign(getZExtValue());
154   }
155 
156   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
157   /// Note that this method can assert if the value does not fit in 64 bits or
158   /// is not a power of two.
159   inline Align getAlignValue() const {
160     return getMaybeAlignValue().valueOrOne();
161   }
162 
163   /// A helper method that can be used to determine if the constant contained
164   /// within is equal to a constant.  This only works for very small values,
165   /// because this is all that can be represented with all types.
166   /// Determine if this constant's value is same as an unsigned char.
167   bool equalsInt(uint64_t V) const { return Val == V; }
168 
169   /// getType - Specialize the getType() method to always return an IntegerType,
170   /// which reduces the amount of casting needed in parts of the compiler.
171   ///
172   inline IntegerType *getType() const {
173     return cast<IntegerType>(Value::getType());
174   }
175 
176   /// This static method returns true if the type Ty is big enough to
177   /// represent the value V. This can be used to avoid having the get method
178   /// assert when V is larger than Ty can represent. Note that there are two
179   /// versions of this method, one for unsigned and one for signed integers.
180   /// Although ConstantInt canonicalizes everything to an unsigned integer,
181   /// the signed version avoids callers having to convert a signed quantity
182   /// to the appropriate unsigned type before calling the method.
183   /// @returns true if V is a valid value for type Ty
184   /// Determine if the value is in range for the given type.
185   static bool isValueValidForType(Type *Ty, uint64_t V);
186   static bool isValueValidForType(Type *Ty, int64_t V);
187 
188   bool isNegative() const { return Val.isNegative(); }
189 
190   /// This is just a convenience method to make client code smaller for a
191   /// common code. It also correctly performs the comparison without the
192   /// potential for an assertion from getZExtValue().
193   bool isZero() const { return Val.isZero(); }
194 
195   /// This is just a convenience method to make client code smaller for a
196   /// common case. It also correctly performs the comparison without the
197   /// potential for an assertion from getZExtValue().
198   /// Determine if the value is one.
199   bool isOne() const { return Val.isOne(); }
200 
201   /// This function will return true iff every bit in this constant is set
202   /// to true.
203   /// @returns true iff this constant's bits are all set to true.
204   /// Determine if the value is all ones.
205   bool isMinusOne() const { return Val.isAllOnes(); }
206 
207   /// This function will return true iff this constant represents the largest
208   /// value that may be represented by the constant's type.
209   /// @returns true iff this is the largest value that may be represented
210   /// by this type.
211   /// Determine if the value is maximal.
212   bool isMaxValue(bool IsSigned) const {
213     if (IsSigned)
214       return Val.isMaxSignedValue();
215     else
216       return Val.isMaxValue();
217   }
218 
219   /// This function will return true iff this constant represents the smallest
220   /// value that may be represented by this constant's type.
221   /// @returns true if this is the smallest value that may be represented by
222   /// this type.
223   /// Determine if the value is minimal.
224   bool isMinValue(bool IsSigned) const {
225     if (IsSigned)
226       return Val.isMinSignedValue();
227     else
228       return Val.isMinValue();
229   }
230 
231   /// This function will return true iff this constant represents a value with
232   /// active bits bigger than 64 bits or a value greater than the given uint64_t
233   /// value.
234   /// @returns true iff this constant is greater or equal to the given number.
235   /// Determine if the value is greater or equal to the given number.
236   bool uge(uint64_t Num) const { return Val.uge(Num); }
237 
238   /// getLimitedValue - If the value is smaller than the specified limit,
239   /// return it, otherwise return the limit value.  This causes the value
240   /// to saturate to the limit.
241   /// @returns the min of the value of the constant and the specified value
242   /// Get the constant's value with a saturation limit
243   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
244     return Val.getLimitedValue(Limit);
245   }
246 
247   /// Methods to support type inquiry through isa, cast, and dyn_cast.
248   static bool classof(const Value *V) {
249     return V->getValueID() == ConstantIntVal;
250   }
251 };
252 
253 //===----------------------------------------------------------------------===//
254 /// ConstantFP - Floating Point Values [float, double]
255 ///
256 class ConstantFP final : public ConstantData {
257   friend class Constant;
258 
259   APFloat Val;
260 
261   ConstantFP(Type *Ty, const APFloat &V);
262 
263   void destroyConstantImpl();
264 
265 public:
266   ConstantFP(const ConstantFP &) = delete;
267 
268   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
269   /// method returns the negative zero constant for floating point or vector
270   /// floating point types; for all other types, it returns the null value.
271   static Constant *getZeroValueForNegation(Type *Ty);
272 
273   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
274   /// for the specified value in the specified type. This should only be used
275   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
276   /// host double and as the target format.
277   static Constant *get(Type *Ty, double V);
278 
279   /// If Ty is a vector type, return a Constant with a splat of the given
280   /// value. Otherwise return a ConstantFP for the given value.
281   static Constant *get(Type *Ty, const APFloat &V);
282 
283   static Constant *get(Type *Ty, StringRef Str);
284   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
285   static Constant *getNaN(Type *Ty, bool Negative = false,
286                           uint64_t Payload = 0);
287   static Constant *getQNaN(Type *Ty, bool Negative = false,
288                            APInt *Payload = nullptr);
289   static Constant *getSNaN(Type *Ty, bool Negative = false,
290                            APInt *Payload = nullptr);
291   static Constant *getZero(Type *Ty, bool Negative = false);
292   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
293   static Constant *getInfinity(Type *Ty, bool Negative = false);
294 
295   /// Return true if Ty is big enough to represent V.
296   static bool isValueValidForType(Type *Ty, const APFloat &V);
297   inline const APFloat &getValueAPF() const { return Val; }
298   inline const APFloat &getValue() const { return Val; }
299 
300   /// Return true if the value is positive or negative zero.
301   bool isZero() const { return Val.isZero(); }
302 
303   /// Return true if the sign bit is set.
