1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54   return const_cast<Pattern &>(P).match(Mask);
55 }
56 
57 template <typename SubPattern_t> struct OneUse_match {
58   SubPattern_t SubPattern;
59 
60   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61 
62   template <typename OpTy> bool match(OpTy *V) {
63     return V->hasOneUse() && SubPattern.match(V);
64   }
65 };
66 
67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68   return SubPattern;
69 }
70 
71 template <typename Class> struct class_match {
72   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74 
75 /// Match an arbitrary value and ignore it.
76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77 
78 /// Match an arbitrary unary operation and ignore it.
79 inline class_match<UnaryOperator> m_UnOp() {
80   return class_match<UnaryOperator>();
81 }
82 
83 /// Match an arbitrary binary operation and ignore it.
84 inline class_match<BinaryOperator> m_BinOp() {
85   return class_match<BinaryOperator>();
86 }
87 
88 /// Matches any compare instruction and ignore it.
89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90 
91 /// Match an arbitrary ConstantInt and ignore it.
92 inline class_match<ConstantInt> m_ConstantInt() {
93   return class_match<ConstantInt>();
94 }
95 
96 /// Match an arbitrary undef constant.
97 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
98 
99 /// Match an arbitrary Constant and ignore it.
100 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
101 
102 /// Match an arbitrary basic block value and ignore it.
103 inline class_match<BasicBlock> m_BasicBlock() {
104   return class_match<BasicBlock>();
105 }
106 
107 /// Inverting matcher
108 template <typename Ty> struct match_unless {
109   Ty M;
110 
111   match_unless(const Ty &Matcher) : M(Matcher) {}
112 
113   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
114 };
115 
116 /// Match if the inner matcher does *NOT* match.
117 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
118   return match_unless<Ty>(M);
119 }
120 
121 /// Matching combinators
122 template <typename LTy, typename RTy> struct match_combine_or {
123   LTy L;
124   RTy R;
125 
126   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
127 
128   template <typename ITy> bool match(ITy *V) {
129     if (L.match(V))
130       return true;
131     if (R.match(V))
132       return true;
133     return false;
134   }
135 };
136 
137 template <typename LTy, typename RTy> struct match_combine_and {
138   LTy L;
139   RTy R;
140 
141   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
142 
143   template <typename ITy> bool match(ITy *V) {
144     if (L.match(V))
145       if (R.match(V))
146         return true;
147     return false;
148   }
149 };
150 
151 /// Combine two pattern matchers matching L || R
152 template <typename LTy, typename RTy>
153 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
154   return match_combine_or<LTy, RTy>(L, R);
155 }
156 
157 /// Combine two pattern matchers matching L && R
158 template <typename LTy, typename RTy>
159 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
160   return match_combine_and<LTy, RTy>(L, R);
161 }
162 
163 struct apint_match {
164   const APInt *&Res;
165   bool AllowUndef;
166 
167   apint_match(const APInt *&Res, bool AllowUndef)
168     : Res(Res), AllowUndef(AllowUndef) {}
169 
170   template <typename ITy> bool match(ITy *V) {
171     if (auto *CI = dyn_cast<ConstantInt>(V)) {
172       Res = &CI->getValue();
173       return true;
174     }
175     if (V->getType()->isVectorTy())
176       if (const auto *C = dyn_cast<Constant>(V))
177         if (auto *CI = dyn_cast_or_null<ConstantInt>(
178                 C->getSplatValue(AllowUndef))) {
179           Res = &CI->getValue();
180           return true;
181         }
182     return false;
183   }
184 };
185 // Either constexpr if or renaming ConstantFP::getValueAPF to
186 // ConstantFP::getValue is needed to do it via single template
187 // function for both apint/apfloat.
188 struct apfloat_match {
189   const APFloat *&Res;
190   bool AllowUndef;
191 
192   apfloat_match(const APFloat *&Res, bool AllowUndef)
193       : Res(Res), AllowUndef(AllowUndef) {}
194 
195   template <typename ITy> bool match(ITy *V) {
196     if (auto *CI = dyn_cast<ConstantFP>(V)) {
197       Res = &CI->getValueAPF();
198       return true;
199     }
200     if (V->getType()->isVectorTy())
201       if (const auto *C = dyn_cast<Constant>(V))
202         if (auto *CI = dyn_cast_or_null<ConstantFP>(
203                 C->getSplatValue(AllowUndef))) {
204           Res = &CI->getValueAPF();
205           return true;
206         }
207     return false;
208   }
209 };
210 
211 /// Match a ConstantInt or splatted ConstantVector, binding the
212 /// specified pointer to the contained APInt.
213 inline apint_match m_APInt(const APInt *&Res) {
214   // Forbid undefs by default to maintain previous behavior.
215   return apint_match(Res, /* AllowUndef */ false);
216 }
217 
218 /// Match APInt while allowing undefs in splat vector constants.
219 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
220   return apint_match(Res, /* AllowUndef */ true);
221 }
222 
223 /// Match APInt while forbidding undefs in splat vector constants.
224 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
225   return apint_match(Res, /* AllowUndef */ false);
226 }
227 
228 /// Match a ConstantFP or splatted ConstantVector, binding the
229 /// specified pointer to the contained APFloat.
230 inline apfloat_match m_APFloat(const APFloat *&Res) {
231   // Forbid undefs by default to maintain previous behavior.
232   return apfloat_match(Res, /* AllowUndef */ false);
233 }
234 
235 /// Match APFloat while allowing undefs in splat vector constants.
236 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
237   return apfloat_match(Res, /* AllowUndef */ true);
238 }
239 
240 /// Match APFloat while forbidding undefs in splat vector constants.
241 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
242   return apfloat_match(Res, /* AllowUndef */ false);
243 }
244 
245 template <int64_t Val> struct constantint_match {
246   template <typename ITy> bool match(ITy *V) {
247     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
248       const APInt &CIV = CI->getValue();
249       if (Val >= 0)
250         return CIV == static_cast<uint64_t>(Val);
251       // If Val is negative, and CI is shorter than it, truncate to the right
252       // number of bits.  If it is larger, then we have to sign extend.  Just
253       // compare their negated values.
254       return -CIV == -Val;
255     }
256     return false;
257   }
258 };
259 
260 /// Match a ConstantInt with a specific value.
261 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
262   return constantint_match<Val>();
263 }
264 
265 /// This helper class is used to match constant scalars, vector splats,
266 /// and fixed width vectors that satisfy a specified predicate.
