1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declarations of classes that represent "derived
10 // types".  These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
12 //
13 // The implementations of these classes live in the Type.cpp file.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/TypeSize.h"
27 #include <cassert>
28 #include <cstdint>
29 
30 namespace llvm {
31 
32 class Value;
33 class APInt;
34 class LLVMContext;
35 
36 /// Class to represent integer types. Note that this class is also used to
37 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Int64Ty.
39 /// Integer representation type
40 class IntegerType : public Type {
41   friend class LLVMContextImpl;
42 
43 protected:
44   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
45     setSubclassData(NumBits);
46   }
47 
48 public:
49   /// This enum is just used to hold constants we need for IntegerType.
50   enum {
51     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
52     MAX_INT_BITS = (1<<23)   ///< Maximum number of bits that can be specified
53       ///< Note that bit width is stored in the Type classes SubclassData field
54       ///< which has 24 bits. SelectionDAG type legalization can require a
55       ///< power of 2 IntegerType, so limit to the largest representable power
56       ///< of 2, 8388608.
57   };
58 
59   /// This static method is the primary way of constructing an IntegerType.
60   /// If an IntegerType with the same NumBits value was previously instantiated,
61   /// that instance will be returned. Otherwise a new one will be created. Only
62   /// one instance with a given NumBits value is ever created.
63   /// Get or create an IntegerType instance.
64   static IntegerType *get(LLVMContext &C, unsigned NumBits);
65 
66   /// Returns type twice as wide the input type.
67   IntegerType *getExtendedType() const {
68     return Type::getIntNTy(getContext(), 2 * getScalarSizeInBits());
69   }
70 
71   /// Get the number of bits in this IntegerType
72   unsigned getBitWidth() const { return getSubclassData(); }
73 
74   /// Return a bitmask with ones set for all of the bits that can be set by an
75   /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
76   uint64_t getBitMask() const {
77     return ~uint64_t(0UL) >> (64-getBitWidth());
78   }
79 
80   /// Return a uint64_t with just the most significant bit set (the sign bit, if
81   /// the value is treated as a signed number).
82   uint64_t getSignBit() const {
83     return 1ULL << (getBitWidth()-1);
84   }
85 
86   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
87   /// @returns a bit mask with ones set for all the bits of this type.
88   /// Get a bit mask for this type.
89   APInt getMask() const;
90 
91   /// Methods for support type inquiry through isa, cast, and dyn_cast.
92   static bool classof(const Type *T) {
93     return T->getTypeID() == IntegerTyID;
94   }
95 };
96 
97 unsigned Type::getIntegerBitWidth() const {
98   return cast<IntegerType>(this)->getBitWidth();
99 }
100 
101 /// Class to represent function types
102 ///
103 class FunctionType : public Type {
104   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
105 
106 public:
107   FunctionType(const FunctionType &) = delete;
108   FunctionType &operator=(const FunctionType &) = delete;
109 
110   /// This static method is the primary way of constructing a FunctionType.
111   static FunctionType *get(Type *Result,
112                            ArrayRef<Type*> Params, bool isVarArg);
113 
114   /// Create a FunctionType taking no parameters.
115   static FunctionType *get(Type *Result, bool isVarArg);
116 
117   /// Return true if the specified type is valid as a return type.
118   static bool isValidReturnType(Type *RetTy);
119 
120   /// Return true if the specified type is valid as an argument type.
121   static bool isValidArgumentType(Type *ArgTy);
122 
123   bool isVarArg() const { return getSubclassData()!=0; }
124   Type *getReturnType() const { return ContainedTys[0]; }
125 
126   using param_iterator = Type::subtype_iterator;
127 
128   param_iterator param_begin() const { return ContainedTys + 1; }
129   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
130   ArrayRef<Type *> params() const {
131     return ArrayRef(param_begin(), param_end());
132   }
133 
134   /// Parameter type accessors.
135   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
136 
137   /// Return the number of fixed parameters this function type requires.
138   /// This does not consider varargs.
139   unsigned getNumParams() const { return NumContainedTys - 1; }
140 
141   /// Methods for support type inquiry through isa, cast, and dyn_cast.