304   bool isNegative() const { return Val.isNegative(); }
305 
306   /// Return true if the value is infinity
307   bool isInfinity() const { return Val.isInfinity(); }
308 
309   /// Return true if the value is a NaN.
310   bool isNaN() const { return Val.isNaN(); }
311 
312   /// We don't rely on operator== working on double values, as it returns true
313   /// for things that are clearly not equal, like -0.0 and 0.0.
314   /// As such, this method can be used to do an exact bit-for-bit comparison of
315   /// two floating point values.  The version with a double operand is retained
316   /// because it's so convenient to write isExactlyValue(2.0), but please use
317   /// it only for simple constants.
318   bool isExactlyValue(const APFloat &V) const;
319 
320   bool isExactlyValue(double V) const {
321     bool ignored;
322     APFloat FV(V);
323     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
324     return isExactlyValue(FV);
325   }
326 
327   /// Methods for support type inquiry through isa, cast, and dyn_cast:
328   static bool classof(const Value *V) {
329     return V->getValueID() == ConstantFPVal;
330   }
331 };
332 
333 //===----------------------------------------------------------------------===//
334 /// All zero aggregate value
335 ///
336 class ConstantAggregateZero final : public ConstantData {
337   friend class Constant;
338 
339   explicit ConstantAggregateZero(Type *Ty)
340       : ConstantData(Ty, ConstantAggregateZeroVal) {}
341 
342   void destroyConstantImpl();
343 
344 public:
345   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
346 
347   static ConstantAggregateZero *get(Type *Ty);
348 
349   /// If this CAZ has array or vector type, return a zero with the right element
350   /// type.
351   Constant *getSequentialElement() const;
352 
353   /// If this CAZ has struct type, return a zero with the right element type for
354   /// the specified element.
355   Constant *getStructElement(unsigned Elt) const;
356 
357   /// Return a zero of the right value for the specified GEP index if we can,
358   /// otherwise return null (e.g. if C is a ConstantExpr).
359   Constant *getElementValue(Constant *C) const;
360 
361   /// Return a zero of the right value for the specified GEP index.
362   Constant *getElementValue(unsigned Idx) const;
363 
364   /// Return the number of elements in the array, vector, or struct.
365   ElementCount getElementCount() const;
366 
367   /// Methods for support type inquiry through isa, cast, and dyn_cast:
368   ///
369   static bool classof(const Value *V) {
370     return V->getValueID() == ConstantAggregateZeroVal;
371   }
372 };
373 
374 /// Base class for aggregate constants (with operands).
375 ///
376 /// These constants are aggregates of other constants, which are stored as
377 /// operands.
378 ///
379 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
380 /// ConstantVector.
381 ///
382 /// \note Some subclasses of \a ConstantData are semantically aggregates --
383 /// such as \a ConstantDataArray -- but are not subclasses of this because they
384 /// use operands.
385 class ConstantAggregate : public Constant {
386 protected:
387   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
388 
389 public:
390   /// Transparently provide more efficient getOperand methods.
391   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
392 
393   /// Methods for support type inquiry through isa, cast, and dyn_cast:
394   static bool classof(const Value *V) {
395     return V->getValueID() >= ConstantAggregateFirstVal &&
396            V->getValueID() <= ConstantAggregateLastVal;
397   }
398 };
399 
400 template <>
401 struct OperandTraits<ConstantAggregate>
402     : public VariadicOperandTraits<ConstantAggregate> {};
403 
404 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
405 
406 //===----------------------------------------------------------------------===//
407 /// ConstantArray - Constant Array Declarations
408 ///
409 class ConstantArray final : public ConstantAggregate {
410   friend struct ConstantAggrKeyType<ConstantArray>;
411   friend class Constant;
412 
413   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
414 
415   void destroyConstantImpl();
416   Value *handleOperandChangeImpl(Value *From, Value *To);
417 
418 public:
419   // ConstantArray accessors
420   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
421 
422 private:
423   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
424 
425 public:
426   /// Specialize the getType() method to always return an ArrayType,
427   /// which reduces the amount of casting needed in parts of the compiler.
428   inline ArrayType *getType() const {
429     return cast<ArrayType>(Value::getType());
430   }
431 
432   /// Methods for support type inquiry through isa, cast, and dyn_cast:
433   static bool classof(const Value *V) {
434     return V->getValueID() == ConstantArrayVal;
435   }
436 };
437 
438 //===----------------------------------------------------------------------===//
439 // Constant Struct Declarations
440 //
441 class ConstantStruct final : public ConstantAggregate {
442   friend struct ConstantAggrKeyType<ConstantStruct>;
443   friend class Constant;
444 
445   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
446 
447   void destroyConstantImpl();
448   Value *handleOperandChangeImpl(Value *From, Value *To);
449 
450 public:
451   // ConstantStruct accessors
452   static Constant *get(StructType *T, ArrayRef<Constant *> V);
453 
454   template <typename... Csts>
455   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
456   get(StructType *T, Csts *...Vs) {
457     return get(T, ArrayRef<Constant *>({Vs...}));
458   }
459 
460   /// Return an anonymous struct that has the specified elements.
461   /// If the struct is possibly empty, then you must specify a context.
462   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
463     return get(getTypeForElements(V, Packed), V);
464   }
465   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
466                            bool Packed = false) {
467     return get(getTypeForElements(Ctx, V, Packed), V);
468   }
469 
470   /// Return an anonymous struct type to use for a constant with the specified
471   /// set of elements. The list must not be empty.
472   static StructType *getTypeForElements(ArrayRef<Constant *> V,
473                                         bool Packed = false);
474   /// This version of the method allows an empty list.
475   static StructType *getTypeForElements(LLVMContext &Ctx,
476                                         ArrayRef<Constant *> V,
477                                         bool Packed = false);
478 
479   /// Specialization - reduce amount of casting.
