1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/PointerUnion.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/ilist_node.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <iterator>
36 #include <memory>
37 #include <string>
38 #include <type_traits>
39 #include <utility>
40 
41 namespace llvm {
42 
43 class Module;
44 class ModuleSlotTracker;
45 class raw_ostream;
46 template <typename T> class StringMapEntry;
47 template <typename ValueTy> class StringMapEntryStorage;
48 class Type;
49 
50 enum LLVMConstants : uint32_t {
51   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
52 };
53 
54 /// Magic number in the value profile metadata showing a target has been
55 /// promoted for the instruction and shouldn't be promoted again.
56 const uint64_t NOMORE_ICP_MAGICNUM = -1;
57 
58 /// Root of the metadata hierarchy.
59 ///
60 /// This is a root class for typeless data in the IR.
61 class Metadata {
62   friend class ReplaceableMetadataImpl;
63 
64   /// RTTI.
65   const unsigned char SubclassID;
66 
67 protected:
68   /// Active type of storage.
69   enum StorageType { Uniqued, Distinct, Temporary };
70 
71   /// Storage flag for non-uniqued, otherwise unowned, metadata.
72   unsigned char Storage : 7;
73 
74   unsigned char SubclassData1 : 1;
75   unsigned short SubclassData16 = 0;
76   unsigned SubclassData32 = 0;
77 
78 public:
79   enum MetadataKind {
80 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
81 #include "llvm/IR/Metadata.def"
82   };
83 
84 protected:
85   Metadata(unsigned ID, StorageType Storage)
86       : SubclassID(ID), Storage(Storage), SubclassData1(false) {
87     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
88   }
89 
90   ~Metadata() = default;
91 
92   /// Default handling of a changed operand, which asserts.
93   ///
94   /// If subclasses pass themselves in as owners to a tracking node reference,
95   /// they must provide an implementation of this method.
96   void handleChangedOperand(void *, Metadata *) {
97     llvm_unreachable("Unimplemented in Metadata subclass");
98   }
99 
100 public:
101   unsigned getMetadataID() const { return SubclassID; }
102 
103   /// User-friendly dump.
104   ///
105   /// If \c M is provided, metadata nodes will be numbered canonically;
106   /// otherwise, pointer addresses are substituted.
107   ///
108   /// Note: this uses an explicit overload instead of default arguments so that
109   /// the nullptr version is easy to call from a debugger.
110   ///
111   /// @{
112   void dump() const;
113   void dump(const Module *M) const;
114   /// @}
115 
116   /// Print.
117   ///
118   /// Prints definition of \c this.
119   ///
120   /// If \c M is provided, metadata nodes will be numbered canonically;
121   /// otherwise, pointer addresses are substituted.
122   /// @{
123   void print(raw_ostream &OS, const Module *M = nullptr,
124              bool IsForDebug = false) const;
125   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
126              bool IsForDebug = false) const;
127   /// @}
128 
129   /// Print as operand.
130   ///
131   /// Prints reference of \c this.
132   ///
133   /// If \c M is provided, metadata nodes will be numbered canonically;
134   /// otherwise, pointer addresses are substituted.
135   /// @{
136   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
137   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
138                       const Module *M = nullptr) const;
139   /// @}
140 };
141 
142 // Create wrappers for C Binding types (see CBindingWrapping.h).
143 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
144 
145 // Specialized opaque metadata conversions.
146 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
147   return reinterpret_cast<Metadata**>(MDs);
148 }
149 
150 #define HANDLE_METADATA(CLASS) class CLASS;
151 #include "llvm/IR/Metadata.def"
152 
153 // Provide specializations of isa so that we don't need definitions of
154 // subclasses to see if the metadata is a subclass.
155 #define HANDLE_METADATA_LEAF(CLASS)                                            \
156   template <> struct isa_impl<CLASS, Metadata> {                               \
157     static inline bool doit(const Metadata &MD) {                              \
158       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
159     }                                                                          \
160   };
161 #include "llvm/IR/Metadata.def"
162 
163 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
164   MD.print(OS);
165   return OS;
166 }
167 
168 /// Metadata wrapper in the Value hierarchy.
169 ///
170 /// A member of the \a Value hierarchy to represent a reference to metadata.
171 /// This allows, e.g., intrinsics to have metadata as operands.
172 ///
173 /// Notably, this is the only thing in either hierarchy that is allowed to
174 /// reference \a LocalAsMetadata.
175 class MetadataAsValue : public Value {
176   friend class ReplaceableMetadataImpl;
177   friend class LLVMContextImpl;
178 
179   Metadata *MD;
180 
181   MetadataAsValue(Type *Ty, Metadata *MD);
182 
183   /// Drop use of metadata (during teardown).
184   void dropUse() { MD = nullptr; }
185 
186 public:
187   ~MetadataAsValue();
188 
189   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
190   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
191 
192   Metadata *getMetadata() const { return MD; }
193 
194   static bool classof(const Value *V) {
195     return V->getValueID() == MetadataAsValueVal;
196   }
197 
198 private:
199   void handleChangedMetadata(Metadata *MD);
200   void track();
201   void untrack();
202 };
203 
204 /// API for tracking metadata references through RAUW and deletion.
205 ///
206 /// Shared API for updating \a Metadata pointers in subclasses that support
207 /// RAUW.
208 ///
209 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
210 /// user-friendly tracking reference.
211 class MetadataTracking {
212 public:
213   /// Track the reference to metadata.
214   ///
215   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
216   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
217   /// deleted, \c MD will be set to \c nullptr.
218   ///
219   /// If tracking isn't supported, \c *MD will not change.
220   ///
221   /// \return true iff tracking is supported by \c MD.
222   static bool track(Metadata *&MD) {
223     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
224   }
225 
226   /// Track the reference to metadata for \a Metadata.
227   ///
228   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
229   /// tell it that its operand changed.  This could trigger \c Owner being
230   /// re-uniqued.
231   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
232     return track(Ref, MD, &Owner);
233   }
234 
235   /// Track the reference to metadata for \a MetadataAsValue.
236   ///
237   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
238   /// tell it that its operand changed.  This could trigger \c Owner being
239   /// re-uniqued.
240   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
241     return track(Ref, MD, &Owner);
242   }
243 
244   /// Stop tracking a reference to metadata.
245   ///
246   /// Stops \c *MD from tracking \c MD.