267 /// For fixed width vector constants, undefined elements are ignored.
268 template <typename Predicate, typename ConstantVal>
269 struct cstval_pred_ty : public Predicate {
270   template <typename ITy> bool match(ITy *V) {
271     if (const auto *CV = dyn_cast<ConstantVal>(V))
272       return this->isValue(CV->getValue());
273     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
274       if (const auto *C = dyn_cast<Constant>(V)) {
275         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
276           return this->isValue(CV->getValue());
277 
278         // Number of elements of a scalable vector unknown at compile time
279         auto *FVTy = dyn_cast<FixedVectorType>(VTy);
280         if (!FVTy)
281           return false;
282 
283         // Non-splat vector constant: check each element for a match.
284         unsigned NumElts = FVTy->getNumElements();
285         assert(NumElts != 0 && "Constant vector with no elements?");
286         bool HasNonUndefElements = false;
287         for (unsigned i = 0; i != NumElts; ++i) {
288           Constant *Elt = C->getAggregateElement(i);
289           if (!Elt)
290             return false;
291           if (isa<UndefValue>(Elt))
292             continue;
293           auto *CV = dyn_cast<ConstantVal>(Elt);
294           if (!CV || !this->isValue(CV->getValue()))
295             return false;
296           HasNonUndefElements = true;
297         }
298         return HasNonUndefElements;
299       }
300     }
301     return false;
302   }
303 };
304 
305 /// specialization of cstval_pred_ty for ConstantInt
306 template <typename Predicate>
307 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
308 
309 /// specialization of cstval_pred_ty for ConstantFP
310 template <typename Predicate>
311 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
312 
313 /// This helper class is used to match scalar and vector constants that
314 /// satisfy a specified predicate, and bind them to an APInt.
315 template <typename Predicate> struct api_pred_ty : public Predicate {
316   const APInt *&Res;
317 
318   api_pred_ty(const APInt *&R) : Res(R) {}
319 
320   template <typename ITy> bool match(ITy *V) {
321     if (const auto *CI = dyn_cast<ConstantInt>(V))
322       if (this->isValue(CI->getValue())) {
323         Res = &CI->getValue();
324         return true;
325       }
326     if (V->getType()->isVectorTy())
327       if (const auto *C = dyn_cast<Constant>(V))
328         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
329           if (this->isValue(CI->getValue())) {
330             Res = &CI->getValue();
331             return true;
332           }
333 
334     return false;
335   }
336 };
337 
338 ///////////////////////////////////////////////////////////////////////////////
339 //
340 // Encapsulate constant value queries for use in templated predicate matchers.
341 // This allows checking if constants match using compound predicates and works
342 // with vector constants, possibly with relaxed constraints. For example, ignore
343 // undef values.
344 //
345 ///////////////////////////////////////////////////////////////////////////////
346 
347 struct is_any_apint {
348   bool isValue(const APInt &C) { return true; }
349 };
350 /// Match an integer or vector with any integral constant.
351 /// For vectors, this includes constants with undefined elements.
352 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
353   return cst_pred_ty<is_any_apint>();
354 }
355 
356 struct is_all_ones {
357   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
358 };
359 /// Match an integer or vector with all bits set.
360 /// For vectors, this includes constants with undefined elements.
361 inline cst_pred_ty<is_all_ones> m_AllOnes() {
362   return cst_pred_ty<is_all_ones>();
363 }
364 
365 struct is_maxsignedvalue {
366   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
367 };
368 /// Match an integer or vector with values having all bits except for the high
369 /// bit set (0x7f...).
370 /// For vectors, this includes constants with undefined elements.
371 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
372   return cst_pred_ty<is_maxsignedvalue>();
373 }
374 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
375   return V;
376 }
377 
378 struct is_negative {
379   bool isValue(const APInt &C) { return C.isNegative(); }
380 };
381 /// Match an integer or vector of negative values.
382 /// For vectors, this includes constants with undefined elements.
383 inline cst_pred_ty<is_negative> m_Negative() {
384   return cst_pred_ty<is_negative>();
385 }
386 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
387   return V;
388 }
389 
390 struct is_nonnegative {
391   bool isValue(const APInt &C) { return C.isNonNegative(); }
392 };
393 /// Match an integer or vector of non-negative values.
394 /// For vectors, this includes constants with undefined elements.
395 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
396   return cst_pred_ty<is_nonnegative>();
397 }
398 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
399   return V;
400 }
401 
402 struct is_strictlypositive {
403   bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
404 };
405 /// Match an integer or vector of strictly positive values.
406 /// For vectors, this includes constants with undefined elements.
407 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
408   return cst_pred_ty<is_strictlypositive>();
409 }
410 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
411   return V;
412 }
413 
414 struct is_nonpositive {
415   bool isValue(const APInt &C) { return C.isNonPositive(); }
416 };
417 /// Match an integer or vector of non-positive values.
418 /// For vectors, this includes constants with undefined elements.
419 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
420   return cst_pred_ty<is_nonpositive>();
421 }
422 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
423 
424 struct is_one {
425   bool isValue(const APInt &C) { return C.isOneValue(); }
426 };
427 /// Match an integer 1 or a vector with all elements equal to 1.
428 /// For vectors, this includes constants with undefined elements.
429 inline cst_pred_ty<is_one> m_One() {
430   return cst_pred_ty<is_one>();
431 }
432 
433 struct is_zero_int {
434   bool isValue(const APInt &C) { return C.isNullValue(); }
435 };
436 /// Match an integer 0 or a vector with all elements equal to 0.
437 /// For vectors, this includes constants with undefined elements.
438 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
439   return cst_pred_ty<is_zero_int>();
440 }
441 
442 struct is_zero {
443   template <typename ITy> bool match(ITy *V) {
444     auto *C = dyn_cast<Constant>(V);
445     // FIXME: this should be able to do something for scalable vectors
446     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
447   }
448 };
449 /// Match any null constant or a vector with all elements equal to 0.
450 /// For vectors, this includes constants with undefined elements.
451 inline is_zero m_Zero() {
452   return is_zero();
453 }
454 
455 struct is_power2 {
456   bool isValue(const APInt &C) { return C.isPowerOf2(); }
457 };
458 /// Match an integer or vector power-of-2.
459 /// For vectors, this includes constants with undefined elements.