480   inline StructType *getType() const {
481     return cast<StructType>(Value::getType());
482   }
483 
484   /// Methods for support type inquiry through isa, cast, and dyn_cast:
485   static bool classof(const Value *V) {
486     return V->getValueID() == ConstantStructVal;
487   }
488 };
489 
490 //===----------------------------------------------------------------------===//
491 /// Constant Vector Declarations
492 ///
493 class ConstantVector final : public ConstantAggregate {
494   friend struct ConstantAggrKeyType<ConstantVector>;
495   friend class Constant;
496 
497   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
498 
499   void destroyConstantImpl();
500   Value *handleOperandChangeImpl(Value *From, Value *To);
501 
502 public:
503   // ConstantVector accessors
504   static Constant *get(ArrayRef<Constant *> V);
505 
506 private:
507   static Constant *getImpl(ArrayRef<Constant *> V);
508 
509 public:
510   /// Return a ConstantVector with the specified constant in each element.
511   /// Note that this might not return an instance of ConstantVector
512   static Constant *getSplat(ElementCount EC, Constant *Elt);
513 
514   /// Specialize the getType() method to always return a FixedVectorType,
515   /// which reduces the amount of casting needed in parts of the compiler.
516   inline FixedVectorType *getType() const {
517     return cast<FixedVectorType>(Value::getType());
518   }
519 
520   /// If all elements of the vector constant have the same value, return that
521   /// value. Otherwise, return nullptr. Ignore undefined elements by setting
522   /// AllowUndefs to true.
523   Constant *getSplatValue(bool AllowUndefs = false) const;
524 
525   /// Methods for support type inquiry through isa, cast, and dyn_cast:
526   static bool classof(const Value *V) {
527     return V->getValueID() == ConstantVectorVal;
528   }
529 };
530 
531 //===----------------------------------------------------------------------===//
532 /// A constant pointer value that points to null
533 ///
534 class ConstantPointerNull final : public ConstantData {
535   friend class Constant;
536 
537   explicit ConstantPointerNull(PointerType *T)
538       : ConstantData(T, Value::ConstantPointerNullVal) {}
539 
540   void destroyConstantImpl();
541 
542 public:
543   ConstantPointerNull(const ConstantPointerNull &) = delete;
544 
545   /// Static factory methods - Return objects of the specified value
546   static ConstantPointerNull *get(PointerType *T);
547 
548   /// Specialize the getType() method to always return an PointerType,
549   /// which reduces the amount of casting needed in parts of the compiler.
550   inline PointerType *getType() const {
551     return cast<PointerType>(Value::getType());
552   }
553 
554   /// Methods for support type inquiry through isa, cast, and dyn_cast:
555   static bool classof(const Value *V) {
556     return V->getValueID() == ConstantPointerNullVal;
557   }
558 };
559 
560 //===----------------------------------------------------------------------===//
561 /// ConstantDataSequential - A vector or array constant whose element type is a
562 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
563 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
564 /// node has no operands because it stores all of the elements of the constant
565 /// as densely packed data, instead of as Value*'s.
566 ///
567 /// This is the common base class of ConstantDataArray and ConstantDataVector.
568 ///
569 class ConstantDataSequential : public ConstantData {
570   friend class LLVMContextImpl;
571   friend class Constant;
572 
573   /// A pointer to the bytes underlying this constant (which is owned by the
574   /// uniquing StringMap).
575   const char *DataElements;
576 
577   /// This forms a link list of ConstantDataSequential nodes that have
578   /// the same value but different type.  For example, 0,0,0,1 could be a 4
579   /// element array of i8, or a 1-element array of i32.  They'll both end up in
580   /// the same StringMap bucket, linked up.
581   std::unique_ptr<ConstantDataSequential> Next;
582 
583   void destroyConstantImpl();
584 
585 protected:
586   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
587       : ConstantData(ty, VT), DataElements(Data) {}
588 
589   static Constant *getImpl(StringRef Bytes, Type *Ty);
590 
591 public:
592   ConstantDataSequential(const ConstantDataSequential &) = delete;
593 
594   /// Return true if a ConstantDataSequential can be formed with a vector or
595   /// array of the specified element type.
596   /// ConstantDataArray only works with normal float and int types that are
597   /// stored densely in memory, not with things like i42 or x86_f80.
598   static bool isElementTypeCompatible(Type *Ty);
599 
600   /// If this is a sequential container of integers (of any size), return the
601   /// specified element in the low bits of a uint64_t.
602   uint64_t getElementAsInteger(unsigned i) const;
603 
604   /// If this is a sequential container of integers (of any size), return the
605   /// specified element as an APInt.
606   APInt getElementAsAPInt(unsigned i) const;
607 
608   /// If this is a sequential container of floating point type, return the
609   /// specified element as an APFloat.
610   APFloat getElementAsAPFloat(unsigned i) const;
611 
612   /// If this is an sequential container of floats, return the specified element
613   /// as a float.
614   float getElementAsFloat(unsigned i) const;
615 
616   /// If this is an sequential container of doubles, return the specified
617   /// element as a double.
618   double getElementAsDouble(unsigned i) const;
619 
620   /// Return a Constant for a specified index's element.
621   /// Note that this has to compute a new constant to return, so it isn't as
622   /// efficient as getElementAsInteger/Float/Double.
623   Constant *getElementAsConstant(unsigned i) const;
624 
625   /// Return the element type of the array/vector.
626   Type *getElementType() const;
627 
628   /// Return the number of elements in the array or vector.
629   unsigned getNumElements() const;
630 
631   /// Return the size (in bytes) of each element in the array/vector.
632   /// The size of the elements is known to be a multiple of one byte.
633   uint64_t getElementByteSize() const;
634 
635   /// This method returns true if this is an array of \p CharSize integers.
636   bool isString(unsigned CharSize = 8) const;
637 
638   /// This method returns true if the array "isString", ends with a null byte,
639   /// and does not contains any other null bytes.