142   static bool classof(const Type *T) {
143     return T->getTypeID() == FunctionTyID;
144   }
145 };
146 static_assert(alignof(FunctionType) >= alignof(Type *),
147               "Alignment sufficient for objects appended to FunctionType");
148 
149 bool Type::isFunctionVarArg() const {
150   return cast<FunctionType>(this)->isVarArg();
151 }
152 
153 Type *Type::getFunctionParamType(unsigned i) const {
154   return cast<FunctionType>(this)->getParamType(i);
155 }
156 
157 unsigned Type::getFunctionNumParams() const {
158   return cast<FunctionType>(this)->getNumParams();
159 }
160 
161 /// A handy container for a FunctionType+Callee-pointer pair, which can be
162 /// passed around as a single entity. This assists in replacing the use of
163 /// PointerType::getElementType() to access the function's type, since that's
164 /// slated for removal as part of the [opaque pointer types] project.
165 class FunctionCallee {
166 public:
167   // Allow implicit conversion from types which have a getFunctionType member
168   // (e.g. Function and InlineAsm).
169   template <typename T, typename U = decltype(&T::getFunctionType)>
170   FunctionCallee(T *Fn)
171       : FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
172 
173   FunctionCallee(FunctionType *FnTy, Value *Callee)
174       : FnTy(FnTy), Callee(Callee) {
175     assert((FnTy == nullptr) == (Callee == nullptr));
176   }
177 
178   FunctionCallee(std::nullptr_t) {}
179 
180   FunctionCallee() = default;
181 
182   FunctionType *getFunctionType() { return FnTy; }
183 
184   Value *getCallee() { return Callee; }
185 
186   explicit operator bool() { return Callee; }
187 
188 private:
189   FunctionType *FnTy = nullptr;
190   Value *Callee = nullptr;
191 };
192 
193 /// Class to represent struct types. There are two different kinds of struct
194 /// types: Literal structs and Identified structs.
195 ///
196 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
197 /// always have a body when created.  You can get one of these by using one of
198 /// the StructType::get() forms.
199 ///
200 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
201 /// uniqued.  The names for identified structs are managed at the LLVMContext
202 /// level, so there can only be a single identified struct with a given name in
203 /// a particular LLVMContext.  Identified structs may also optionally be opaque
204 /// (have no body specified).  You get one of these by using one of the
205 /// StructType::create() forms.
206 ///
207 /// Independent of what kind of struct you have, the body of a struct type are
208 /// laid out in memory consecutively with the elements directly one after the
209 /// other (if the struct is packed) or (if not packed) with padding between the
210 /// elements as defined by DataLayout (which is required to match what the code
211 /// generator for a target expects).
212 ///
213 class StructType : public Type {
214   StructType(LLVMContext &C) : Type(C, StructTyID) {}
215 
216   enum {
217     /// This is the contents of the SubClassData field.
218     SCDB_HasBody = 1,
219     SCDB_Packed = 2,
220     SCDB_IsLiteral = 4,
221     SCDB_IsSized = 8,
222     SCDB_ContainsScalableVector = 16,
223     SCDB_NotContainsScalableVector = 32
224   };
225 
226   /// For a named struct that actually has a name, this is a pointer to the
227   /// symbol table entry (maintained by LLVMContext) for the struct.
228   /// This is null if the type is an literal struct or if it is a identified
229   /// type that has an empty name.
230   void *SymbolTableEntry = nullptr;
231 
232 public:
233   StructType(const StructType &) = delete;
234   StructType &operator=(const StructType &) = delete;
235 
236   /// This creates an identified struct.
237   static StructType *create(LLVMContext &Context, StringRef Name);
238   static StructType *create(LLVMContext &Context);
239 
240   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
241                             bool isPacked = false);
242   static StructType *create(ArrayRef<Type *> Elements);
243   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
244                             StringRef Name, bool isPacked = false);
245   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
246   template <class... Tys>
247   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
248   create(StringRef Name, Type *elt1, Tys *... elts) {
249     assert(elt1 && "Cannot create a struct type with no elements with this");
250     return create(ArrayRef<Type *>({elt1, elts...}), Name);
251   }
252 
253   /// This static method is the primary way to create a literal StructType.
254   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
255                          bool isPacked = false);
256 
257   /// Create an empty structure type.
258   static StructType *get(LLVMContext &Context, bool isPacked = false);
259 
260   /// This static method is a convenience method for creating structure types by
261   /// specifying the elements as arguments. Note that this method always returns
262   /// a non-packed struct, and requires at least one element type.