460 inline cst_pred_ty<is_power2> m_Power2() {
461   return cst_pred_ty<is_power2>();
462 }
463 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
464   return V;
465 }
466 
467 struct is_negated_power2 {
468   bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
469 };
470 /// Match a integer or vector negated power-of-2.
471 /// For vectors, this includes constants with undefined elements.
472 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
473   return cst_pred_ty<is_negated_power2>();
474 }
475 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
476   return V;
477 }
478 
479 struct is_power2_or_zero {
480   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
481 };
482 /// Match an integer or vector of 0 or power-of-2 values.
483 /// For vectors, this includes constants with undefined elements.
484 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
485   return cst_pred_ty<is_power2_or_zero>();
486 }
487 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
488   return V;
489 }
490 
491 struct is_sign_mask {
492   bool isValue(const APInt &C) { return C.isSignMask(); }
493 };
494 /// Match an integer or vector with only the sign bit(s) set.
495 /// For vectors, this includes constants with undefined elements.
496 inline cst_pred_ty<is_sign_mask> m_SignMask() {
497   return cst_pred_ty<is_sign_mask>();
498 }
499 
500 struct is_lowbit_mask {
501   bool isValue(const APInt &C) { return C.isMask(); }
502 };
503 /// Match an integer or vector with only the low bit(s) set.
504 /// For vectors, this includes constants with undefined elements.
505 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
506   return cst_pred_ty<is_lowbit_mask>();
507 }
508 
509 struct icmp_pred_with_threshold {
510   ICmpInst::Predicate Pred;
511   const APInt *Thr;
512   bool isValue(const APInt &C) {
513     switch (Pred) {
514     case ICmpInst::Predicate::ICMP_EQ:
515       return C.eq(*Thr);
516     case ICmpInst::Predicate::ICMP_NE:
517       return C.ne(*Thr);
518     case ICmpInst::Predicate::ICMP_UGT:
519       return C.ugt(*Thr);
520     case ICmpInst::Predicate::ICMP_UGE:
521       return C.uge(*Thr);
522     case ICmpInst::Predicate::ICMP_ULT:
523       return C.ult(*Thr);
524     case ICmpInst::Predicate::ICMP_ULE:
525       return C.ule(*Thr);
526     case ICmpInst::Predicate::ICMP_SGT:
527       return C.sgt(*Thr);
528     case ICmpInst::Predicate::ICMP_SGE:
529       return C.sge(*Thr);
530     case ICmpInst::Predicate::ICMP_SLT:
531       return C.slt(*Thr);
532     case ICmpInst::Predicate::ICMP_SLE:
533       return C.sle(*Thr);
534     default:
535       llvm_unreachable("Unhandled ICmp predicate");
536     }
537   }
538 };
539 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
540 /// to Threshold. For vectors, this includes constants with undefined elements.
541 inline cst_pred_ty<icmp_pred_with_threshold>
542 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
543   cst_pred_ty<icmp_pred_with_threshold> P;
544   P.Pred = Predicate;
545   P.Thr = &Threshold;
546   return P;
547 }
548 
549 struct is_nan {
550   bool isValue(const APFloat &C) { return C.isNaN(); }
551 };
552 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
553 /// For vectors, this includes constants with undefined elements.
554 inline cstfp_pred_ty<is_nan> m_NaN() {
555   return cstfp_pred_ty<is_nan>();
556 }
557 
558 struct is_inf {
559   bool isValue(const APFloat &C) { return C.isInfinity(); }
560 };
561 /// Match a positive or negative infinity FP constant.
562 /// For vectors, this includes constants with undefined elements.
563 inline cstfp_pred_ty<is_inf> m_Inf() {
564   return cstfp_pred_ty<is_inf>();
565 }
566 
567 struct is_any_zero_fp {
568   bool isValue(const APFloat &C) { return C.isZero(); }
569 };
570 /// Match a floating-point negative zero or positive zero.
571 /// For vectors, this includes constants with undefined elements.
572 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
573   return cstfp_pred_ty<is_any_zero_fp>();
574 }
575 
576 struct is_pos_zero_fp {
577   bool isValue(const APFloat &C) { return C.isPosZero(); }
578 };
579 /// Match a floating-point positive zero.
580 /// For vectors, this includes constants with undefined elements.
581 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
582   return cstfp_pred_ty<is_pos_zero_fp>();
583 }
584 
585 struct is_neg_zero_fp {
586   bool isValue(const APFloat &C) { return C.isNegZero(); }
587 };
588 /// Match a floating-point negative zero.
589 /// For vectors, this includes constants with undefined elements.
590 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
591   return cstfp_pred_ty<is_neg_zero_fp>();
592 }
593 
594 ///////////////////////////////////////////////////////////////////////////////
595 
596 template <typename Class> struct bind_ty {
597   Class *&VR;
598 
599   bind_ty(Class *&V) : VR(V) {}
600 
601   template <typename ITy> bool match(ITy *V) {
602     if (auto *CV = dyn_cast<Class>(V)) {
603       VR = CV;
604       return true;
605     }
606     return false;
607   }
608 };
609 
610 /// Match a value, capturing it if we match.
611 inline bind_ty<Value> m_Value(Value *&V) { return V; }
612 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
613 
614 /// Match an instruction, capturing it if we match.
615 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
616 /// Match a unary operator, capturing it if we match.
617 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
618 /// Match a binary operator, capturing it if we match.
619 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
620 /// Match a with overflow intrinsic, capturing it if we match.
621 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
622 
623 /// Match a ConstantInt, capturing the value if we match.
624 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
625 
626 /// Match a Constant, capturing the value if we match.
627 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
628 
629 /// Match a ConstantFP, capturing the value if we match.
630 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
631 
632 /// Match a basic block value, capturing it if we match.
633 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
634 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
635   return V;
636 }
637 
638 /// Match a specified Value*.
639 struct specificval_ty {
640   const Value *Val;
641 
642   specificval_ty(const Value *V) : Val(V) {}
643 
644   template <typename ITy> bool match(ITy *V) { return V == Val; }
645 };
646 
647 /// Match if we have a specific specified value.
648 inline specificval_ty m_Specific(const Value *V) { return V; }
649 
650 /// Stores a reference to the Value *, not the Value * itself,
651 /// thus can be used in commutative matchers.
652 template <typename Class> struct deferredval_ty {
653   Class *const &Val;
654 
655   deferredval_ty(Class *const &V) : Val(V) {}
656 
657   template <typename ITy> bool match(ITy *const V) { return V == Val; }
658 };
659 
660 /// A commutative-friendly version of m_Specific().