247   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
248   static void untrack(void *Ref, Metadata &MD);
249 
250   /// Move tracking from one reference to another.
251   ///
252   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
253   /// except that ownership callbacks are maintained.
254   ///
255   /// Note: it is an error if \c *MD does not equal \c New.
256   ///
257   /// \return true iff tracking is supported by \c MD.
258   static bool retrack(Metadata *&MD, Metadata *&New) {
259     return retrack(&MD, *MD, &New);
260   }
261   static bool retrack(void *Ref, Metadata &MD, void *New);
262 
263   /// Check whether metadata is replaceable.
264   static bool isReplaceable(const Metadata &MD);
265 
266   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
267 
268 private:
269   /// Track a reference to metadata for an owner.
270   ///
271   /// Generalized version of tracking.
272   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
273 };
274 
275 /// Shared implementation of use-lists for replaceable metadata.
276 ///
277 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
278 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
279 /// and \a TempMDNode).
280 class ReplaceableMetadataImpl {
281   friend class MetadataTracking;
282 
283 public:
284   using OwnerTy = MetadataTracking::OwnerTy;
285 
286 private:
287   LLVMContext &Context;
288   uint64_t NextIndex = 0;
289   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
290 
291 public:
292   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
293 
294   ~ReplaceableMetadataImpl() {
295     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
296   }
297 
298   LLVMContext &getContext() const { return Context; }
299 
300   /// Replace all uses of this with MD.
301   ///
302   /// Replace all uses of this with \c MD, which is allowed to be null.
303   void replaceAllUsesWith(Metadata *MD);
304    /// Replace all uses of the constant with Undef in debug info metadata
305   static void SalvageDebugInfo(const Constant &C);
306   /// Returns the list of all DIArgList users of this.
307   SmallVector<Metadata *> getAllArgListUsers();
308 
309   /// Resolve all uses of this.
310   ///
311   /// Resolve all uses of this, turning off RAUW permanently.  If \c
312   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
313   /// is resolved.
314   void resolveAllUses(bool ResolveUsers = true);
315 
316 private:
317   void addRef(void *Ref, OwnerTy Owner);
318   void dropRef(void *Ref);
319   void moveRef(void *Ref, void *New, const Metadata &MD);
320 
321   /// Lazily construct RAUW support on MD.
322   ///
323   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
324   /// ValueAsMetadata always has RAUW support.
325   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
326 
327   /// Get RAUW support on MD, if it exists.
328   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
329 
330   /// Check whether this node will support RAUW.
331   ///
332   /// Returns \c true unless getOrCreate() would return null.
333   static bool isReplaceable(const Metadata &MD);
334 };
335 
336 /// Value wrapper in the Metadata hierarchy.
337 ///
338 /// This is a custom value handle that allows other metadata to refer to
339 /// classes in the Value hierarchy.
340 ///
341 /// Because of full uniquing support, each value is only wrapped by a single \a
342 /// ValueAsMetadata object, so the lookup maps are far more efficient than
343 /// those using ValueHandleBase.
344 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
345   friend class ReplaceableMetadataImpl;
346   friend class LLVMContextImpl;
347 
348   Value *V;
349 
350   /// Drop users without RAUW (during teardown).
351   void dropUsers() {
352     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
353   }
354 
355 protected:
356   ValueAsMetadata(unsigned ID, Value *V)
357       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
358     assert(V && "Expected valid value");
359   }
360 
361   ~ValueAsMetadata() = default;
362 
363 public:
364   static ValueAsMetadata *get(Value *V);
365 
366   static ConstantAsMetadata *getConstant(Value *C) {
367     return cast<ConstantAsMetadata>(get(C));
368   }
369 
370   static LocalAsMetadata *getLocal(Value *Local) {
371     return cast<LocalAsMetadata>(get(Local));
372   }
373 
374   static ValueAsMetadata *getIfExists(Value *V);
375 
376   static ConstantAsMetadata *getConstantIfExists(Value *C) {
377     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
378   }
379 
380   static LocalAsMetadata *getLocalIfExists(Value *Local) {
381     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
382   }
383 
384   Value *getValue() const { return V; }
385   Type *getType() const { return V->getType(); }
386   LLVMContext &getContext() const { return V->getContext(); }
387 
388   SmallVector<Metadata *> getAllArgListUsers() {
389     return ReplaceableMetadataImpl::getAllArgListUsers();
390   }
391 
392   static void handleDeletion(Value *V);
393   static void handleRAUW(Value *From, Value *To);
394 
395 protected:
396   /// Handle collisions after \a Value::replaceAllUsesWith().
397   ///
398   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
399   /// \a Value gets RAUW'ed and the target already exists, this is used to
400   /// merge the two metadata nodes.
401   void replaceAllUsesWith(Metadata *MD) {
402     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
403   }
404 
405 public:
406   static bool classof(const Metadata *MD) {
407     return MD->getMetadataID() == LocalAsMetadataKind ||
408            MD->getMetadataID() == ConstantAsMetadataKind;
409   }
410 };
411 
412 class ConstantAsMetadata : public ValueAsMetadata {
413   friend class ValueAsMetadata;
414 
415   ConstantAsMetadata(Constant *C)
416       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
417 
418 public:
419   static ConstantAsMetadata *get(Constant *C) {
420     return ValueAsMetadata::getConstant(C);
421   }
422 
423   static ConstantAsMetadata *getIfExists(Constant *C) {
424     return ValueAsMetadata::getConstantIfExists(C);
425   }
426 
427   Constant *getValue() const {
428     return cast<Constant>(ValueAsMetadata::getValue());
429   }
430 
431   static bool classof(const Metadata *MD) {
432     return MD->getMetadataID() == ConstantAsMetadataKind;
433   }
434 };
435 
436 class LocalAsMetadata : public ValueAsMetadata {
437   friend class ValueAsMetadata;
438 
439   LocalAsMetadata(Value *Local)
440       : ValueAsMetadata(LocalAsMetadataKind, Local) {
441     assert(!isa<Constant>(Local) && "Expected local value");
442   }
443 
444 public:
445   static LocalAsMetadata *get(Value *Local) {
446     return ValueAsMetadata::getLocal(Local);
447   }
448 
449   static LocalAsMetadata *getIfExists(Value *Local) {
450     return ValueAsMetadata::getLocalIfExists(Local);
451   }
452 
453   static bool classof(const Metadata *MD) {
454     return MD->getMetadataID() == LocalAsMetadataKind;
455   }
456 };
457 
458 /// Transitional API for extracting constants from Metadata.