640   bool isCString() const;
641 
642   /// If this array is isString(), then this method returns the array as a
643   /// StringRef. Otherwise, it asserts out.
644   StringRef getAsString() const {
645     assert(isString() && "Not a string");
646     return getRawDataValues();
647   }
648 
649   /// If this array is isCString(), then this method returns the array (without
650   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
651   StringRef getAsCString() const {
652     assert(isCString() && "Isn't a C string");
653     StringRef Str = getAsString();
654     return Str.substr(0, Str.size() - 1);
655   }
656 
657   /// Return the raw, underlying, bytes of this data. Note that this is an
658   /// extremely tricky thing to work with, as it exposes the host endianness of
659   /// the data elements.
660   StringRef getRawDataValues() const;
661 
662   /// Methods for support type inquiry through isa, cast, and dyn_cast:
663   static bool classof(const Value *V) {
664     return V->getValueID() == ConstantDataArrayVal ||
665            V->getValueID() == ConstantDataVectorVal;
666   }
667 
668 private:
669   const char *getElementPointer(unsigned Elt) const;
670 };
671 
672 //===----------------------------------------------------------------------===//
673 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
674 /// float/double, and whose elements are just simple data values
675 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
676 /// stores all of the elements of the constant as densely packed data, instead
677 /// of as Value*'s.
678 class ConstantDataArray final : public ConstantDataSequential {
679   friend class ConstantDataSequential;
680 
681   explicit ConstantDataArray(Type *ty, const char *Data)
682       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
683 
684 public:
685   ConstantDataArray(const ConstantDataArray &) = delete;
686 
687   /// get() constructor - Return a constant with array type with an element
688   /// count and element type matching the ArrayRef passed in.  Note that this
689   /// can return a ConstantAggregateZero object.
690   template <typename ElementTy>
691   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
692     const char *Data = reinterpret_cast<const char *>(Elts.data());
693     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
694                   Type::getScalarTy<ElementTy>(Context));
695   }
696 
697   /// get() constructor - ArrayTy needs to be compatible with
698   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
699   template <typename ArrayTy>
700   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
701     return ConstantDataArray::get(Context, ArrayRef(Elts));
702   }
703 
704   /// getRaw() constructor - Return a constant with array type with an element
705   /// count and element type matching the NumElements and ElementTy parameters
706   /// passed in. Note that this can return a ConstantAggregateZero object.
707   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
708   /// the buffer containing the elements. Be careful to make sure Data uses the
709   /// right endianness, the buffer will be used as-is.
710   static Constant *getRaw(StringRef Data, uint64_t NumElements,
711                           Type *ElementTy) {
712     Type *Ty = ArrayType::get(ElementTy, NumElements);
713     return getImpl(Data, Ty);
714   }
715 
716   /// getFP() constructors - Return a constant of array type with a float
717   /// element type taken from argument `ElementType', and count taken from
718   /// argument `Elts'.  The amount of bits of the contained type must match the
719   /// number of bits of the type contained in the passed in ArrayRef.
720   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
721   /// that this can return a ConstantAggregateZero object.
722   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
723   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
724   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
725 
726   /// This method constructs a CDS and initializes it with a text string.
727   /// The default behavior (AddNull==true) causes a null terminator to
728   /// be placed at the end of the array (increasing the length of the string by
729   /// one more than the StringRef would normally indicate.  Pass AddNull=false
730   /// to disable this behavior.
731   static Constant *getString(LLVMContext &Context, StringRef Initializer,
732                              bool AddNull = true);
733 
734   /// Specialize the getType() method to always return an ArrayType,
735   /// which reduces the amount of casting needed in parts of the compiler.
736   inline ArrayType *getType() const {
737     return cast<ArrayType>(Value::getType());
738   }
739 
740   /// Methods for support type inquiry through isa, cast, and dyn_cast:
741   static bool classof(const Value *V) {
742     return V->getValueID() == ConstantDataArrayVal;
743   }
744 };
745 
746 //===----------------------------------------------------------------------===//
747 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
748 /// float/double, and whose elements are just simple data values
749 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
750 /// stores all of the elements of the constant as densely packed data, instead
751 /// of as Value*'s.
752 class ConstantDataVector final : public ConstantDataSequential {
753   friend class ConstantDataSequential;
754 
755   explicit ConstantDataVector(Type *ty, const char *Data)
756       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
757         IsSplatSet(false) {}
758   // Cache whether or not the constant is a splat.
759   mutable bool IsSplatSet : 1;
760   mutable bool IsSplat : 1;
761   bool isSplatData() const;
762 
763 public:
764   ConstantDataVector(const ConstantDataVector &) = delete;
765 
766   /// get() constructors - Return a constant with vector type with an element
767   /// count and element type matching the ArrayRef passed in.  Note that this
768   /// can return a ConstantAggregateZero object.
769   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
770   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
771   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
772   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
773   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
774   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
775 
776   /// getRaw() constructor - Return a constant with vector type with an element
777   /// count and element type matching the NumElements and ElementTy parameters
778   /// passed in. Note that this can return a ConstantAggregateZero object.
779   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
780   /// the buffer containing the elements. Be careful to make sure Data uses the
781   /// right endianness, the buffer will be used as-is.
782   static Constant *getRaw(StringRef Data, uint64_t NumElements,
783                           Type *ElementTy) {
784     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
785     return getImpl(Data, Ty);
786   }
787 
788   /// getFP() constructors - Return a constant of vector type with a float
789   /// element type taken from argument `ElementType', and count taken from
790   /// argument `Elts'.  The amount of bits of the contained type must match the
791   /// number of bits of the type contained in the passed in ArrayRef.
792   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
793   /// that this can return a ConstantAggregateZero object.
794   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
795   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
796   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
797 
798   /// Return a ConstantVector with the specified constant in each element.