263   template <class... Tys>
264   static std::enable_if_t<are_base_of<Type, Tys...>::value, StructType *>
265   get(Type *elt1, Tys *... elts) {
266     assert(elt1 && "Cannot create a struct type with no elements with this");
267     LLVMContext &Ctx = elt1->getContext();
268     return StructType::get(Ctx, ArrayRef<Type *>({elt1, elts...}));
269   }
270 
271   /// Return the type with the specified name, or null if there is none by that
272   /// name.
273   static StructType *getTypeByName(LLVMContext &C, StringRef Name);
274 
275   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
276 
277   /// Return true if this type is uniqued by structural equivalence, false if it
278   /// is a struct definition.
279   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
280 
281   /// Return true if this is a type with an identity that has no body specified
282   /// yet. These prints as 'opaque' in .ll files.
283   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
284 
285   /// isSized - Return true if this is a sized type.
286   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
287 
288   /// Returns true if this struct contains a scalable vector.
289   bool
290   containsScalableVectorType(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
291 
292   /// Returns true if this struct contains homogeneous scalable vector types.
293   /// Note that the definition of homogeneous scalable vector type is not
294   /// recursive here. That means the following structure will return false
295   /// when calling this function.
296   /// {{<vscale x 2 x i32>, <vscale x 4 x i64>},
297   ///  {<vscale x 2 x i32>, <vscale x 4 x i64>}}
298   bool containsHomogeneousScalableVectorTypes() const;
299 
300   /// Return true if this is a named struct that has a non-empty name.
301   bool hasName() const { return SymbolTableEntry != nullptr; }
302 
303   /// Return the name for this struct type if it has an identity.
304   /// This may return an empty string for an unnamed struct type.  Do not call
305   /// this on an literal type.
306   StringRef getName() const;
307 
308   /// Change the name of this type to the specified name, or to a name with a
309   /// suffix if there is a collision. Do not call this on an literal type.
310   void setName(StringRef Name);
311 
312   /// Specify a body for an opaque identified type.
313   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
314 
315   template <typename... Tys>
316   std::enable_if_t<are_base_of<Type, Tys...>::value, void>
317   setBody(Type *elt1, Tys *... elts) {
318     assert(elt1 && "Cannot create a struct type with no elements with this");
319     setBody(ArrayRef<Type *>({elt1, elts...}));
320   }
321 
322   /// Return true if the specified type is valid as a element type.
323   static bool isValidElementType(Type *ElemTy);
324 
325   // Iterator access to the elements.
326   using element_iterator = Type::subtype_iterator;
327 
328   element_iterator element_begin() const { return ContainedTys; }
329   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
330   ArrayRef<Type *> elements() const {
331     return ArrayRef(element_begin(), element_end());
332   }
333 
334   /// Return true if this is layout identical to the specified struct.
335   bool isLayoutIdentical(StructType *Other) const;
336 
337   /// Random access to the elements
338   unsigned getNumElements() const { return NumContainedTys; }
339   Type *getElementType(unsigned N) const {
340     assert(N < NumContainedTys && "Element number out of range!");
341     return ContainedTys[N];
342   }
343   /// Given an index value into the type, return the type of the element.
344   Type *getTypeAtIndex(const Value *V) const;
345   Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
346   bool indexValid(const Value *V) const;
347   bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
348 
349   /// Methods for support type inquiry through isa, cast, and dyn_cast.
350   static bool classof(const Type *T) {
351     return T->getTypeID() == StructTyID;
352   }
353 };
354 
355 StringRef Type::getStructName() const {
356   return cast<StructType>(this)->getName();
357 }
358 
359 unsigned Type::getStructNumElements() const {
360   return cast<StructType>(this)->getNumElements();
361 }
362 
363 Type *Type::getStructElementType(unsigned N) const {
364   return cast<StructType>(this)->getElementType(N);
365 }
366 
367 /// Class to represent array types.
368 class ArrayType : public Type {
369   /// The element type of the array.
370   Type *ContainedType;
371   /// Number of elements in the array.
372   uint64_t NumElements;
373 
374   ArrayType(Type *ElType, uint64_t NumEl);
375 
376 public:
377   ArrayType(const ArrayType &) = delete;
378   ArrayType &operator=(const ArrayType &) = delete;
379 
380   uint64_t getNumElements() const { return NumElements; }
381   Type *getElementType() const { return ContainedType; }
382 
383   /// This static method is the primary way to construct an ArrayType
384   static ArrayType *get(Type *ElementType, uint64_t NumElements);
385 
386   /// Return true if the specified type is valid as a element type.