459 ///
460 /// This namespace contains transitional functions for metadata that points to
461 /// \a Constants.
462 ///
463 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
464 /// operands could refer to any \a Value.  There's was a lot of code like this:
465 ///
466 /// \code
467 ///     MDNode *N = ...;
468 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
469 /// \endcode
470 ///
471 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
472 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
473 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
474 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
475 /// requires subtle control flow changes.
476 ///
477 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
478 /// so that metadata can refer to numbers without traversing a bridge to the \a
479 /// Value hierarchy.  In this final state, the code above would look like this:
480 ///
481 /// \code
482 ///     MDNode *N = ...;
483 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
484 /// \endcode
485 ///
486 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
487 /// yet, and even once it does, changing each metadata schema to use it is its
488 /// own mini-project.  In the meantime this API prevents us from introducing
489 /// complex and bug-prone control flow that will disappear in the end.  In
490 /// particular, the above code looks like this:
491 ///
492 /// \code
493 ///     MDNode *N = ...;
494 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
495 /// \endcode
496 ///
497 /// The full set of provided functions includes:
498 ///
499 ///   mdconst::hasa                <=> isa
500 ///   mdconst::extract             <=> cast
501 ///   mdconst::extract_or_null     <=> cast_or_null
502 ///   mdconst::dyn_extract         <=> dyn_cast
503 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
504 ///
505 /// The target of the cast must be a subclass of \a Constant.
506 namespace mdconst {
507 
508 namespace detail {
509 
510 template <class T> T &make();
511 template <class T, class Result> struct HasDereference {
512   using Yes = char[1];
513   using No = char[2];
514   template <size_t N> struct SFINAE {};
515 
516   template <class U, class V>
517   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
518   template <class U, class V> static No &hasDereference(...);
519 
520   static const bool value =
521       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
522 };
523 template <class V, class M> struct IsValidPointer {
524   static const bool value = std::is_base_of<Constant, V>::value &&
525                             HasDereference<M, const Metadata &>::value;
526 };
527 template <class V, class M> struct IsValidReference {
528   static const bool value = std::is_base_of<Constant, V>::value &&
529                             std::is_convertible<M, const Metadata &>::value;
530 };
531 
532 } // end namespace detail
533 
534 /// Check whether Metadata has a Value.
535 ///
536 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
537 /// type \c X.
538 template <class X, class Y>
539 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
540 hasa(Y &&MD) {
541   assert(MD && "Null pointer sent into hasa");
542   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
543     return isa<X>(V->getValue());
544   return false;
545 }
546 template <class X, class Y>
547 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
548 hasa(Y &MD) {
549   return hasa(&MD);
550 }
551 
552 /// Extract a Value from Metadata.
553 ///
554 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
555 template <class X, class Y>
556 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
557 extract(Y &&MD) {
558   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
559 }
560 template <class X, class Y>
561 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
562 extract(Y &MD) {
563   return extract(&MD);
564 }
565 
566 /// Extract a Value from Metadata, allowing null.
567 ///
568 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
569 /// from \c MD, allowing \c MD to be null.
570 template <class X, class Y>
571 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
572 extract_or_null(Y &&MD) {
573   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
574     return cast<X>(V->getValue());
575   return nullptr;
576 }
577 
578 /// Extract a Value from Metadata, if any.
579 ///
580 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
581 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
582 /// Value it does contain is of the wrong subclass.
583 template <class X, class Y>
584 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
585 dyn_extract(Y &&MD) {
586   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
587     return dyn_cast<X>(V->getValue());
588   return nullptr;
589 }
590 
591 /// Extract a Value from Metadata, if any, allowing null.
592 ///
593 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
594 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
595 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
596 template <class X, class Y>
597 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
598 dyn_extract_or_null(Y &&MD) {
599   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
600     return dyn_cast<X>(V->getValue());
601   return nullptr;
602 }
603 
604 } // end namespace mdconst
605 
606 //===----------------------------------------------------------------------===//
607 /// A single uniqued string.
608 ///
609 /// These are used to efficiently contain a byte sequence for metadata.
610 /// MDString is always unnamed.
611 class MDString : public Metadata {
612   friend class StringMapEntryStorage<MDString>;
613 
614   StringMapEntry<MDString> *Entry = nullptr;
615 
616   MDString() : Metadata(MDStringKind, Uniqued) {}
617 
618 public:
619   MDString(const MDString &) = delete;
620   MDString &operator=(MDString &&) = delete;
621   MDString &operator=(const MDString &) = delete;
622 
623   static MDString *get(LLVMContext &Context, StringRef Str);
624   static MDString *get(LLVMContext &Context, const char *Str) {
625     return get(Context, Str ? StringRef(Str) : StringRef());
626   }
627 
628   StringRef getString() const;
629 
630   unsigned getLength() const { return (unsigned)getString().size(); }
631 
632   using iterator = StringRef::iterator;
633 
634   /// Pointer to the first byte of the string.
635   iterator begin() const { return getString().begin(); }
636 
637   /// Pointer to one byte past the end of the string.
638   iterator end() const { return getString().end(); }
639 
640   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
641   const unsigned char *bytes_end() const { return getString().bytes_end(); }
642 
643   /// Methods for support type inquiry through isa, cast, and dyn_cast.
644   static bool classof(const Metadata *MD) {
645     return MD->getMetadataID() == MDStringKind;
646   }
647 };
648 
649 /// A collection of metadata nodes that might be associated with a
650 /// memory access used by the alias-analysis infrastructure.
651 struct AAMDNodes {
652   explicit AAMDNodes() = default;
653   explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
654       : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
655 
656   bool operator==(const AAMDNodes &A) const {
657     return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
658            NoAlias == A.NoAlias;
659   }
660 
661   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
662 
663   explicit operator bool() const {
664     return TBAA || TBAAStruct || Scope || NoAlias;
665   }
666 
667   /// The tag for type-based alias analysis.
668   MDNode *TBAA = nullptr;
669 
670   /// The tag for type-based alias analysis (tbaa struct).
671   MDNode *TBAAStruct = nullptr;
672 
673   /// The tag for alias scope specification (used with noalias).
