1 //===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DominatorTree class, which provides fast and efficient
10 // dominance queries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_DOMINATORS_H
15 #define LLVM_IR_DOMINATORS_H
16 
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/DepthFirstIterator.h"
22 #include "llvm/ADT/Hashing.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/ilist_iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Use.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/CFGDiff.h"
34 #include "llvm/Support/CFGUpdate.h"
35 #include "llvm/Support/GenericDomTree.h"
36 #include "llvm/Support/GenericDomTreeConstruction.h"
37 #include <algorithm>
38 #include <utility>
39 #include <vector>
40 
41 namespace llvm {
42 
43 class Function;
44 class Instruction;
45 class Module;
46 class Value;
47 class raw_ostream;
48 template <class GraphType> struct GraphTraits;
49 
50 extern template class DomTreeNodeBase<BasicBlock>;
51 extern template class DominatorTreeBase<BasicBlock, false>; // DomTree
52 extern template class DominatorTreeBase<BasicBlock, true>; // PostDomTree
53 
54 extern template class cfg::Update<BasicBlock *>;
55 
56 namespace DomTreeBuilder {
57 using BBDomTree = DomTreeBase<BasicBlock>;
58 using BBPostDomTree = PostDomTreeBase<BasicBlock>;
59 
60 using BBUpdates = ArrayRef<llvm::cfg::Update<BasicBlock *>>;
61 
62 using BBDomTreeGraphDiff = GraphDiff<BasicBlock *, false>;
63 using BBPostDomTreeGraphDiff = GraphDiff<BasicBlock *, true>;
64 
65 extern template void Calculate<BBDomTree>(BBDomTree &DT);
66 extern template void CalculateWithUpdates<BBDomTree>(BBDomTree &DT,
67                                                      BBUpdates U);
68 
69 extern template void Calculate<BBPostDomTree>(BBPostDomTree &DT);
70 
71 extern template void InsertEdge<BBDomTree>(BBDomTree &DT, BasicBlock *From,
72                                            BasicBlock *To);
73 extern template void InsertEdge<BBPostDomTree>(BBPostDomTree &DT,
74                                                BasicBlock *From,
75                                                BasicBlock *To);
76 
77 extern template void DeleteEdge<BBDomTree>(BBDomTree &DT, BasicBlock *From,
78                                            BasicBlock *To);
79 extern template void DeleteEdge<BBPostDomTree>(BBPostDomTree &DT,
80                                                BasicBlock *From,
81                                                BasicBlock *To);
82 
83 extern template void ApplyUpdates<BBDomTree>(BBDomTree &DT,
84                                              BBDomTreeGraphDiff &,
85                                              BBDomTreeGraphDiff *);
86 extern template void ApplyUpdates<BBPostDomTree>(BBPostDomTree &DT,
87                                                  BBPostDomTreeGraphDiff &,
88                                                  BBPostDomTreeGraphDiff *);
89 
90 extern template bool Verify<BBDomTree>(const BBDomTree &DT,
91                                        BBDomTree::VerificationLevel VL);
92 extern template bool Verify<BBPostDomTree>(const BBPostDomTree &DT,
93                                            BBPostDomTree::VerificationLevel VL);
94 }  // namespace DomTreeBuilder
95 
96 using DomTreeNode = DomTreeNodeBase<BasicBlock>;
97 
98 class BasicBlockEdge {
99   const BasicBlock *Start;
100   const BasicBlock *End;
101 
102 public:
103   BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
104     Start(Start_), End(End_) {}
105 
106   BasicBlockEdge(const std::pair<BasicBlock *, BasicBlock *> &Pair)
107       : Start(Pair.first), End(Pair.second) {}
108 
109   BasicBlockEdge(const std::pair<const BasicBlock *, const BasicBlock *> &Pair)
110       : Start(Pair.first), End(Pair.second) {}
111 
112   const BasicBlock *getStart() const {
113     return Start;
114   }
115 
116   const BasicBlock *getEnd() const {
117     return End;
118   }
119 
120   /// Check if this is the only edge between Start and End.