387   static bool isValidElementType(Type *ElemTy);
388 
389   /// Methods for support type inquiry through isa, cast, and dyn_cast.
390   static bool classof(const Type *T) {
391     return T->getTypeID() == ArrayTyID;
392   }
393 };
394 
395 uint64_t Type::getArrayNumElements() const {
396   return cast<ArrayType>(this)->getNumElements();
397 }
398 
399 /// Base class of all SIMD vector types
400 class VectorType : public Type {
401   /// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
402   /// minimum number of elements of type Ty contained within the vector, and
403   /// 'vscale x' indicates that the total element count is an integer multiple
404   /// of 'n', where the multiple is either guaranteed to be one, or is
405   /// statically unknown at compile time.
406   ///
407   /// If the multiple is known to be 1, then the extra term is discarded in
408   /// textual IR:
409   ///
410   /// <4 x i32>          - a vector containing 4 i32s
411   /// <vscale x 4 x i32> - a vector containing an unknown integer multiple
412   ///                      of 4 i32s
413 
414   /// The element type of the vector.
415   Type *ContainedType;
416 
417 protected:
418   /// The element quantity of this vector. The meaning of this value depends
419   /// on the type of vector:
420   /// - For FixedVectorType = <ElementQuantity x ty>, there are
421   ///   exactly ElementQuantity elements in this vector.
422   /// - For ScalableVectorType = <vscale x ElementQuantity x ty>,
423   ///   there are vscale * ElementQuantity elements in this vector, where
424   ///   vscale is a runtime-constant integer greater than 0.
425   const unsigned ElementQuantity;
426 
427   VectorType(Type *ElType, unsigned EQ, Type::TypeID TID);
428 
429 public:
430   VectorType(const VectorType &) = delete;
431   VectorType &operator=(const VectorType &) = delete;
432 
433   Type *getElementType() const { return ContainedType; }
434 
435   /// This static method is the primary way to construct an VectorType.
436   static VectorType *get(Type *ElementType, ElementCount EC);
437 
438   static VectorType *get(Type *ElementType, unsigned NumElements,
439                          bool Scalable) {
440     return VectorType::get(ElementType,
441                            ElementCount::get(NumElements, Scalable));
442   }
443 
444   static VectorType *get(Type *ElementType, const VectorType *Other) {
445     return VectorType::get(ElementType, Other->getElementCount());
446   }
447 
448   /// This static method gets a VectorType with the same number of elements as
449   /// the input type, and the element type is an integer type of the same width
450   /// as the input element type.
451   static VectorType *getInteger(VectorType *VTy) {
452     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
453     assert(EltBits && "Element size must be of a non-zero size");
454     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
455     return VectorType::get(EltTy, VTy->getElementCount());
456   }
457 
458   /// This static method is like getInteger except that the element types are
459   /// twice as wide as the elements in the input type.
460   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
461     assert(VTy->isIntOrIntVectorTy() && "VTy expected to be a vector of ints.");
462     auto *EltTy = cast<IntegerType>(VTy->getElementType());
463     return VectorType::get(EltTy->getExtendedType(), VTy->getElementCount());
464   }
465 
466   // This static method gets a VectorType with the same number of elements as
467   // the input type, and the element type is an integer or float type which
468   // is half as wide as the elements in the input type.
469   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
470     Type *EltTy;
471     if (VTy->getElementType()->isFloatingPointTy()) {
472       switch(VTy->getElementType()->getTypeID()) {
473       case DoubleTyID:
474         EltTy = Type::getFloatTy(VTy->getContext());
475         break;
476       case FloatTyID:
477         EltTy = Type::getHalfTy(VTy->getContext());
478         break;
479       default:
480         llvm_unreachable("Cannot create narrower fp vector element type");
481       }
482     } else {
483       unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
484       assert((EltBits & 1) == 0 &&
485              "Cannot truncate vector element with odd bit-width");
486       EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
487     }
488     return VectorType::get(EltTy, VTy->getElementCount());
489   }
490 
491   // This static method returns a VectorType with a smaller number of elements
492   // of a larger type than the input element type. For example, a <16 x i8>
493   // subdivided twice would return <4 x i32>
494   static VectorType *getSubdividedVectorType(VectorType *VTy, int NumSubdivs) {
495     for (int i = 0; i < NumSubdivs; ++i) {
496       VTy = VectorType::getDoubleElementsVectorType(VTy);
497       VTy = VectorType::getTruncatedElementVectorType(VTy);
498     }
499     return VTy;
500   }
501 
502   /// This static method returns a VectorType with half as many elements as the
503   /// input type and the same element type.