674   MDNode *Scope = nullptr;
675 
676   /// The tag specifying the noalias scope.
677   MDNode *NoAlias = nullptr;
678 
679   // Shift tbaa Metadata node to start off bytes later
680   static MDNode *shiftTBAA(MDNode *M, size_t off);
681 
682   // Shift tbaa.struct Metadata node to start off bytes later
683   static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
684 
685   // Extend tbaa Metadata node to apply to a series of bytes of length len.
686   // A size of -1 denotes an unknown size.
687   static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
688 
689   /// Given two sets of AAMDNodes that apply to the same pointer,
690   /// give the best AAMDNodes that are compatible with both (i.e. a set of
691   /// nodes whose allowable aliasing conclusions are a subset of those
692   /// allowable by both of the inputs). However, for efficiency
693   /// reasons, do not create any new MDNodes.
694   AAMDNodes intersect(const AAMDNodes &Other) const {
695     AAMDNodes Result;
696     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
697     Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
698     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
699     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
700     return Result;
701   }
702 
703   /// Create a new AAMDNode that describes this AAMDNode after applying a
704   /// constant offset to the start of the pointer.
705   AAMDNodes shift(size_t Offset) const {
706     AAMDNodes Result;
707     Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
708     Result.TBAAStruct =
709         TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
710     Result.Scope = Scope;
711     Result.NoAlias = NoAlias;
712     return Result;
713   }
714 
715   /// Create a new AAMDNode that describes this AAMDNode after extending it to
716   /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
717   /// size.
718   AAMDNodes extendTo(ssize_t Len) const {
719     AAMDNodes Result;
720     Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
721     // tbaa.struct contains (offset, size, type) triples. Extending the length
722     // of the tbaa.struct doesn't require changing this (though more information
723     // could be provided by adding more triples at subsequent lengths).
724     Result.TBAAStruct = TBAAStruct;
725     Result.Scope = Scope;
726     Result.NoAlias = NoAlias;
727     return Result;
728   }
729 
730   /// Given two sets of AAMDNodes applying to potentially different locations,
731   /// determine the best AAMDNodes that apply to both.
732   AAMDNodes merge(const AAMDNodes &Other) const;
733 
734   /// Determine the best AAMDNodes after concatenating two different locations
735   /// together. Different from `merge`, where different locations should
736   /// overlap each other, `concat` puts non-overlapping locations together.
737   AAMDNodes concat(const AAMDNodes &Other) const;
738 };
739 
740 // Specialize DenseMapInfo for AAMDNodes.
741 template<>
742 struct DenseMapInfo<AAMDNodes> {
743   static inline AAMDNodes getEmptyKey() {
744     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
745                      nullptr, nullptr, nullptr);
746   }
747 
748   static inline AAMDNodes getTombstoneKey() {
749     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
750                      nullptr, nullptr, nullptr);
751   }
752 
753   static unsigned getHashValue(const AAMDNodes &Val) {
754     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
755            DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
756            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
757            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
758   }
759 
760   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
761     return LHS == RHS;
762   }
763 };
764 
765 /// Tracking metadata reference owned by Metadata.
766 ///
767 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
768 /// of \a Metadata, which has the option of registering itself for callbacks to
769 /// re-unique itself.
770 ///
771 /// In particular, this is used by \a MDNode.
772 class MDOperand {
773   Metadata *MD = nullptr;
774 
775 public:
776   MDOperand() = default;
777   MDOperand(const MDOperand &) = delete;
778   MDOperand(MDOperand &&Op) {
779     MD = Op.MD;
780     if (MD)
781       (void)MetadataTracking::retrack(Op.MD, MD);
782     Op.MD = nullptr;
783   }
784   MDOperand &operator=(const MDOperand &) = delete;
785   MDOperand &operator=(MDOperand &&Op) {
786     MD = Op.MD;
787     if (MD)
788       (void)MetadataTracking::retrack(Op.MD, MD);
789     Op.MD = nullptr;
790     return *this;
791   }
792   ~MDOperand() { untrack(); }
793 
794   Metadata *get() const { return MD; }
795   operator Metadata *() const { return get(); }
796   Metadata *operator->() const { return get(); }
797   Metadata &operator*() const { return *get(); }
798 
799   void reset() {
800     untrack();
801     MD = nullptr;
802   }
803   void reset(Metadata *MD, Metadata *Owner) {
804     untrack();
805     this->MD = MD;
806     track(Owner);
807   }
808 
809 private:
810   void track(Metadata *Owner) {
811     if (MD) {
812       if (Owner)
813         MetadataTracking::track(this, *MD, *Owner);
814       else
815         MetadataTracking::track(MD);
816     }
817   }
818 
819   void untrack() {
820     assert(static_cast<void *>(this) == &MD && "Expected same address");
821     if (MD)
822       MetadataTracking::untrack(MD);
823   }
824 };
825 
826 template <> struct simplify_type<MDOperand> {
827   using SimpleType = Metadata *;
828 
829   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
830 };
831 
832 template <> struct simplify_type<const MDOperand> {
833   using SimpleType = Metadata *;
834 
835   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
836 };
837 
838 /// Pointer to the context, with optional RAUW support.
839 ///
840 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
841 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
842 class ContextAndReplaceableUses {
843   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
844 
845 public:
846   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
847   ContextAndReplaceableUses(
848       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
849       : Ptr(ReplaceableUses.release()) {
850     assert(getReplaceableUses() && "Expected non-null replaceable uses");
851   }
852   ContextAndReplaceableUses() = delete;
853   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
854   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
855   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
856   ContextAndReplaceableUses &
857   operator=(const ContextAndReplaceableUses &) = delete;
858   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
859 
860   operator LLVMContext &() { return getContext(); }
861 
862   /// Whether this contains RAUW support.
863   bool hasReplaceableUses() const {
864     return Ptr.is<ReplaceableMetadataImpl *>();
865   }
866 
867   LLVMContext &getContext() const {
868     if (hasReplaceableUses())
869       return getReplaceableUses()->getContext();
870     return *Ptr.get<LLVMContext *>();
871   }
872 
873   ReplaceableMetadataImpl *getReplaceableUses() const {
874     if (hasReplaceableUses())
875       return Ptr.get<ReplaceableMetadataImpl *>();
876     return nullptr;
877   }
878 
879   /// Ensure that this has RAUW support, and then return it.