799   /// The specified constant has to be a of a compatible type (i8/i16/
800   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
801   static Constant *getSplat(unsigned NumElts, Constant *Elt);
802 
803   /// Returns true if this is a splat constant, meaning that all elements have
804   /// the same value.
805   bool isSplat() const;
806 
807   /// If this is a splat constant, meaning that all of the elements have the
808   /// same value, return that value. Otherwise return NULL.
809   Constant *getSplatValue() const;
810 
811   /// Specialize the getType() method to always return a FixedVectorType,
812   /// which reduces the amount of casting needed in parts of the compiler.
813   inline FixedVectorType *getType() const {
814     return cast<FixedVectorType>(Value::getType());
815   }
816 
817   /// Methods for support type inquiry through isa, cast, and dyn_cast:
818   static bool classof(const Value *V) {
819     return V->getValueID() == ConstantDataVectorVal;
820   }
821 };
822 
823 //===----------------------------------------------------------------------===//
824 /// A constant token which is empty
825 ///
826 class ConstantTokenNone final : public ConstantData {
827   friend class Constant;
828 
829   explicit ConstantTokenNone(LLVMContext &Context)
830       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
831 
832   void destroyConstantImpl();
833 
834 public:
835   ConstantTokenNone(const ConstantTokenNone &) = delete;
836 
837   /// Return the ConstantTokenNone.
838   static ConstantTokenNone *get(LLVMContext &Context);
839 
840   /// Methods to support type inquiry through isa, cast, and dyn_cast.
841   static bool classof(const Value *V) {
842     return V->getValueID() == ConstantTokenNoneVal;
843   }
844 };
845 
846 /// A constant target extension type default initializer
847 class ConstantTargetNone final : public ConstantData {
848   friend class Constant;
849 
850   explicit ConstantTargetNone(TargetExtType *T)
851       : ConstantData(T, Value::ConstantTargetNoneVal) {}
852 
853   void destroyConstantImpl();
854 
855 public:
856   ConstantTargetNone(const ConstantTargetNone &) = delete;
857 
858   /// Static factory methods - Return objects of the specified value.
859   static ConstantTargetNone *get(TargetExtType *T);
860 
861   /// Specialize the getType() method to always return an TargetExtType,
862   /// which reduces the amount of casting needed in parts of the compiler.
863   inline TargetExtType *getType() const {
864     return cast<TargetExtType>(Value::getType());
865   }
866 
867   /// Methods for support type inquiry through isa, cast, and dyn_cast.
868   static bool classof(const Value *V) {
869     return V->getValueID() == ConstantTargetNoneVal;
870   }
871 };
872 
873 /// The address of a basic block.
874 ///
875 class BlockAddress final : public Constant {
876   friend class Constant;
877 
878   BlockAddress(Function *F, BasicBlock *BB);
879 
880   void *operator new(size_t S) { return User::operator new(S, 2); }
881 
882   void destroyConstantImpl();
883   Value *handleOperandChangeImpl(Value *From, Value *To);
884 
885 public:
886   void operator delete(void *Ptr) { User::operator delete(Ptr); }
887 
888   /// Return a BlockAddress for the specified function and basic block.
889   static BlockAddress *get(Function *F, BasicBlock *BB);
890 
891   /// Return a BlockAddress for the specified basic block.  The basic
892   /// block must be embedded into a function.
893   static BlockAddress *get(BasicBlock *BB);
894 
895   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
896   ///
897   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
898   static BlockAddress *lookup(const BasicBlock *BB);
899 
900   /// Transparently provide more efficient getOperand methods.
901   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
902 
903   Function *getFunction() const { return (Function *)Op<0>().get(); }
904   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
905 
906   /// Methods for support type inquiry through isa, cast, and dyn_cast:
907   static bool classof(const Value *V) {
908     return V->getValueID() == BlockAddressVal;
909   }
910 };
911 
912 template <>
913 struct OperandTraits<BlockAddress>
914     : public FixedNumOperandTraits<BlockAddress, 2> {};
915 
916 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
917 
918 /// Wrapper for a function that represents a value that
919 /// functionally represents the original function. This can be a function,
920 /// global alias to a function, or an ifunc.
921 class DSOLocalEquivalent final : public Constant {
922   friend class Constant;
923 
924   DSOLocalEquivalent(GlobalValue *GV);
925 
926   void *operator new(size_t S) { return User::operator new(S, 1); }
927 
928   void destroyConstantImpl();
929   Value *handleOperandChangeImpl(Value *From, Value *To);
930 
931 public:
932   void operator delete(void *Ptr) { User::operator delete(Ptr); }
933 
934   /// Return a DSOLocalEquivalent for the specified global value.
935   static DSOLocalEquivalent *get(GlobalValue *GV);
936 
937   /// Transparently provide more efficient getOperand methods.
938   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
939 
940   GlobalValue *getGlobalValue() const {
941     return cast<GlobalValue>(Op<0>().get());
942   }
943 
944   /// Methods for support type inquiry through isa, cast, and dyn_cast:
945   static bool classof(const Value *V) {
946     return V->getValueID() == DSOLocalEquivalentVal;
947   }
948 };
949 
950 template <>
951 struct OperandTraits<DSOLocalEquivalent>
952     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
953 
954 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
955 
956 /// Wrapper for a value that won't be replaced with a CFI jump table
957 /// pointer in LowerTypeTestsModule.
958 class NoCFIValue final : public Constant {
959   friend class Constant;
960 
961   NoCFIValue(GlobalValue *GV);
962 
963   void *operator new(size_t S) { return User::operator new(S, 1); }
964 
965   void destroyConstantImpl();
966   Value *handleOperandChangeImpl(Value *From, Value *To);
967 
968 public:
969   /// Return a NoCFIValue for the specified function.
970   static NoCFIValue *get(GlobalValue *GV);
971 
972   /// Transparently provide more efficient getOperand methods.