504   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
505     auto EltCnt = VTy->getElementCount();
506     assert(EltCnt.isKnownEven() &&
507            "Cannot halve vector with odd number of elements.");
508     return VectorType::get(VTy->getElementType(),
509                            EltCnt.divideCoefficientBy(2));
510   }
511 
512   /// This static method returns a VectorType with twice as many elements as the
513   /// input type and the same element type.
514   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
515     auto EltCnt = VTy->getElementCount();
516     assert((EltCnt.getKnownMinValue() * 2ull) <= UINT_MAX &&
517            "Too many elements in vector");
518     return VectorType::get(VTy->getElementType(), EltCnt * 2);
519   }
520 
521   /// Return true if the specified type is valid as a element type.
522   static bool isValidElementType(Type *ElemTy);
523 
524   /// Return an ElementCount instance to represent the (possibly scalable)
525   /// number of elements in the vector.
526   inline ElementCount getElementCount() const;
527 
528   /// Methods for support type inquiry through isa, cast, and dyn_cast.
529   static bool classof(const Type *T) {
530     return T->getTypeID() == FixedVectorTyID ||
531            T->getTypeID() == ScalableVectorTyID;
532   }
533 };
534 
535 /// Class to represent fixed width SIMD vectors
536 class FixedVectorType : public VectorType {
537 protected:
538   FixedVectorType(Type *ElTy, unsigned NumElts)
539       : VectorType(ElTy, NumElts, FixedVectorTyID) {}
540 
541 public:
542   static FixedVectorType *get(Type *ElementType, unsigned NumElts);
543 
544   static FixedVectorType *get(Type *ElementType, const FixedVectorType *FVTy) {
545     return get(ElementType, FVTy->getNumElements());
546   }
547 
548   static FixedVectorType *getInteger(FixedVectorType *VTy) {
549     return cast<FixedVectorType>(VectorType::getInteger(VTy));
550   }
551 
552   static FixedVectorType *getExtendedElementVectorType(FixedVectorType *VTy) {
553     return cast<FixedVectorType>(VectorType::getExtendedElementVectorType(VTy));
554   }
555 
556   static FixedVectorType *getTruncatedElementVectorType(FixedVectorType *VTy) {
557     return cast<FixedVectorType>(
558         VectorType::getTruncatedElementVectorType(VTy));
559   }
560 
561   static FixedVectorType *getSubdividedVectorType(FixedVectorType *VTy,
562                                                   int NumSubdivs) {
563     return cast<FixedVectorType>(
564         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
565   }
566 
567   static FixedVectorType *getHalfElementsVectorType(FixedVectorType *VTy) {
568     return cast<FixedVectorType>(VectorType::getHalfElementsVectorType(VTy));
569   }
570 
571   static FixedVectorType *getDoubleElementsVectorType(FixedVectorType *VTy) {
572     return cast<FixedVectorType>(VectorType::getDoubleElementsVectorType(VTy));
573   }
574 
575   static bool classof(const Type *T) {
576     return T->getTypeID() == FixedVectorTyID;
577   }
578 
579   unsigned getNumElements() const { return ElementQuantity; }
580 };
581 
582 /// Class to represent scalable SIMD vectors
583 class ScalableVectorType : public VectorType {
584 protected:
585   ScalableVectorType(Type *ElTy, unsigned MinNumElts)
586       : VectorType(ElTy, MinNumElts, ScalableVectorTyID) {}
587 
588 public:
589   static ScalableVectorType *get(Type *ElementType, unsigned MinNumElts);
590 
591   static ScalableVectorType *get(Type *ElementType,
592                                  const ScalableVectorType *SVTy) {
593     return get(ElementType, SVTy->getMinNumElements());
594   }
595 
596   static ScalableVectorType *getInteger(ScalableVectorType *VTy) {
597     return cast<ScalableVectorType>(VectorType::getInteger(VTy));
598   }
599 
600   static ScalableVectorType *
601   getExtendedElementVectorType(ScalableVectorType *VTy) {
602     return cast<ScalableVectorType>(
603         VectorType::getExtendedElementVectorType(VTy));
604   }
605 
606   static ScalableVectorType *
607   getTruncatedElementVectorType(ScalableVectorType *VTy) {
608     return cast<ScalableVectorType>(
609         VectorType::getTruncatedElementVectorType(VTy));
610   }
611 
612   static ScalableVectorType *getSubdividedVectorType(ScalableVectorType *VTy,
613                                                      int NumSubdivs) {
614     return cast<ScalableVectorType>(
615         VectorType::getSubdividedVectorType(VTy, NumSubdivs));
616   }
617 
618   static ScalableVectorType *
619   getHalfElementsVectorType(ScalableVectorType *VTy) {
620     return cast<ScalableVectorType>(VectorType::getHalfElementsVectorType(VTy));
621   }
622 
623   static ScalableVectorType *
624   getDoubleElementsVectorType(ScalableVectorType *VTy) {
625     return cast<ScalableVectorType>(
626         VectorType::getDoubleElementsVectorType(VTy));
627   }
628 
629   /// Get the minimum number of elements in this vector. The actual number of
630   /// elements in the vector is an integer multiple of this value.