661 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
662 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
663   return V;
664 }
665 
666 /// Match a specified floating point value or vector of all elements of
667 /// that value.
668 struct specific_fpval {
669   double Val;
670 
671   specific_fpval(double V) : Val(V) {}
672 
673   template <typename ITy> bool match(ITy *V) {
674     if (const auto *CFP = dyn_cast<ConstantFP>(V))
675       return CFP->isExactlyValue(Val);
676     if (V->getType()->isVectorTy())
677       if (const auto *C = dyn_cast<Constant>(V))
678         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
679           return CFP->isExactlyValue(Val);
680     return false;
681   }
682 };
683 
684 /// Match a specific floating point value or vector with all elements
685 /// equal to the value.
686 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
687 
688 /// Match a float 1.0 or vector with all elements equal to 1.0.
689 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
690 
691 struct bind_const_intval_ty {
692   uint64_t &VR;
693 
694   bind_const_intval_ty(uint64_t &V) : VR(V) {}
695 
696   template <typename ITy> bool match(ITy *V) {
697     if (const auto *CV = dyn_cast<ConstantInt>(V))
698       if (CV->getValue().ule(UINT64_MAX)) {
699         VR = CV->getZExtValue();
700         return true;
701       }
702     return false;
703   }
704 };
705 
706 /// Match a specified integer value or vector of all elements of that
707 /// value.
708 struct specific_intval {
709   APInt Val;
710 
711   specific_intval(APInt V) : Val(std::move(V)) {}
712 
713   template <typename ITy> bool match(ITy *V) {
714     const auto *CI = dyn_cast<ConstantInt>(V);
715     if (!CI && V->getType()->isVectorTy())
716       if (const auto *C = dyn_cast<Constant>(V))
717         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
718 
719     return CI && APInt::isSameValue(CI->getValue(), Val);
720   }
721 };
722 
723 /// Match a specific integer value or vector with all elements equal to
724 /// the value.
725 inline specific_intval m_SpecificInt(APInt V) {
726   return specific_intval(std::move(V));
727 }
728 
729 inline specific_intval m_SpecificInt(uint64_t V) {
730   return m_SpecificInt(APInt(64, V));
731 }
732 
733 /// Match a ConstantInt and bind to its value.  This does not match
734 /// ConstantInts wider than 64-bits.
735 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
736 
737 /// Match a specified basic block value.
738 struct specific_bbval {
739   BasicBlock *Val;
740 
741   specific_bbval(BasicBlock *Val) : Val(Val) {}
742 
743   template <typename ITy> bool match(ITy *V) {
744     const auto *BB = dyn_cast<BasicBlock>(V);
745     return BB && BB == Val;
746   }
747 };
748 
749 /// Match a specific basic block value.
750 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
751   return specific_bbval(BB);
752 }
753 
754 /// A commutative-friendly version of m_Specific().
755 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
756   return BB;
757 }
758 inline deferredval_ty<const BasicBlock>
759 m_Deferred(const BasicBlock *const &BB) {
760   return BB;
761 }
762 
763 //===----------------------------------------------------------------------===//
764 // Matcher for any binary operator.
765 //
766 template <typename LHS_t, typename RHS_t, bool Commutable = false>
767 struct AnyBinaryOp_match {
768   LHS_t L;
769   RHS_t R;
770 
771   // The evaluation order is always stable, regardless of Commutability.
772   // The LHS is always matched first.
773   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
774 
775   template <typename OpTy> bool match(OpTy *V) {
776     if (auto *I = dyn_cast<BinaryOperator>(V))
777       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
778              (Commutable && L.match(I->getOperand(1)) &&
779               R.match(I->getOperand(0)));
780     return false;
781   }
782 };
783 
784 template <typename LHS, typename RHS>
785 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
786   return AnyBinaryOp_match<LHS, RHS>(L, R);
787 }
788 
789 //===----------------------------------------------------------------------===//
790 // Matcher for any unary operator.
791 // TODO fuse unary, binary matcher into n-ary matcher
792 //
793 template <typename OP_t> struct AnyUnaryOp_match {
794   OP_t X;
795 
796   AnyUnaryOp_match(const OP_t &X) : X(X) {}
797 
798   template <typename OpTy> bool match(OpTy *V) {
799     if (auto *I = dyn_cast<UnaryOperator>(V))
800       return X.match(I->getOperand(0));
801     return false;
802   }
803 };
804 
805 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
806   return AnyUnaryOp_match<OP_t>(X);
807 }
808 
809 //===----------------------------------------------------------------------===//
810 // Matchers for specific binary operators.
811 //
812 
813 template <typename LHS_t, typename RHS_t, unsigned Opcode,
814           bool Commutable = false>
815 struct BinaryOp_match {
816   LHS_t L;
817   RHS_t R;
818 
819   // The evaluation order is always stable, regardless of Commutability.
820   // The LHS is always matched first.
821   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
822 
823   template <typename OpTy> bool match(OpTy *V) {
824     if (V->getValueID() == Value::InstructionVal + Opcode) {
825       auto *I = cast<BinaryOperator>(V);
826       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
827              (Commutable && L.match(I->getOperand(1)) &&
828               R.match(I->getOperand(0)));
829     }
830     if (auto *CE = dyn_cast<ConstantExpr>(V))
831       return CE->getOpcode() == Opcode &&
832              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
833               (Commutable && L.match(CE->getOperand(1)) &&
834                R.match(CE->getOperand(0))));
835     return false;
836   }
837 };
838 
839 template <typename LHS, typename RHS>
840 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
841                                                         const RHS &R) {
842   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
843 }
844 
845 template <typename LHS, typename RHS>
846 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
847                                                           const RHS &R) {
848   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
849 }
850 
851 template <typename LHS, typename RHS>
852 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
853                                                         const RHS &R) {
854   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
855 }
856 
857 template <typename LHS, typename RHS>
858 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
859                                                           const RHS &R) {
860   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
861 }
862 
863 template <typename Op_t> struct FNeg_match {
864   Op_t X;
865 
866   FNeg_match(const Op_t &Op) : X(Op) {}
867   template <typename OpTy> bool match(OpTy *V) {
868     auto *FPMO = dyn_cast<FPMathOperator>(V);
869     if (!FPMO) return false;
870 
871     if (FPMO->getOpcode() == Instruction::FNeg)
872       return X.match(FPMO->getOperand(0));
873 
874     if (FPMO->getOpcode() == Instruction::FSub) {
875       if (FPMO->hasNoSignedZeros()) {
876         // With 'nsz', any zero goes.