973   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
974 
975   GlobalValue *getGlobalValue() const {
976     return cast<GlobalValue>(Op<0>().get());
977   }
978 
979   /// Methods for support type inquiry through isa, cast, and dyn_cast:
980   static bool classof(const Value *V) {
981     return V->getValueID() == NoCFIValueVal;
982   }
983 };
984 
985 template <>
986 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
987 };
988 
989 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
990 
991 //===----------------------------------------------------------------------===//
992 /// A constant value that is initialized with an expression using
993 /// other constant values.
994 ///
995 /// This class uses the standard Instruction opcodes to define the various
996 /// constant expressions.  The Opcode field for the ConstantExpr class is
997 /// maintained in the Value::SubclassData field.
998 class ConstantExpr : public Constant {
999   friend struct ConstantExprKeyType;
1000   friend class Constant;
1001 
1002   void destroyConstantImpl();
1003   Value *handleOperandChangeImpl(Value *From, Value *To);
1004 
1005 protected:
1006   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
1007       : Constant(ty, ConstantExprVal, Ops, NumOps) {
1008     // Operation type (an Instruction opcode) is stored as the SubclassData.
1009     setValueSubclassData(Opcode);
1010   }
1011 
1012   ~ConstantExpr() = default;
1013 
1014 public:
1015   // Static methods to construct a ConstantExpr of different kinds.  Note that
1016   // these methods may return a object that is not an instance of the
1017   // ConstantExpr class, because they will attempt to fold the constant
1018   // expression into something simpler if possible.
1019 
1020   /// getAlignOf constant expr - computes the alignment of a type in a target
1021   /// independent way (Note: the return type is an i64).
1022   static Constant *getAlignOf(Type *Ty);
1023 
1024   /// getSizeOf constant expr - computes the (alloc) size of a type (in
1025   /// address-units, not bits) in a target independent way (Note: the return
1026   /// type is an i64).
1027   ///
1028   static Constant *getSizeOf(Type *Ty);
1029 
1030   /// getOffsetOf constant expr - computes the offset of a struct field in a
1031   /// target independent way (Note: the return type is an i64).
1032   ///
1033   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
1034 
1035   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
1036   /// which supports any aggregate type, and any Constant index.
1037   ///
1038   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
1039 
1040   static Constant *getNeg(Constant *C, bool HasNUW = false,
1041                           bool HasNSW = false);
1042   static Constant *getNot(Constant *C);
1043   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1044                           bool HasNSW = false);
1045   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1046                           bool HasNSW = false);
1047   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1048                           bool HasNSW = false);
1049   static Constant *getAnd(Constant *C1, Constant *C2);
1050   static Constant *getOr(Constant *C1, Constant *C2);
1051   static Constant *getXor(Constant *C1, Constant *C2);
1052   static Constant *getUMin(Constant *C1, Constant *C2);
1053   static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1054                           bool HasNSW = false);
1055   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
1056   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
1057   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1058   static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1059   static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1060   static Constant *getFPTrunc(Constant *C, Type *Ty,
1061                               bool OnlyIfReduced = false);
1062   static Constant *getFPExtend(Constant *C, Type *Ty,
1063                                bool OnlyIfReduced = false);
1064   static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1065   static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1066   static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1067   static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1068   static Constant *getPtrToInt(Constant *C, Type *Ty,
1069                                bool OnlyIfReduced = false);
1070   static Constant *getIntToPtr(Constant *C, Type *Ty,
1071                                bool OnlyIfReduced = false);
1072   static Constant *getBitCast(Constant *C, Type *Ty,
1073                               bool OnlyIfReduced = false);
1074   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1075                                     bool OnlyIfReduced = false);
1076 
1077   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1078   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1079 
1080   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1081     return getAdd(C1, C2, false, true);
1082   }
1083 
1084   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1085     return getAdd(C1, C2, true, false);
1086   }
1087 
1088   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1089     return getSub(C1, C2, false, true);
1090   }
1091 
1092   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1093     return getSub(C1, C2, true, false);
1094   }
1095 
1096   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1097     return getMul(C1, C2, false, true);
1098   }
1099 
1100   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1101     return getMul(C1, C2, true, false);
1102   }
1103 
1104   static Constant *getNSWShl(Constant *C1, Constant *C2) {
1105     return getShl(C1, C2, false, true);
1106   }
1107 
1108   static Constant *getNUWShl(Constant *C1, Constant *C2) {
1109     return getShl(C1, C2, true, false);
1110   }
1111 
1112   static Constant *getExactAShr(Constant *C1, Constant *C2) {
1113     return getAShr(C1, C2, true);
1114   }
1115 
1116   static Constant *getExactLShr(Constant *C1, Constant *C2) {
1117     return getLShr(C1, C2, true);
1118   }
1119 
1120   /// If C is a scalar/fixed width vector of known powers of 2, then this
1121   /// function returns a new scalar/fixed width vector obtained from logBase2
1122   /// of C. Undef vector elements are set to zero.
1123   /// Return a null pointer otherwise.
1124   static Constant *getExactLogBase2(Constant *C);
1125 
1126   /// Return the identity constant for a binary opcode.
1127   /// The identity constant C is defined as X op C = X and C op X = X for every
1128   /// X when the binary operation is commutative. If the binop is not
1129   /// commutative, callers can acquire the operand 1 identity constant by
1130   /// setting AllowRHSConstant to true. For example, any shift has a zero
1131   /// identity constant for operand 1: X shift 0 = X.
1132   /// If this is a fadd/fsub operation and we don't care about signed zeros,
1133   /// then setting NSZ to true returns the identity +0.0 instead of -0.0.
1134   /// Return nullptr if the operator does not have an identity constant.
1135   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1136                                     bool AllowRHSConstant = false,
1137                                     bool NSZ = false);
1138 
1139   /// Return the absorbing element for the given binary
1140   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1141   /// every X.  For example, this returns zero for integer multiplication.