631   uint64_t getMinNumElements() const { return ElementQuantity; }
632 
633   static bool classof(const Type *T) {
634     return T->getTypeID() == ScalableVectorTyID;
635   }
636 };
637 
638 inline ElementCount VectorType::getElementCount() const {
639   return ElementCount::get(ElementQuantity, isa<ScalableVectorType>(this));
640 }
641 
642 /// Class to represent pointers.
643 class PointerType : public Type {
644   explicit PointerType(LLVMContext &C, unsigned AddrSpace);
645 
646 public:
647   PointerType(const PointerType &) = delete;
648   PointerType &operator=(const PointerType &) = delete;
649 
650   /// This constructs a pointer to an object of the specified type in a numbered
651   /// address space.
652   static PointerType *get(Type *ElementType, unsigned AddressSpace);
653   /// This constructs an opaque pointer to an object in a numbered address
654   /// space.
655   static PointerType *get(LLVMContext &C, unsigned AddressSpace);
656 
657   /// This constructs a pointer to an object of the specified type in the
658   /// default address space (address space zero).
659   static PointerType *getUnqual(Type *ElementType) {
660     return PointerType::get(ElementType, 0);
661   }
662 
663   /// This constructs an opaque pointer to an object in the
664   /// default address space (address space zero).
665   static PointerType *getUnqual(LLVMContext &C) {
666     return PointerType::get(C, 0);
667   }
668 
669   /// This constructs a pointer type with the same pointee type as input
670   /// PointerType (or opaque pointer if the input PointerType is opaque) and the
671   /// given address space. This is only useful during the opaque pointer
672   /// transition.
673   /// TODO: remove after opaque pointer transition is complete.
674   [[deprecated("Use PointerType::get() with LLVMContext argument instead")]]
675   static PointerType *getWithSamePointeeType(PointerType *PT,
676                                              unsigned AddressSpace) {
677     return get(PT->getContext(), AddressSpace);
678   }
679 
680   [[deprecated("Always returns true")]]
681   bool isOpaque() const { return true; }
682 
683   /// Return true if the specified type is valid as a element type.
684   static bool isValidElementType(Type *ElemTy);
685 
686   /// Return true if we can load or store from a pointer to this type.
687   static bool isLoadableOrStorableType(Type *ElemTy);
688 
689   /// Return the address space of the Pointer type.
690   inline unsigned getAddressSpace() const { return getSubclassData(); }
691 
692   /// Return true if either this is an opaque pointer type or if this pointee
693   /// type matches Ty. Primarily used for checking if an instruction's pointer
694   /// operands are valid types. Will be useless after non-opaque pointers are
695   /// removed.
696   [[deprecated("Always returns true")]]
697   bool isOpaqueOrPointeeTypeMatches(Type *) {
698     return true;
699   }
700 
701   /// Return true if both pointer types have the same element type. Two opaque
702   /// pointers are considered to have the same element type, while an opaque
703   /// and a non-opaque pointer have different element types.
704   /// TODO: Remove after opaque pointer transition is complete.
705   [[deprecated("Always returns true")]]
706   bool hasSameElementTypeAs(PointerType *Other) {
707     return true;
708   }
709 
710   /// Implement support type inquiry through isa, cast, and dyn_cast.