877         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
878           return false;
879       } else {
880         // Without 'nsz', we need fsub -0.0, X exactly.
881         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
882           return false;
883       }
884 
885       return X.match(FPMO->getOperand(1));
886     }
887 
888     return false;
889   }
890 };
891 
892 /// Match 'fneg X' as 'fsub -0.0, X'.
893 template <typename OpTy>
894 inline FNeg_match<OpTy>
895 m_FNeg(const OpTy &X) {
896   return FNeg_match<OpTy>(X);
897 }
898 
899 /// Match 'fneg X' as 'fsub +-0.0, X'.
900 template <typename RHS>
901 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
902 m_FNegNSZ(const RHS &X) {
903   return m_FSub(m_AnyZeroFP(), X);
904 }
905 
906 template <typename LHS, typename RHS>
907 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
908                                                         const RHS &R) {
909   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
910 }
911 
912 template <typename LHS, typename RHS>
913 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
914                                                           const RHS &R) {
915   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
916 }
917 
918 template <typename LHS, typename RHS>
919 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
920                                                           const RHS &R) {
921   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
922 }
923 
924 template <typename LHS, typename RHS>
925 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
926                                                           const RHS &R) {
927   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
928 }
929 
930 template <typename LHS, typename RHS>
931 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
932                                                           const RHS &R) {
933   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
934 }
935 
936 template <typename LHS, typename RHS>
937 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
938                                                           const RHS &R) {
939   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
940 }
941 
942 template <typename LHS, typename RHS>
943 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
944                                                           const RHS &R) {
945   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
946 }
947 
948 template <typename LHS, typename RHS>
949 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
950                                                           const RHS &R) {
951   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
952 }
953 
954 template <typename LHS, typename RHS>
955 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
956                                                         const RHS &R) {
957   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
958 }
959 
960 template <typename LHS, typename RHS>
961 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
962                                                       const RHS &R) {
963   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
964 }
965 
966 template <typename LHS, typename RHS>
967 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
968                                                         const RHS &R) {
969   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
970 }
971 
972 template <typename LHS, typename RHS>
973 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
974                                                         const RHS &R) {
975   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
976 }
977 
978 template <typename LHS, typename RHS>
979 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
980                                                           const RHS &R) {
981   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
982 }
983 
984 template <typename LHS, typename RHS>
985 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
986                                                           const RHS &R) {
987   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
988 }
989 
990 template <typename LHS_t, typename RHS_t, unsigned Opcode,
991           unsigned WrapFlags = 0>
992 struct OverflowingBinaryOp_match {
993   LHS_t L;
994   RHS_t R;
995 
996   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
997       : L(LHS), R(RHS) {}
998 
999   template <typename OpTy> bool match(OpTy *V) {
1000     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1001       if (Op->getOpcode() != Opcode)
1002         return false;
1003       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
1004           !Op->hasNoUnsignedWrap())
1005         return false;
1006       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
1007           !Op->hasNoSignedWrap())
1008         return false;
1009       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1010     }
1011     return false;
1012   }
1013 };
1014 
1015 template <typename LHS, typename RHS>
1016 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1017                                  OverflowingBinaryOperator::NoSignedWrap>
1018 m_NSWAdd(const LHS &L, const RHS &R) {
1019   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1020                                    OverflowingBinaryOperator::NoSignedWrap>(
1021       L, R);
1022 }
1023 template <typename LHS, typename RHS>
1024 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1025                                  OverflowingBinaryOperator::NoSignedWrap>
1026 m_NSWSub(const LHS &L, const RHS &R) {
1027   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1028                                    OverflowingBinaryOperator::NoSignedWrap>(
1029       L, R);
1030 }
1031 template <typename LHS, typename RHS>
1032 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1033                                  OverflowingBinaryOperator::NoSignedWrap>
1034 m_NSWMul(const LHS &L, const RHS &R) {
1035   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1036                                    OverflowingBinaryOperator::NoSignedWrap>(
1037       L, R);
1038 }
1039 template <typename LHS, typename RHS>
1040 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1041                                  OverflowingBinaryOperator::NoSignedWrap>
1042 m_NSWShl(const LHS &L, const RHS &R) {
1043   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1044                                    OverflowingBinaryOperator::NoSignedWrap>(
1045       L, R);
1046 }
1047 
1048 template <typename LHS, typename RHS>
1049 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1050                                  OverflowingBinaryOperator::NoUnsignedWrap>
1051 m_NUWAdd(const LHS &L, const RHS &R) {
1052   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1053                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1054       L, R);
1055 }
1056 template <typename LHS, typename RHS>
1057 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1058                                  OverflowingBinaryOperator::NoUnsignedWrap>
1059 m_NUWSub(const LHS &L, const RHS &R) {
1060   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1061                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1062       L, R);
1063 }
1064 template <typename LHS, typename RHS>
1065 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1066                                  OverflowingBinaryOperator::NoUnsignedWrap>
1067 m_NUWMul(const LHS &L, const RHS &R) {
1068   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1069                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1070       L, R);
1071 }
1072 template <typename LHS, typename RHS>
1073 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1074                                  OverflowingBinaryOperator::NoUnsignedWrap>
1075 m_NUWShl(const LHS &L, const RHS &R) {
1076   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1077                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1078       L, R);
1079 }
1080 
1081 //===----------------------------------------------------------------------===//
1082 // Class that matches a group of binary opcodes.
1083 //
1084 template <typename LHS_t, typename RHS_t, typename Predicate>
1085 struct BinOpPred_match : Predicate {
1086   LHS_t L;
1087   RHS_t R;
1088 
1089   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1090 
1091   template <typename OpTy> bool match(OpTy *V) {
1092     if (auto *I = dyn_cast<Instruction>(V))
1093       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1094              R.match(I->getOperand(1));
1095     if (auto *CE = dyn_cast<ConstantExpr>(V))
1096       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1097              R.match(CE->getOperand(1));
1098     return false;
1099   }
1100 };
1101 
1102 struct is_shift_op {
1103   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1104 };
1105 
1106 struct is_right_shift_op {
1107   bool isOpType(unsigned Opcode) {
1108     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1109   }
1110 };
1111 
1112 struct is_logical_shift_op {
1113   bool isOpType(unsigned Opcode) {
1114     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1115   }
1116 };
1117 
1118 struct is_bitwiselogic_op {
1119   bool isOpType(unsigned Opcode) {
1120     return Instruction::isBitwiseLogicOp(Opcode);
1121   }
1122 };
1123 
1124 struct is_idiv_op {
1125   bool isOpType(unsigned Opcode) {
1126     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1127   }
1128 };
1129 
1130 struct is_irem_op {
1131   bool isOpType(unsigned Opcode) {
1132     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1133   }
1134 };
1135 
1136 /// Matches shift operations.