121   bool isSingleEdge() const;
122 };
123 
124 template <> struct DenseMapInfo<BasicBlockEdge> {
125   using BBInfo = DenseMapInfo<const BasicBlock *>;
126 
127   static unsigned getHashValue(const BasicBlockEdge *V);
128 
129   static inline BasicBlockEdge getEmptyKey() {
130     return BasicBlockEdge(BBInfo::getEmptyKey(), BBInfo::getEmptyKey());
131   }
132 
133   static inline BasicBlockEdge getTombstoneKey() {
134     return BasicBlockEdge(BBInfo::getTombstoneKey(), BBInfo::getTombstoneKey());
135   }
136 
137   static unsigned getHashValue(const BasicBlockEdge &Edge) {
138     return hash_combine(BBInfo::getHashValue(Edge.getStart()),
139                         BBInfo::getHashValue(Edge.getEnd()));
140   }
141 
142   static bool isEqual(const BasicBlockEdge &LHS, const BasicBlockEdge &RHS) {
143     return BBInfo::isEqual(LHS.getStart(), RHS.getStart()) &&
144            BBInfo::isEqual(LHS.getEnd(), RHS.getEnd());
145   }
146 };
147 
148 /// Concrete subclass of DominatorTreeBase that is used to compute a
149 /// normal dominator tree.
150 ///
151 /// Definition: A block is said to be forward statically reachable if there is
152 /// a path from the entry of the function to the block.  A statically reachable
153 /// block may become statically unreachable during optimization.
154 ///
155 /// A forward unreachable block may appear in the dominator tree, or it may
156 /// not.  If it does, dominance queries will return results as if all reachable
157 /// blocks dominate it.  When asking for a Node corresponding to a potentially
158 /// unreachable block, calling code must handle the case where the block was
159 /// unreachable and the result of getNode() is nullptr.
160 ///
161 /// Generally, a block known to be unreachable when the dominator tree is
162 /// constructed will not be in the tree.  One which becomes unreachable after
163 /// the dominator tree is initially constructed may still exist in the tree,
164 /// even if the tree is properly updated. Calling code should not rely on the
165 /// preceding statements; this is stated only to assist human understanding.
166 class DominatorTree : public DominatorTreeBase<BasicBlock, false> {
167  public:
168   using Base = DominatorTreeBase<BasicBlock, false>;
169 
170   DominatorTree() = default;
171   explicit DominatorTree(Function &F) { recalculate(F); }
172   explicit DominatorTree(DominatorTree &DT, DomTreeBuilder::BBUpdates U) {
173     recalculate(*DT.Parent, U);
174   }
175 
176   /// Handle invalidation explicitly.
177   bool invalidate(Function &F, const PreservedAnalyses &PA,
178                   FunctionAnalysisManager::Invalidator &);
179 
180   // Ensure base-class overloads are visible.
181   using Base::dominates;
182 
183   /// Return true if the (end of the) basic block BB dominates the use U.
184   bool dominates(const BasicBlock *BB, const Use &U) const;
185 
186   /// Return true if value Def dominates use U, in the sense that Def is
187   /// available at U, and could be substituted as the used value without
188   /// violating the SSA dominance requirement.
189   ///
190   /// In particular, it is worth noting that:
191   ///  * Non-instruction Defs dominate everything.
192   ///  * Def does not dominate a use in Def itself (outside of degenerate cases
193   ///    like unreachable code or trivial phi cycles).
194   ///  * Invoke Defs only dominate uses in their default destination.
195   bool dominates(const Value *Def, const Use &U) const;
196   /// Return true if value Def dominates all possible uses inside instruction
197   /// User. Same comments as for the Use-based API apply.
198   bool dominates(const Value *Def, const Instruction *User) const;
199 
200   /// Returns true if Def would dominate a use in any instruction in BB.
201   /// If Def is an instruction in BB, then Def does not dominate BB.
202   ///
203   /// Does not accept Value to avoid ambiguity with dominance checks between
204   /// two basic blocks.
205   bool dominates(const Instruction *Def, const BasicBlock *BB) const;
206 
207   /// Return true if an edge dominates a use.
208   ///
209   /// If BBE is not a unique edge between start and end of the edge, it can
210   /// never dominate the use.
211   bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
212   bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
213   /// Returns true if edge \p BBE1 dominates edge \p BBE2.
214   bool dominates(const BasicBlockEdge &BBE1, const BasicBlockEdge &BBE2) const;
215 
216   // Ensure base class overloads are visible.
217   using Base::isReachableFromEntry;
218 
219   /// Provide an overload for a Use.
220   bool isReachableFromEntry(const Use &U) const;
221 
222   // Ensure base class overloads are visible.