711   static bool classof(const Type *T) {
712     return T->getTypeID() == PointerTyID;
713   }
714 };
715 
716 Type *Type::getExtendedType() const {
717   assert(
718       isIntOrIntVectorTy() &&
719       "Original type expected to be a vector of integers or a scalar integer.");
720   if (auto *VTy = dyn_cast<VectorType>(this))
721     return VectorType::getExtendedElementVectorType(
722         const_cast<VectorType *>(VTy));
723   return cast<IntegerType>(this)->getExtendedType();
724 }
725 
726 Type *Type::getWithNewType(Type *EltTy) const {
727   if (auto *VTy = dyn_cast<VectorType>(this))
728     return VectorType::get(EltTy, VTy->getElementCount());
729   return EltTy;
730 }
731 
732 Type *Type::getWithNewBitWidth(unsigned NewBitWidth) const {
733   assert(
734       isIntOrIntVectorTy() &&
735       "Original type expected to be a vector of integers or a scalar integer.");
736   return getWithNewType(getIntNTy(getContext(), NewBitWidth));
737 }
738 
739 unsigned Type::getPointerAddressSpace() const {
740   return cast<PointerType>(getScalarType())->getAddressSpace();
741 }
742 
743 /// Class to represent target extensions types, which are generally
744 /// unintrospectable from target-independent optimizations.
745 ///
746 /// Target extension types have a string name, and optionally have type and/or
747 /// integer parameters. The exact meaning of any parameters is dependent on the
748 /// target.
749 class TargetExtType : public Type {
750   TargetExtType(LLVMContext &C, StringRef Name, ArrayRef<Type *> Types,
751                 ArrayRef<unsigned> Ints);
752 
753   // These strings are ultimately owned by the context.
754   StringRef Name;
755   unsigned *IntParams;
756 
757 public:
758   TargetExtType(const TargetExtType &) = delete;
759   TargetExtType &operator=(const TargetExtType &) = delete;
760 
761   /// Return a target extension type having the specified name and optional
762   /// type and integer parameters.
763   static TargetExtType *get(LLVMContext &Context, StringRef Name,
764                             ArrayRef<Type *> Types = std::nullopt,
765                             ArrayRef<unsigned> Ints = std::nullopt);
766 
767   /// Return the name for this target extension type. Two distinct target
768   /// extension types may have the same name if their type or integer parameters
769   /// differ.
770   StringRef getName() const { return Name; }
771 
772   /// Return the type parameters for this particular target extension type. If
773   /// there are no parameters, an empty array is returned.
774   ArrayRef<Type *> type_params() const {
775     return ArrayRef(type_param_begin(), type_param_end());
776   }
777 
778   using type_param_iterator = Type::subtype_iterator;
779   type_param_iterator type_param_begin() const { return ContainedTys; }
780   type_param_iterator type_param_end() const {
781     return &ContainedTys[NumContainedTys];
782   }
783 
784   Type *getTypeParameter(unsigned i) const { return getContainedType(i); }
785   unsigned getNumTypeParameters() const { return getNumContainedTypes(); }
786 
787   /// Return the integer parameters for this particular target extension type.
788   /// If there are no parameters, an empty array is returned.
789   ArrayRef<unsigned> int_params() const {
790     return ArrayRef(IntParams, getNumIntParameters());
791   }
792 
793   unsigned getIntParameter(unsigned i) const { return IntParams[i]; }
794   unsigned getNumIntParameters() const { return getSubclassData(); }
795 
796   enum Property {
797     /// zeroinitializer is valid for this target extension type.
798     HasZeroInit = 1U << 0,
799     /// This type may be used as the value type of a global variable.
800     CanBeGlobal = 1U << 1,
801   };
802 
803   /// Returns true if the target extension type contains the given property.
804   bool hasProperty(Property Prop) const;
805 
806   /// Returns an underlying layout type for the target extension type. This
807   /// type can be used to query size and alignment information, if it is
808   /// appropriate (although note that the layout type may also be void). It is
809   /// not legal to bitcast between this type and the layout type, however.
810   Type *getLayoutType() const;
811 
812   /// Methods for support type inquiry through isa, cast, and dyn_cast.
813   static bool classof(const Type *T) { return T->getTypeID() == TargetExtTyID; }
814 };
815 
816 StringRef Type::getTargetExtName() const {
817   return cast<TargetExtType>(this)->getName();
818 }
819 
820 } // end namespace llvm
821 
822 #endif // LLVM_IR_DERIVEDTYPES_H
823