1142   /// It returns null if the operator doesn't have an absorbing element.
1143   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1144 
1145   /// Transparently provide more efficient getOperand methods.
1146   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1147 
1148   /// Convenience function for getting a Cast operation.
1149   ///
1150   /// \param ops The opcode for the conversion
1151   /// \param C  The constant to be converted
1152   /// \param Ty The type to which the constant is converted
1153   /// \param OnlyIfReduced see \a getWithOperands() docs.
1154   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1155                            bool OnlyIfReduced = false);
1156 
1157   // Create a ZExt or BitCast cast constant expression
1158   static Constant *
1159   getZExtOrBitCast(Constant *C, ///< The constant to zext or bitcast
1160                    Type *Ty     ///< The type to zext or bitcast C to
1161   );
1162 
1163   // Create a SExt or BitCast cast constant expression
1164   static Constant *
1165   getSExtOrBitCast(Constant *C, ///< The constant to sext or bitcast
1166                    Type *Ty     ///< The type to sext or bitcast C to
1167   );
1168 
1169   // Create a Trunc or BitCast cast constant expression
1170   static Constant *
1171   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1172                     Type *Ty     ///< The type to trunc or bitcast C to
1173   );
1174 
1175   /// Create either an sext, trunc or nothing, depending on whether Ty is
1176   /// wider, narrower or the same as C->getType(). This only works with
1177   /// integer or vector of integer types.
1178   static Constant *getSExtOrTrunc(Constant *C, Type *Ty);
1179 
1180   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1181   /// expression.
1182   static Constant *
1183   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1184                  Type *Ty     ///< The type to which cast should be made
1185   );
1186 
1187   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1188   /// the address space.
1189   static Constant *getPointerBitCastOrAddrSpaceCast(
1190       Constant *C, ///< The constant to addrspacecast or bitcast
1191       Type *Ty     ///< The type to bitcast or addrspacecast C to
1192   );
1193 
1194   /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
1195   static Constant *
1196   getIntegerCast(Constant *C,  ///< The integer constant to be casted
1197                  Type *Ty,     ///< The integer type to cast to
1198                  bool IsSigned ///< Whether C should be treated as signed or not
1199   );
1200 
1201   /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1202   static Constant *getFPCast(Constant *C, ///< The integer constant to be casted
1203                              Type *Ty     ///< The integer type to cast to
1204   );
1205 
1206   /// Return true if this is a convert constant expression
1207   bool isCast() const;
1208 
1209   /// Return true if this is a compare constant expression
1210   bool isCompare() const;
1211 
1212   /// Select constant expr
1213   ///
1214   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1215   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1216                              Type *OnlyIfReducedTy = nullptr);
1217 
1218   /// get - Return a binary or shift operator constant expression,
1219   /// folding if possible.
1220   ///
1221   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1222   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1223                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1224 
1225   /// Return an ICmp or FCmp comparison operator constant expression.
1226   ///
1227   /// \param OnlyIfReduced see \a getWithOperands() docs.
1228   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1229                               bool OnlyIfReduced = false);
1230 
1231   /// get* - Return some common constants without having to
1232   /// specify the full Instruction::OPCODE identifier.
1233   ///
1234   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1235                            bool OnlyIfReduced = false);
1236   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1237                            bool OnlyIfReduced = false);
1238 
1239   /// Getelementptr form.  Value* is only accepted for convenience;
1240   /// all elements must be Constants.
1241   ///
1242   /// \param InRangeIndex the inrange index if present or std::nullopt.
1243   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1244   static Constant *
1245   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1246                    bool InBounds = false,
1247                    std::optional<unsigned> InRangeIndex = std::nullopt,
1248                    Type *OnlyIfReducedTy = nullptr) {
1249     return getGetElementPtr(
1250         Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1251         InBounds, InRangeIndex, OnlyIfReducedTy);
1252   }
1253   static Constant *
1254   getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false,
1255                    std::optional<unsigned> InRangeIndex = std::nullopt,
1256                    Type *OnlyIfReducedTy = nullptr) {
1257     // This form of the function only exists to avoid ambiguous overload
1258     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1259     // ArrayRef<Value *>.
1260     return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1261                             OnlyIfReducedTy);
1262   }
1263   static Constant *
1264   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1265                    bool InBounds = false,
1266                    std::optional<unsigned> InRangeIndex = std::nullopt,
1267                    Type *OnlyIfReducedTy = nullptr);
1268 
1269   /// Create an "inbounds" getelementptr. See the documentation for the
1270   /// "inbounds" flag in LangRef.html for details.
1271   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1272                                             ArrayRef<Constant *> IdxList) {
1273     return getGetElementPtr(Ty, C, IdxList, true);
1274   }
1275   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1276                                             Constant *Idx) {
1277     // This form of the function only exists to avoid ambiguous overload
1278     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1279     // ArrayRef<Value *>.
1280     return getGetElementPtr(Ty, C, Idx, true);
1281   }
1282   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1283                                             ArrayRef<Value *> IdxList) {
1284     return getGetElementPtr(Ty, C, IdxList, true);
1285   }
1286 
1287   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1288                                      Type *OnlyIfReducedTy = nullptr);
1289   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1290                                     Type *OnlyIfReducedTy = nullptr);
1291   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1292                                     ArrayRef<int> Mask,
1293                                     Type *OnlyIfReducedTy = nullptr);
1294 
1295   /// Return the opcode at the root of this constant expression
1296   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1297 
1298   /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1299   /// FCMP constant expression.
1300   unsigned getPredicate() const;
1301 
1302   /// Assert that this is a shufflevector and return the mask. See class
1303   /// ShuffleVectorInst for a description of the mask representation.
1304   ArrayRef<int> getShuffleMask() const;
1305 
1306   /// Assert that this is a shufflevector and return the mask.