880   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
881     if (!hasReplaceableUses())
882       makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
883     return getReplaceableUses();
884   }
885 
886   /// Assign RAUW support to this.
887   ///
888   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
889   /// not be null).
890   void
891   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
892     assert(ReplaceableUses && "Expected non-null replaceable uses");
893     assert(&ReplaceableUses->getContext() == &getContext() &&
894            "Expected same context");
895     delete getReplaceableUses();
896     Ptr = ReplaceableUses.release();
897   }
898 
899   /// Drop RAUW support.
900   ///
901   /// Cede ownership of RAUW support, returning it.
902   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
903     assert(hasReplaceableUses() && "Expected to own replaceable uses");
904     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
905         getReplaceableUses());
906     Ptr = &ReplaceableUses->getContext();
907     return ReplaceableUses;
908   }
909 };
910 
911 struct TempMDNodeDeleter {
912   inline void operator()(MDNode *Node) const;
913 };
914 
915 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
916   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
917 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
918 #include "llvm/IR/Metadata.def"
919 
920 /// Metadata node.
921 ///
922 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
923 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
924 /// until forward references are known.  The basic metadata node is an \a
925 /// MDTuple.
926 ///
927 /// There is limited support for RAUW at construction time.  At construction
928 /// time, if any operand is a temporary node (or an unresolved uniqued node,
929 /// which indicates a transitive temporary operand), the node itself will be
930 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
931 /// support permanently.
932 ///
933 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
934 /// to be called on some member of the cycle once all temporary nodes have been
935 /// replaced.
936 ///
937 /// MDNodes can be large or small, as well as resizable or non-resizable.
938 /// Large MDNodes' operands are allocated in a separate storage vector,
939 /// whereas small MDNodes' operands are co-allocated. Distinct and temporary
940 /// MDnodes are resizable, but only MDTuples support this capability.
941 ///
942 /// Clients can add operands to resizable MDNodes using push_back().
943 class MDNode : public Metadata {
944   friend class ReplaceableMetadataImpl;
945   friend class LLVMContextImpl;
946   friend class DIArgList;
947 
948   /// The header that is coallocated with an MDNode along with its "small"
949   /// operands. It is located immediately before the main body of the node.
950   /// The operands are in turn located immediately before the header.
951   /// For resizable MDNodes, the space for the storage vector is also allocated
952   /// immediately before the header, overlapping with the operands.
953   /// Explicity set alignment because bitfields by default have an
954   /// alignment of 1 on z/OS.
955   struct alignas(alignof(size_t)) Header {
956     bool IsResizable : 1;
957     bool IsLarge : 1;
958     size_t SmallSize : 4;
959     size_t SmallNumOps : 4;
960     size_t : sizeof(size_t) * CHAR_BIT - 10;
961 
962     unsigned NumUnresolved = 0;
963     using LargeStorageVector = SmallVector<MDOperand, 0>;
964 
965     static constexpr size_t NumOpsFitInVector =
966         sizeof(LargeStorageVector) / sizeof(MDOperand);
967     static_assert(
968         NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
969         "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
970 
971     static constexpr size_t MaxSmallSize = 15;
972 
973     static constexpr size_t getOpSize(unsigned NumOps) {
974       return sizeof(MDOperand) * NumOps;
975     }
976     /// Returns the number of operands the node has space for based on its
977     /// allocation characteristics.
978     static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
979       return IsLarge ? NumOpsFitInVector
980                      : std::max(NumOps, NumOpsFitInVector * IsResizable);
981     }
982     /// Returns the number of bytes allocated for operands and header.
983     static size_t getAllocSize(StorageType Storage, size_t NumOps) {
984       return getOpSize(
985                  getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
986              sizeof(Header);
987     }
988 
989     /// Only temporary and distinct nodes are resizable.
990     static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
991     static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
992 
993     size_t getAllocSize() const {
994       return getOpSize(SmallSize) + sizeof(Header);
995     }
996     void *getAllocation() {
997       return reinterpret_cast<char *>(this + 1) -
998              alignTo(getAllocSize(), alignof(uint64_t));
999     }
1000 
1001     void *getLargePtr() const {
1002       static_assert(alignof(LargeStorageVector) <= alignof(Header),
1003                     "LargeStorageVector too strongly aligned");
1004       return reinterpret_cast<char *>(const_cast<Header *>(this)) -
1005              sizeof(LargeStorageVector);
1006     }
1007 
1008     void *getSmallPtr();
1009 
1010     LargeStorageVector &getLarge() {
1011       assert(IsLarge);
1012       return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1013     }
1014 
1015     const LargeStorageVector &getLarge() const {
1016       assert(IsLarge);
1017       return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1018     }
1019 
1020     void resizeSmall(size_t NumOps);
1021     void resizeSmallToLarge(size_t NumOps);
1022     void resize(size_t NumOps);
1023 
1024     explicit Header(size_t NumOps, StorageType Storage);
1025     ~Header();
1026 
1027     MutableArrayRef<MDOperand> operands() {
1028       if (IsLarge)
1029         return getLarge();
1030       return MutableArrayRef(
1031           reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1032     }
1033 
1034     ArrayRef<MDOperand> operands() const {
1035       if (IsLarge)
1036         return getLarge();
1037       return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1038                       SmallNumOps);
1039     }
1040 
1041     unsigned getNumOperands() const {
1042       if (!IsLarge)
1043         return SmallNumOps;
1044       return getLarge().size();
1045     }
1046   };
1047 
1048   Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1049 
1050   const Header &getHeader() const {
1051     return *(reinterpret_cast<const Header *>(this) - 1);
1052   }
1053 
1054   ContextAndReplaceableUses Context;
1055 
1056 protected:
1057   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1058          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
1059   ~MDNode() = default;
1060 
1061   void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1062   void operator delete(void *Mem);
1063 
1064   /// Required by std, but never called.
1065   void operator delete(void *, unsigned) {
1066     llvm_unreachable("Constructor throws?");
1067   }
1068 
1069   /// Required by std, but never called.