1137 template <typename LHS, typename RHS>
1138 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1139                                                       const RHS &R) {
1140   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1141 }
1142 
1143 /// Matches logical shift operations.
1144 template <typename LHS, typename RHS>
1145 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1146                                                           const RHS &R) {
1147   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1148 }
1149 
1150 /// Matches logical shift operations.
1151 template <typename LHS, typename RHS>
1152 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1153 m_LogicalShift(const LHS &L, const RHS &R) {
1154   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1155 }
1156 
1157 /// Matches bitwise logic operations.
1158 template <typename LHS, typename RHS>
1159 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1160 m_BitwiseLogic(const LHS &L, const RHS &R) {
1161   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1162 }
1163 
1164 /// Matches integer division operations.
1165 template <typename LHS, typename RHS>
1166 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1167                                                     const RHS &R) {
1168   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1169 }
1170 
1171 /// Matches integer remainder operations.
1172 template <typename LHS, typename RHS>
1173 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1174                                                     const RHS &R) {
1175   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1176 }
1177 
1178 //===----------------------------------------------------------------------===//
1179 // Class that matches exact binary ops.
1180 //
1181 template <typename SubPattern_t> struct Exact_match {
1182   SubPattern_t SubPattern;
1183 
1184   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1185 
1186   template <typename OpTy> bool match(OpTy *V) {
1187     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1188       return PEO->isExact() && SubPattern.match(V);
1189     return false;
1190   }
1191 };
1192 
1193 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1194   return SubPattern;
1195 }
1196 
1197 //===----------------------------------------------------------------------===//
1198 // Matchers for CmpInst classes
1199 //
1200 
1201 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1202           bool Commutable = false>
1203 struct CmpClass_match {
1204   PredicateTy &Predicate;
1205   LHS_t L;
1206   RHS_t R;
1207 
1208   // The evaluation order is always stable, regardless of Commutability.
1209   // The LHS is always matched first.
1210   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1211       : Predicate(Pred), L(LHS), R(RHS) {}
1212 
1213   template <typename OpTy> bool match(OpTy *V) {
1214     if (auto *I = dyn_cast<Class>(V)) {
1215       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1216         Predicate = I->getPredicate();
1217         return true;
1218       } else if (Commutable && L.match(I->getOperand(1)) &&
1219            R.match(I->getOperand(0))) {
1220         Predicate = I->getSwappedPredicate();
1221         return true;
1222       }
1223     }
1224     return false;
1225   }
1226 };
1227 
1228 template <typename LHS, typename RHS>
1229 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1230 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1231   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1232 }
1233 
1234 template <typename LHS, typename RHS>
1235 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1236 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1237   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1238 }
1239 
1240 template <typename LHS, typename RHS>
1241 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1242 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1243   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1244 }
1245 
1246 //===----------------------------------------------------------------------===//
1247 // Matchers for instructions with a given opcode and number of operands.
1248 //
1249 
1250 /// Matches instructions with Opcode and three operands.
1251 template <typename T0, unsigned Opcode> struct OneOps_match {
1252   T0 Op1;
1253 
1254   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1255 
1256   template <typename OpTy> bool match(OpTy *V) {
1257     if (V->getValueID() == Value::InstructionVal + Opcode) {
1258       auto *I = cast<Instruction>(V);
1259       return Op1.match(I->getOperand(0));
1260     }
1261     return false;
1262   }
1263 };
1264 
1265 /// Matches instructions with Opcode and three operands.
1266 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1267   T0 Op1;
1268   T1 Op2;
1269 
1270   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1271 
1272   template <typename OpTy> bool match(OpTy *V) {
1273     if (V->getValueID() == Value::InstructionVal + Opcode) {
1274       auto *I = cast<Instruction>(V);
1275       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1276     }
1277     return false;
1278   }
1279 };
1280 
1281 /// Matches instructions with Opcode and three operands.
1282 template <typename T0, typename T1, typename T2, unsigned Opcode>
1283 struct ThreeOps_match {
1284   T0 Op1;
1285   T1 Op2;
1286   T2 Op3;
1287 
1288   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1289       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1290 
1291   template <typename OpTy> bool match(OpTy *V) {
1292     if (V->getValueID() == Value::InstructionVal + Opcode) {
1293       auto *I = cast<Instruction>(V);
1294       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1295              Op3.match(I->getOperand(2));
1296     }
1297     return false;
1298   }
1299 };
1300 
1301 /// Matches SelectInst.
1302 template <typename Cond, typename LHS, typename RHS>
1303 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1304 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1305   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1306 }
1307 
1308 /// This matches a select of two constants, e.g.:
1309 /// m_SelectCst<-1, 0>(m_Value(V))
1310 template <int64_t L, int64_t R, typename Cond>
1311 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1312                       Instruction::Select>
1313 m_SelectCst(const Cond &C) {
1314   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1315 }
1316 
1317 /// Matches FreezeInst.
1318 template <typename OpTy>
1319 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1320   return OneOps_match<OpTy, Instruction::Freeze>(Op);
1321 }
1322 
1323 /// Matches InsertElementInst.
1324 template <typename Val_t, typename Elt_t, typename Idx_t>
1325 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1326 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1327   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1328       Val, Elt, Idx);
1329 }
1330 
1331 /// Matches ExtractElementInst.
1332 template <typename Val_t, typename Idx_t>
1333 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1334 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1335   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1336 }
1337 
1338 /// Matches shuffle.