223   using Base::findNearestCommonDominator;
224 
225   /// Find the nearest instruction I that dominates both I1 and I2, in the sense
226   /// that a result produced before I will be available at both I1 and I2.
227   Instruction *findNearestCommonDominator(Instruction *I1,
228                                           Instruction *I2) const;
229 
230   // Pop up a GraphViz/gv window with the Dominator Tree rendered using `dot`.
231   void viewGraph(const Twine &Name, const Twine &Title);
232   void viewGraph();
233 };
234 
235 //===-------------------------------------
236 // DominatorTree GraphTraits specializations so the DominatorTree can be
237 // iterable by generic graph iterators.
238 
239 template <class Node, class ChildIterator> struct DomTreeGraphTraitsBase {
240   using NodeRef = Node *;
241   using ChildIteratorType = ChildIterator;
242   using nodes_iterator = df_iterator<Node *, df_iterator_default_set<Node*>>;
243 
244   static NodeRef getEntryNode(NodeRef N) { return N; }
245   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
246   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
247 
248   static nodes_iterator nodes_begin(NodeRef N) {
249     return df_begin(getEntryNode(N));
250   }
251 
252   static nodes_iterator nodes_end(NodeRef N) { return df_end(getEntryNode(N)); }
253 };
254 
255 template <>
256 struct GraphTraits<DomTreeNode *>
257     : public DomTreeGraphTraitsBase<DomTreeNode, DomTreeNode::const_iterator> {
258 };
259 
260 template <>
261 struct GraphTraits<const DomTreeNode *>
262     : public DomTreeGraphTraitsBase<const DomTreeNode,
263                                     DomTreeNode::const_iterator> {};
264 
265 template <> struct GraphTraits<DominatorTree*>
266   : public GraphTraits<DomTreeNode*> {
267   static NodeRef getEntryNode(DominatorTree *DT) { return DT->getRootNode(); }
268 
269   static nodes_iterator nodes_begin(DominatorTree *N) {
270     return df_begin(getEntryNode(N));
271   }
272 
273   static nodes_iterator nodes_end(DominatorTree *N) {
274     return df_end(getEntryNode(N));
275   }
276 };
277 
278 /// Analysis pass which computes a \c DominatorTree.
279 class DominatorTreeAnalysis : public AnalysisInfoMixin<DominatorTreeAnalysis> {
280   friend AnalysisInfoMixin<DominatorTreeAnalysis>;
281   static AnalysisKey Key;
282 
283 public:
284   /// Provide the result typedef for this analysis pass.
285   using Result = DominatorTree;
286 
287   /// Run the analysis pass over a function and produce a dominator tree.
288   DominatorTree run(Function &F, FunctionAnalysisManager &);
289 };
290 
291 /// Printer pass for the \c DominatorTree.
292 class DominatorTreePrinterPass
293     : public PassInfoMixin<DominatorTreePrinterPass> {
294   raw_ostream &OS;
295 
296 public:
297   explicit DominatorTreePrinterPass(raw_ostream &OS);
298 
299   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
300 };
301 
302 /// Verifier pass for the \c DominatorTree.
303 struct DominatorTreeVerifierPass : PassInfoMixin<DominatorTreeVerifierPass> {
304   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
305 };
306 
307 /// Enables verification of dominator trees.
308 ///
309 /// This check is expensive and is disabled by default.  `-verify-dom-info`
310 /// allows selectively enabling the check without needing to recompile.
311 extern bool VerifyDomInfo;
312 
313 /// Legacy analysis pass which computes a \c DominatorTree.
314 class DominatorTreeWrapperPass : public FunctionPass {
315   DominatorTree DT;
316 
317 public:
318   static char ID;
319 
320   DominatorTreeWrapperPass();
321 
322   DominatorTree &getDomTree() { return DT; }
323   const DominatorTree &getDomTree() const { return DT; }
324 
325   bool runOnFunction(Function &F) override;
326 
327   void verifyAnalysis() const override;
328 
329   void getAnalysisUsage(AnalysisUsage &AU) const override {
330     AU.setPreservesAll();
331   }
332 
333   void releaseMemory() override { DT.reset(); }
334 
335   void print(raw_ostream &OS, const Module *M = nullptr) const override;
336 };
337 } // end namespace llvm
338 
339 #endif // LLVM_IR_DOMINATORS_H
340