1070   void operator delete(void *, unsigned, bool) {
1071     llvm_unreachable("Constructor throws?");
1072   }
1073 
1074   void dropAllReferences();
1075 
1076   MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1077   MDOperand *mutable_end() { return getHeader().operands().end(); }
1078 
1079   using mutable_op_range = iterator_range<MDOperand *>;
1080 
1081   mutable_op_range mutable_operands() {
1082     return mutable_op_range(mutable_begin(), mutable_end());
1083   }
1084 
1085 public:
1086   MDNode(const MDNode &) = delete;
1087   void operator=(const MDNode &) = delete;
1088   void *operator new(size_t) = delete;
1089 
1090   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1091   static inline MDTuple *getIfExists(LLVMContext &Context,
1092                                      ArrayRef<Metadata *> MDs);
1093   static inline MDTuple *getDistinct(LLVMContext &Context,
1094                                      ArrayRef<Metadata *> MDs);
1095   static inline TempMDTuple getTemporary(LLVMContext &Context,
1096                                          ArrayRef<Metadata *> MDs);
1097 
1098   /// Create a (temporary) clone of this.
1099   TempMDNode clone() const;
1100 
1101   /// Deallocate a node created by getTemporary.
1102   ///
1103   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1104   /// references will be reset.
1105   static void deleteTemporary(MDNode *N);
1106 
1107   LLVMContext &getContext() const { return Context.getContext(); }
1108 
1109   /// Replace a specific operand.
1110   void replaceOperandWith(unsigned I, Metadata *New);
1111 
1112   /// Check if node is fully resolved.
1113   ///
1114   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1115   /// this always returns \c true.
1116   ///
1117   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1118   /// support (because all operands are resolved).
1119   ///
1120   /// As forward declarations are resolved, their containers should get
1121   /// resolved automatically.  However, if this (or one of its operands) is
1122   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1123   bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1124 
1125   bool isUniqued() const { return Storage == Uniqued; }
1126   bool isDistinct() const { return Storage == Distinct; }
1127   bool isTemporary() const { return Storage == Temporary; }
1128 
1129   /// RAUW a temporary.
1130   ///
1131   /// \pre \a isTemporary() must be \c true.
1132   void replaceAllUsesWith(Metadata *MD) {
1133     assert(isTemporary() && "Expected temporary node");
1134     if (Context.hasReplaceableUses())
1135       Context.getReplaceableUses()->replaceAllUsesWith(MD);
1136   }
1137 
1138   /// Resolve cycles.
1139   ///
1140   /// Once all forward declarations have been resolved, force cycles to be
1141   /// resolved.
1142   ///
1143   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1144   void resolveCycles();
1145 
1146   /// Resolve a unique, unresolved node.
1147   void resolve();
1148 
1149   /// Replace a temporary node with a permanent one.
1150   ///
1151   /// Try to create a uniqued version of \c N -- in place, if possible -- and
1152   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
1153   template <class T>
1154   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1155   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1156     return cast<T>(N.release()->replaceWithPermanentImpl());
1157   }
1158 
1159   /// Replace a temporary node with a uniqued one.
1160   ///
1161   /// Create a uniqued version of \c N -- in place, if possible -- and return
1162   /// it.  Takes ownership of the temporary node.
1163   ///
1164   /// \pre N does not self-reference.
1165   template <class T>
1166   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1167   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1168     return cast<T>(N.release()->replaceWithUniquedImpl());
1169   }
1170 
1171   /// Replace a temporary node with a distinct one.
1172   ///
1173   /// Create a distinct version of \c N -- in place, if possible -- and return
1174   /// it.  Takes ownership of the temporary node.
1175   template <class T>
1176   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1177   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1178     return cast<T>(N.release()->replaceWithDistinctImpl());
1179   }
1180 
1181   /// Print in tree shape.
1182   ///
1183   /// Prints definition of \c this in tree shape.
1184   ///
1185   /// If \c M is provided, metadata nodes will be numbered canonically;
1186   /// otherwise, pointer addresses are substituted.
1187   /// @{
1188   void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1189   void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1190                  const Module *M = nullptr) const;
1191   /// @}
1192 
1193   /// User-friendly dump in tree shape.
1194   ///
1195   /// If \c M is provided, metadata nodes will be numbered canonically;
1196   /// otherwise, pointer addresses are substituted.
1197   ///
1198   /// Note: this uses an explicit overload instead of default arguments so that
1199   /// the nullptr version is easy to call from a debugger.
1200   ///
1201   /// @{
1202   void dumpTree() const;
1203   void dumpTree(const Module *M) const;
1204   /// @}
1205 
1206 private:
1207   MDNode *replaceWithPermanentImpl();
1208   MDNode *replaceWithUniquedImpl();
1209   MDNode *replaceWithDistinctImpl();
1210 
1211 protected:
1212   /// Set an operand.
1213   ///
1214   /// Sets the operand directly, without worrying about uniquing.
1215   void setOperand(unsigned I, Metadata *New);
1216 
1217   unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1218 
1219   void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1220   void storeDistinctInContext();
1221   template <class T, class StoreT>
1222   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1223   template <class T> static T *storeImpl(T *N, StorageType Storage);
1224 
1225   /// Resize the node to hold \a NumOps operands.
1226   ///
1227   /// \pre \a isTemporary() or \a isDistinct()
1228   /// \pre MetadataID == MDTupleKind
1229   void resize(size_t NumOps) {
1230     assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1231     assert(getMetadataID() == MDTupleKind &&
1232            "Resizing is not supported for this node kind");
1233     getHeader().resize(NumOps);
1234   }
1235 
1236 private:
1237   void handleChangedOperand(void *Ref, Metadata *New);
1238 
1239   /// Drop RAUW support, if any.
1240   void dropReplaceableUses();
1241 
1242   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1243   void decrementUnresolvedOperandCount();
1244   void countUnresolvedOperands();
1245 
1246   /// Mutate this to be "uniqued".
1247   ///
1248   /// Mutate this so that \a isUniqued().
1249   /// \pre \a isTemporary().
1250   /// \pre already added to uniquing set.
1251   void makeUniqued();
1252 
1253   /// Mutate this to be "distinct".
1254   ///
1255   /// Mutate this so that \a isDistinct().
1256   /// \pre \a isTemporary().