1307   ///
1308   /// TODO: This is a temporary hack until we update the bitcode format for
1309   /// shufflevector.
1310   Constant *getShuffleMaskForBitcode() const;
1311 
1312   /// Return a string representation for an opcode.
1313   const char *getOpcodeName() const;
1314 
1315   /// This returns the current constant expression with the operands replaced
1316   /// with the specified values. The specified array must have the same number
1317   /// of operands as our current one.
1318   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1319     return getWithOperands(Ops, getType());
1320   }
1321 
1322   /// Get the current expression with the operands replaced.
1323   ///
1324   /// Return the current constant expression with the operands replaced with \c
1325   /// Ops and the type with \c Ty.  The new operands must have the same number
1326   /// as the current ones.
1327   ///
1328   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1329   /// gets constant-folded, the type changes, or the expression is otherwise
1330   /// canonicalized.  This parameter should almost always be \c false.
1331   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1332                             bool OnlyIfReduced = false,
1333                             Type *SrcTy = nullptr) const;
1334 
1335   /// Returns an Instruction which implements the same operation as this
1336   /// ConstantExpr. If \p InsertBefore is not null, the new instruction is
1337   /// inserted before it, otherwise it is not inserted into any basic block.
1338   ///
1339   /// A better approach to this could be to have a constructor for Instruction
1340   /// which would take a ConstantExpr parameter, but that would have spread
1341   /// implementation details of ConstantExpr outside of Constants.cpp, which
1342   /// would make it harder to remove ConstantExprs altogether.
1343   Instruction *getAsInstruction(Instruction *InsertBefore = nullptr) const;
1344 
1345   /// Whether creating a constant expression for this binary operator is
1346   /// desirable.
1347   static bool isDesirableBinOp(unsigned Opcode);
1348 
1349   /// Whether creating a constant expression for this binary operator is
1350   /// supported.
1351   static bool isSupportedBinOp(unsigned Opcode);
1352 
1353   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1354   static bool classof(const Value *V) {
1355     return V->getValueID() == ConstantExprVal;
1356   }
1357 
1358 private:
1359   // Shadow Value::setValueSubclassData with a private forwarding method so that
1360   // subclasses cannot accidentally use it.
1361   void setValueSubclassData(unsigned short D) {
1362     Value::setValueSubclassData(D);
1363   }
1364 };
1365 
1366 template <>
1367 struct OperandTraits<ConstantExpr>
1368     : public VariadicOperandTraits<ConstantExpr, 1> {};
1369 
1370 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1371 
1372 //===----------------------------------------------------------------------===//
1373 /// 'undef' values are things that do not have specified contents.
1374 /// These are used for a variety of purposes, including global variable
1375 /// initializers and operands to instructions.  'undef' values can occur with
1376 /// any first-class type.
1377 ///
1378 /// Undef values aren't exactly constants; if they have multiple uses, they
1379 /// can appear to have different bit patterns at each use. See
1380 /// LangRef.html#undefvalues for details.
1381 ///
1382 class UndefValue : public ConstantData {
1383   friend class Constant;
1384 
1385   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1386 
1387   void destroyConstantImpl();
1388 
1389 protected:
1390   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1391 
1392 public:
1393   UndefValue(const UndefValue &) = delete;
1394 
1395   /// Static factory methods - Return an 'undef' object of the specified type.
1396   static UndefValue *get(Type *T);
1397 
1398   /// If this Undef has array or vector type, return a undef with the right
1399   /// element type.
1400   UndefValue *getSequentialElement() const;
1401 
1402   /// If this undef has struct type, return a undef with the right element type
1403   /// for the specified element.
1404   UndefValue *getStructElement(unsigned Elt) const;
1405 
1406   /// Return an undef of the right value for the specified GEP index if we can,
1407   /// otherwise return null (e.g. if C is a ConstantExpr).
1408   UndefValue *getElementValue(Constant *C) const;
1409 
1410   /// Return an undef of the right value for the specified GEP index.
1411   UndefValue *getElementValue(unsigned Idx) const;
1412 
1413   /// Return the number of elements in the array, vector, or struct.
1414   unsigned getNumElements() const;
1415 
1416   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1417   static bool classof(const Value *V) {
1418     return V->getValueID() == UndefValueVal ||
1419            V->getValueID() == PoisonValueVal;
1420   }
1421 };
1422 
1423 //===----------------------------------------------------------------------===//
1424 /// In order to facilitate speculative execution, many instructions do not
1425 /// invoke immediate undefined behavior when provided with illegal operands,
1426 /// and return a poison value instead.
1427 ///
1428 /// see LangRef.html#poisonvalues for details.
1429 ///
1430 class PoisonValue final : public UndefValue {
1431   friend class Constant;
1432 
1433   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1434 
1435   void destroyConstantImpl();
1436 
1437 public:
1438   PoisonValue(const PoisonValue &) = delete;
1439 
1440   /// Static factory methods - Return an 'poison' object of the specified type.
1441   static PoisonValue *get(Type *T);
1442 
1443   /// If this poison has array or vector type, return a poison with the right
1444   /// element type.
1445   PoisonValue *getSequentialElement() const;
1446 
1447   /// If this poison has struct type, return a poison with the right element
1448   /// type for the specified element.
1449   PoisonValue *getStructElement(unsigned Elt) const;
1450 
1451   /// Return an poison of the right value for the specified GEP index if we can,
1452   /// otherwise return null (e.g. if C is a ConstantExpr).
1453   PoisonValue *getElementValue(Constant *C) const;
1454 
1455   /// Return an poison of the right value for the specified GEP index.
1456   PoisonValue *getElementValue(unsigned Idx) const;
1457 
1458   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1459   static bool classof(const Value *V) {
1460     return V->getValueID() == PoisonValueVal;
1461   }
1462 };
1463 
1464 } // end namespace llvm
1465 
1466 #endif // LLVM_IR_CONSTANTS_H
1467