1339 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1340   T0 Op1;
1341   T1 Op2;
1342   T2 Mask;
1343 
1344   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1345       : Op1(Op1), Op2(Op2), Mask(Mask) {}
1346 
1347   template <typename OpTy> bool match(OpTy *V) {
1348     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1349       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1350              Mask.match(I->getShuffleMask());
1351     }
1352     return false;
1353   }
1354 };
1355 
1356 struct m_Mask {
1357   ArrayRef<int> &MaskRef;
1358   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1359   bool match(ArrayRef<int> Mask) {
1360     MaskRef = Mask;
1361     return true;
1362   }
1363 };
1364 
1365 struct m_ZeroMask {
1366   bool match(ArrayRef<int> Mask) {
1367     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1368   }
1369 };
1370 
1371 struct m_SpecificMask {
1372   ArrayRef<int> &MaskRef;
1373   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1374   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1375 };
1376 
1377 struct m_SplatOrUndefMask {
1378   int &SplatIndex;
1379   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1380   bool match(ArrayRef<int> Mask) {
1381     auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1382     if (First == Mask.end())
1383       return false;
1384     SplatIndex = *First;
1385     return all_of(Mask,
1386                   [First](int Elem) { return Elem == *First || Elem == -1; });
1387   }
1388 };
1389 
1390 /// Matches ShuffleVectorInst independently of mask value.
1391 template <typename V1_t, typename V2_t>
1392 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1393 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1394   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1395 }
1396 
1397 template <typename V1_t, typename V2_t, typename Mask_t>
1398 inline Shuffle_match<V1_t, V2_t, Mask_t>
1399 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1400   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1401 }
1402 
1403 /// Matches LoadInst.
1404 template <typename OpTy>
1405 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1406   return OneOps_match<OpTy, Instruction::Load>(Op);
1407 }
1408 
1409 /// Matches StoreInst.
1410 template <typename ValueOpTy, typename PointerOpTy>
1411 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1412 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1413   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1414                                                                   PointerOp);
1415 }
1416 
1417 //===----------------------------------------------------------------------===//
1418 // Matchers for CastInst classes
1419 //
1420 
1421 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1422   Op_t Op;
1423 
1424   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1425 
1426   template <typename OpTy> bool match(OpTy *V) {
1427     if (auto *O = dyn_cast<Operator>(V))
1428       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1429     return false;
1430   }
1431 };
1432 
1433 /// Matches BitCast.
1434 template <typename OpTy>
1435 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1436   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1437 }
1438 
1439 /// Matches PtrToInt.
1440 template <typename OpTy>
1441 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1442   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1443 }
1444 
1445 /// Matches Trunc.
1446 template <typename OpTy>
1447 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1448   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1449 }
1450 
1451 template <typename OpTy>
1452 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1453 m_TruncOrSelf(const OpTy &Op) {
1454   return m_CombineOr(m_Trunc(Op), Op);
1455 }
1456 
1457 /// Matches SExt.
1458 template <typename OpTy>
1459 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1460   return CastClass_match<OpTy, Instruction::SExt>(Op);
1461 }
1462 
1463 /// Matches ZExt.
1464 template <typename OpTy>
1465 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1466   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1467 }
1468 
1469 template <typename OpTy>
1470 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1471 m_ZExtOrSelf(const OpTy &Op) {
1472   return m_CombineOr(m_ZExt(Op), Op);
1473 }
1474 
1475 template <typename OpTy>
1476 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1477 m_SExtOrSelf(const OpTy &Op) {
1478   return m_CombineOr(m_SExt(Op), Op);
1479 }
1480 
1481 template <typename OpTy>
1482 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1483                         CastClass_match<OpTy, Instruction::SExt>>
1484 m_ZExtOrSExt(const OpTy &Op) {
1485   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1486 }
1487 
1488 template <typename OpTy>
1489 inline match_combine_or<
1490     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1491                      CastClass_match<OpTy, Instruction::SExt>>,
1492     OpTy>
1493 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1494   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1495 }
1496 
1497 template <typename OpTy>
1498 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1499   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1500 }
1501 
1502 template <typename OpTy>
1503 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1504   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1505 }
1506 
1507 template <typename OpTy>
1508 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1509   return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1510 }
1511 
1512 template <typename OpTy>
1513 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1514   return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1515 }
1516 
1517 template <typename OpTy>
1518 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1519   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1520 }
1521 
1522 template <typename OpTy>
1523 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1524   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1525 }
1526 
1527 //===----------------------------------------------------------------------===//
1528 // Matchers for control flow.
1529 //
1530 
1531 struct br_match {
1532   BasicBlock *&Succ;
1533 
1534   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1535 
1536   template <typename OpTy> bool match(OpTy *V) {
1537     if (auto *BI = dyn_cast<BranchInst>(V))
1538       if (BI->isUnconditional()) {
1539         Succ = BI->getSuccessor(0);
1540         return true;
1541       }
1542     return false;
1543   }
1544 };
1545 
1546 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1547 
1548 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1549 struct brc_match {
1550   Cond_t Cond;
1551   TrueBlock_t T;
1552   FalseBlock_t F;
1553 
1554   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1555       : Cond(C), T(t), F(f) {}
1556 
1557   template <typename OpTy> bool match(OpTy *V) {
1558     if (auto *BI = dyn_cast<BranchInst>(V))
1559       if (BI->isConditional() && Cond.match(BI->getCondition()))
1560         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1561     return false;
1562   }
1563 };
1564 
1565 template <typename Cond_t>
1566 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1567 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1568   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1569       C, m_BasicBlock(T), m_BasicBlock(F));
1570 }
1571 
1572 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1573 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1574 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1575   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1580 //
1581 
1582 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1583           bool Commutable = false>
1584 struct MaxMin_match {
1585   LHS_t L;
1586   RHS_t R;
1587 
1588   // The evaluation order is always stable, regardless of Commutability.
1589   // The LHS is always matched first.
1590   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1591 
1592   template <typename OpTy> bool match(OpTy *V) {
1593     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1594     auto *SI = dyn_cast<SelectInst>(V);
1595     if (!SI)
1596       return false;
1597     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1598     if (!Cmp)
1599       return false;
1600     // At this point we have a select conditioned on a comparison.  Check that
1601     // it is the values returned by the select that are being compared.
1602     Value *TrueVal = SI->getTrueValue();
1603     Value *FalseVal = SI->getFalseValue();
1604     Value *LHS = Cmp->getOperand(0);
1605     Value *RHS = Cmp->getOperand(1);
1606     if ((TrueVal != LHS || FalseVal != RHS) &&
1607         (TrueVal != RHS || FalseVal != LHS))
1608       return false;
1609     typename CmpInst_t::Predicate Pred =
1610         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1611     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1612     if (!Pred_t::match(Pred))
1613       return false;
1614     // It does!  Bind the operands.