1257   void makeDistinct();
1258 
1259   void deleteAsSubclass();
1260   MDNode *uniquify();
1261   void eraseFromStore();
1262 
1263   template <class NodeTy> struct HasCachedHash;
1264   template <class NodeTy>
1265   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1266     N->recalculateHash();
1267   }
1268   template <class NodeTy>
1269   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1270   template <class NodeTy>
1271   static void dispatchResetHash(NodeTy *N, std::true_type) {
1272     N->setHash(0);
1273   }
1274   template <class NodeTy>
1275   static void dispatchResetHash(NodeTy *, std::false_type) {}
1276 
1277 public:
1278   using op_iterator = const MDOperand *;
1279   using op_range = iterator_range<op_iterator>;
1280 
1281   op_iterator op_begin() const {
1282     return const_cast<MDNode *>(this)->mutable_begin();
1283   }
1284 
1285   op_iterator op_end() const {
1286     return const_cast<MDNode *>(this)->mutable_end();
1287   }
1288 
1289   ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
1290 
1291   const MDOperand &getOperand(unsigned I) const {
1292     assert(I < getNumOperands() && "Out of range");
1293     return getHeader().operands()[I];
1294   }
1295 
1296   /// Return number of MDNode operands.
1297   unsigned getNumOperands() const { return getHeader().getNumOperands(); }
1298 
1299   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1300   static bool classof(const Metadata *MD) {
1301     switch (MD->getMetadataID()) {
1302     default:
1303       return false;
1304 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1305   case CLASS##Kind:                                                            \
1306     return true;
1307 #include "llvm/IR/Metadata.def"
1308     }
1309   }
1310 
1311   /// Check whether MDNode is a vtable access.
1312   bool isTBAAVtableAccess() const;
1313 
1314   /// Methods for metadata merging.
1315   static MDNode *concatenate(MDNode *A, MDNode *B);
1316   static MDNode *intersect(MDNode *A, MDNode *B);
1317   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1318   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1319   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1320   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1321   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1322 };
1323 
1324 /// Tuple of metadata.
1325 ///
1326 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1327 /// default based on their operands.
1328 class MDTuple : public MDNode {
1329   friend class LLVMContextImpl;
1330   friend class MDNode;
1331 
1332   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1333           ArrayRef<Metadata *> Vals)
1334       : MDNode(C, MDTupleKind, Storage, Vals) {
1335     setHash(Hash);
1336   }
1337 
1338   ~MDTuple() { dropAllReferences(); }
1339 
1340   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1341   void recalculateHash();
1342 
1343   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1344                           StorageType Storage, bool ShouldCreate = true);
1345 
1346   TempMDTuple cloneImpl() const {
1347     ArrayRef<MDOperand> Operands = operands();
1348     return getTemporary(getContext(), SmallVector<Metadata *, 4>(
1349                                           Operands.begin(), Operands.end()));
1350   }
1351 
1352 public:
1353   /// Get the hash, if any.
1354   unsigned getHash() const { return SubclassData32; }
1355 
1356   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1357     return getImpl(Context, MDs, Uniqued);
1358   }
1359 
1360   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1361     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1362   }
1363 
1364   /// Return a distinct node.
1365   ///
1366   /// Return a distinct node -- i.e., a node that is not uniqued.
1367   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1368     return getImpl(Context, MDs, Distinct);
1369   }
1370 
1371   /// Return a temporary node.
1372   ///
1373   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1374   /// not uniqued, may be RAUW'd, and must be manually deleted with
1375   /// deleteTemporary.
1376   static TempMDTuple getTemporary(LLVMContext &Context,
1377                                   ArrayRef<Metadata *> MDs) {
1378     return TempMDTuple(getImpl(Context, MDs, Temporary));
1379   }
1380 
1381   /// Return a (temporary) clone of this.
1382   TempMDTuple clone() const { return cloneImpl(); }
1383 
1384   /// Append an element to the tuple. This will resize the node.
1385   void push_back(Metadata *MD) {
1386     size_t NumOps = getNumOperands();
1387     resize(NumOps + 1);
1388     setOperand(NumOps, MD);
1389   }
1390 
1391   /// Shrink the operands by 1.
1392   void pop_back() { resize(getNumOperands() - 1); }
1393 
1394   static bool classof(const Metadata *MD) {
1395     return MD->getMetadataID() == MDTupleKind;
1396   }
1397 };
1398 
1399 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1400   return MDTuple::get(Context, MDs);
1401 }
1402 
1403 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1404   return MDTuple::getIfExists(Context, MDs);
1405 }
1406 
1407 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1408   return MDTuple::getDistinct(Context, MDs);
1409 }
1410 
1411 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1412                                  ArrayRef<Metadata *> MDs) {
1413   return MDTuple::getTemporary(Context, MDs);
1414 }
1415 
1416 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1417   MDNode::deleteTemporary(Node);
1418 }
1419 
1420 /// This is a simple wrapper around an MDNode which provides a higher-level
1421 /// interface by hiding the details of how alias analysis information is encoded
1422 /// in its operands.
1423 class AliasScopeNode {
1424   const MDNode *Node = nullptr;
1425 
1426 public:
1427   AliasScopeNode() = default;
1428   explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1429 
1430   /// Get the MDNode for this AliasScopeNode.
1431   const MDNode *getNode() const { return Node; }
1432 
1433   /// Get the MDNode for this AliasScopeNode's domain.
1434   const MDNode *getDomain() const {
1435     if (Node->getNumOperands() < 2)
1436       return nullptr;
1437     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1438   }
1439   StringRef getName() const {
1440     if (Node->getNumOperands() > 2)
1441       if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1442         return N->getString();
1443     return StringRef();
1444   }
1445 };
1446 
1447 /// Typed iterator through MDNode operands.
1448 ///
1449 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1450 /// particular Metadata subclass.
1451 template <class T> class TypedMDOperandIterator {
1452   MDNode::op_iterator I = nullptr;
1453 
1454 public:
1455   using iterator_category = std::input_iterator_tag;
1456   using value_type = T *;
1457   using difference_type = std::ptrdiff_t;
1458   using pointer = void;
1459   using reference = T *;
1460 
1461   TypedMDOperandIterator() = default;
1462   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1463 
1464   T *operator*() const { return cast_or_null<T>(*I); }
1465 
1466   TypedMDOperandIterator &operator++() {
1467     ++I;
1468     return *this;
1469   }
1470 
1471   TypedMDOperandIterator operator++(int) {
1472     TypedMDOperandIterator Temp(*this);
1473     ++I;
1474     return Temp;
1475   }
1476 
1477   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1478   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1479 };
1480 
1481 /// Typed, array-like tuple of metadata.
1482 ///
1483 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1484 /// particular type of metadata.
1485 template <class T> class MDTupleTypedArrayWrapper {
1486   const MDTuple *N = nullptr;
1487 
1488 public:
1489   MDTupleTypedArrayWrapper() = default;
1490   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1491 
1492   template <class U>
1493   MDTupleTypedArrayWrapper(
1494       const MDTupleTypedArrayWrapper<U> &Other,
1495       std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1496       : N(Other.get()) {}
1497 
1498   template <class U>
1499   explicit MDTupleTypedArrayWrapper(
1500       const MDTupleTypedArrayWrapper<U> &Other,
1501       std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1502       : N(Other.get()) {}
1503 
1504   explicit operator bool() const { return get(); }
1505   explicit operator MDTuple *() const { return get(); }
1506 
1507   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1508   MDTuple *operator->() const { return get(); }
1509   MDTuple &operator*() const { return *get(); }
1510 
1511   // FIXME: Fix callers and remove condition on N.
1512   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1513   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1514   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1515 
1516   // FIXME: Fix callers and remove condition on N.
1517   using iterator = TypedMDOperandIterator<T>;
1518 
1519   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1520   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1521 };
1522 
1523 #define HANDLE_METADATA(CLASS)                                                 \
1524   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1525 #include "llvm/IR/Metadata.def"
1526 
1527 /// Placeholder metadata for operands of distinct MDNodes.
1528 ///
1529 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1530 /// purpose is to help track forward references when creating a distinct node.
1531 /// This allows distinct nodes involved in a cycle to be constructed before
1532 /// their operands without requiring a heavyweight temporary node with
1533 /// full-blown RAUW support.
1534 ///
1535 /// Each placeholder supports only a single MDNode user.  Clients should pass
1536 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1537 /// should be replaced with.
1538 ///
1539 /// While it would be possible to implement move operators, they would be
1540 /// fairly expensive.  Leave them unimplemented to discourage their use
1541 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1542 class DistinctMDOperandPlaceholder : public Metadata {
1543   friend class MetadataTracking;
1544 
1545   Metadata **Use = nullptr;
1546 
1547 public:
1548   explicit DistinctMDOperandPlaceholder(unsigned ID)
1549       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1550     SubclassData32 = ID;
1551   }
1552 
1553   DistinctMDOperandPlaceholder() = delete;
1554   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1555   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1556 
1557   ~DistinctMDOperandPlaceholder() {
1558     if (Use)
1559       *Use = nullptr;
1560   }
1561 
1562   unsigned getID() const { return SubclassData32; }
1563 
1564   /// Replace the use of this with MD.
1565   void replaceUseWith(Metadata *MD) {
1566     if (!Use)
1567       return;
1568     *Use = MD;
1569 
1570     if (*Use)
1571       MetadataTracking::track(*Use);
1572 
1573     Metadata *T = cast<Metadata>(this);
1574     MetadataTracking::untrack(T);
1575     assert(!Use && "Use is still being tracked despite being untracked!");
1576   }
1577 };
1578 
1579 //===----------------------------------------------------------------------===//
1580 /// A tuple of MDNodes.
1581 ///
1582 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1583 ///
1584 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1585 ///
1586 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1587 class NamedMDNode : public ilist_node<NamedMDNode> {
1588   friend class LLVMContextImpl;
1589   friend class Module;
1590 
1591   std::string Name;
1592   Module *Parent = nullptr;
1593   void *Operands; // SmallVector<TrackingMDRef, 4>
1594 
1595   void setParent(Module *M) { Parent = M; }
1596 
1597   explicit NamedMDNode(const Twine &N);
1598 
1599   template <class T1, class T2> class op_iterator_impl {
1600     friend class NamedMDNode;
1601 
1602     const NamedMDNode *Node = nullptr;
1603     unsigned Idx = 0;
1604 
1605     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1606 
1607   public:
1608     using iterator_category = std::bidirectional_iterator_tag;
1609     using value_type = T2;
1610     using difference_type = std::ptrdiff_t;
1611     using pointer = value_type *;
1612     using reference = value_type &;
1613 
1614     op_iterator_impl() = default;
1615 
1616     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1617     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1618 
1619     op_iterator_impl &operator++() {
1620       ++Idx;
1621       return *this;
1622     }
1623 
1624     op_iterator_impl operator++(int) {
1625       op_iterator_impl tmp(*this);
1626       operator++();
1627       return tmp;
1628     }
1629 
1630     op_iterator_impl &operator--() {
1631       --Idx;
1632       return *this;
1633     }
1634 
1635     op_iterator_impl operator--(int) {
1636       op_iterator_impl tmp(*this);
1637       operator--();
1638       return tmp;
1639     }
1640 
1641     T1 operator*() const { return Node->getOperand(Idx); }
1642   };
1643 
1644 public:
1645   NamedMDNode(const NamedMDNode &) = delete;
1646   ~NamedMDNode();
1647 
1648   /// Drop all references and remove the node from parent module.
1649   void eraseFromParent();
1650 
1651   /// Remove all uses and clear node vector.
1652   void dropAllReferences() { clearOperands(); }
1653   /// Drop all references to this node's operands.
1654   void clearOperands();
1655 
1656   /// Get the module that holds this named metadata collection.
1657   inline Module *getParent() { return Parent; }
1658   inline const Module *getParent() const { return Parent; }
1659 
1660   MDNode *getOperand(unsigned i) const;
1661   unsigned getNumOperands() const;
1662   void addOperand(MDNode *M);
1663   void setOperand(unsigned I, MDNode *New);
1664   StringRef getName() const;
1665   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1666   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1667              bool IsForDebug = false) const;
1668   void dump() const;
1669 
1670   // ---------------------------------------------------------------------------
1671   // Operand Iterator interface...
1672   //
1673   using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1674 
1675   op_iterator op_begin() { return op_iterator(this, 0); }
1676   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1677 
1678   using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1679 
1680   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1681   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1682 
1683   inline iterator_range<op_iterator>  operands() {
1684     return make_range(op_begin(), op_end());
1685   }
1686   inline iterator_range<const_op_iterator> operands() const {
1687     return make_range(op_begin(), op_end());
1688   }
1689 };
1690 
1691 // Create wrappers for C Binding types (see CBindingWrapping.h).
1692 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1693 
1694 } // end namespace llvm
1695 
1696 #endif // LLVM_IR_METADATA_H
1697