1615     return (L.match(LHS) && R.match(RHS)) ||
1616            (Commutable && L.match(RHS) && R.match(LHS));
1617   }
1618 };
1619 
1620 /// Helper class for identifying signed max predicates.
1621 struct smax_pred_ty {
1622   static bool match(ICmpInst::Predicate Pred) {
1623     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1624   }
1625 };
1626 
1627 /// Helper class for identifying signed min predicates.
1628 struct smin_pred_ty {
1629   static bool match(ICmpInst::Predicate Pred) {
1630     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1631   }
1632 };
1633 
1634 /// Helper class for identifying unsigned max predicates.
1635 struct umax_pred_ty {
1636   static bool match(ICmpInst::Predicate Pred) {
1637     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1638   }
1639 };
1640 
1641 /// Helper class for identifying unsigned min predicates.
1642 struct umin_pred_ty {
1643   static bool match(ICmpInst::Predicate Pred) {
1644     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1645   }
1646 };
1647 
1648 /// Helper class for identifying ordered max predicates.
1649 struct ofmax_pred_ty {
1650   static bool match(FCmpInst::Predicate Pred) {
1651     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1652   }
1653 };
1654 
1655 /// Helper class for identifying ordered min predicates.
1656 struct ofmin_pred_ty {
1657   static bool match(FCmpInst::Predicate Pred) {
1658     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1659   }
1660 };
1661 
1662 /// Helper class for identifying unordered max predicates.
1663 struct ufmax_pred_ty {
1664   static bool match(FCmpInst::Predicate Pred) {
1665     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1666   }
1667 };
1668 
1669 /// Helper class for identifying unordered min predicates.
1670 struct ufmin_pred_ty {
1671   static bool match(FCmpInst::Predicate Pred) {
1672     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1673   }
1674 };
1675 
1676 template <typename LHS, typename RHS>
1677 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1678                                                              const RHS &R) {
1679   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1680 }
1681 
1682 template <typename LHS, typename RHS>
1683 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1684                                                              const RHS &R) {
1685   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1686 }
1687 
1688 template <typename LHS, typename RHS>
1689 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1690                                                              const RHS &R) {
1691   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1692 }
1693 
1694 template <typename LHS, typename RHS>
1695 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1696                                                              const RHS &R) {
1697   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1698 }
1699 
1700 /// Match an 'ordered' floating point maximum function.
1701 /// Floating point has one special value 'NaN'. Therefore, there is no total
1702 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1703 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1704 /// semantics. In the presence of 'NaN' we have to preserve the original
1705 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1706 ///
1707 ///                         max(L, R)  iff L and R are not NaN
1708 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1709 template <typename LHS, typename RHS>
1710 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1711                                                                  const RHS &R) {
1712   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1713 }
1714 
1715 /// Match an 'ordered' floating point minimum function.
1716 /// Floating point has one special value 'NaN'. Therefore, there is no total
1717 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1718 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1719 /// semantics. In the presence of 'NaN' we have to preserve the original
1720 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1721 ///
1722 ///                         min(L, R)  iff L and R are not NaN
1723 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1724 template <typename LHS, typename RHS>
1725 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1726                                                                  const RHS &R) {
1727   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1728 }
1729 
1730 /// Match an 'unordered' floating point maximum function.
1731 /// Floating point has one special value 'NaN'. Therefore, there is no total
1732 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1733 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1734 /// semantics. In the presence of 'NaN' we have to preserve the original
1735 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1736 ///
1737 ///                         max(L, R)  iff L and R are not NaN
1738 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1739 template <typename LHS, typename RHS>
1740 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1741 m_UnordFMax(const LHS &L, const RHS &R) {
1742   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1743 }
1744 
1745 /// Match an 'unordered' floating point minimum function.
1746 /// Floating point has one special value 'NaN'. Therefore, there is no total
1747 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1748 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1749 /// semantics. In the presence of 'NaN' we have to preserve the original
1750 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1751 ///
1752 ///                          min(L, R)  iff L and R are not NaN
1753 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1754 template <typename LHS, typename RHS>
1755 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1756 m_UnordFMin(const LHS &L, const RHS &R) {
1757   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1758 }
1759 
1760 //===----------------------------------------------------------------------===//
1761 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1762 // Note that S might be matched to other instructions than AddInst.
1763 //
1764 
1765 template <typename LHS_t, typename RHS_t, typename Sum_t>
1766 struct UAddWithOverflow_match {
1767   LHS_t L;
1768   RHS_t R;
1769   Sum_t S;
1770 
1771   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1772       : L(L), R(R), S(S) {}
1773 
1774   template <typename OpTy> bool match(OpTy *V) {
1775     Value *ICmpLHS, *ICmpRHS;
1776     ICmpInst::Predicate Pred;
1777     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1778       return false;
1779 
1780     Value *AddLHS, *AddRHS;
1781     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1782 
1783     // (a + b) u< a, (a + b) u< b
1784     if (Pred == ICmpInst::ICMP_ULT)
1785       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1786         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1787 
1788     // a >u (a + b), b >u (a + b)
1789     if (Pred == ICmpInst::ICMP_UGT)
1790       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1791         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1792 
1793     Value *Op1;
1794     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1795     // (a ^ -1) <u b
1796     if (Pred == ICmpInst::ICMP_ULT) {
1797       if (XorExpr.match(ICmpLHS))
1798         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1799     }
1800     //  b > u (a ^ -1)
1801     if (Pred == ICmpInst::ICMP_UGT) {
1802       if (XorExpr.match(ICmpRHS))
1803         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1804     }
1805 
1806     // Match special-case for increment-by-1.
1807     if (Pred == ICmpInst::ICMP_EQ) {
1808       // (a + 1) == 0
1809       // (1 + a) == 0
1810       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1811           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1812         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1813       // 0 == (a + 1)
1814       // 0 == (1 + a)
1815       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1816           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1817         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1818     }
1819 
1820     return false;
1821   }
1822 };
1823 
1824 /// Match an icmp instruction checking for unsigned overflow on addition.
1825 ///
1826 /// S is matched to the addition whose result is being checked for overflow, and
1827 /// L and R are matched to the LHS and RHS of S.
1828 template <typename LHS_t, typename RHS_t, typename Sum_t>
1829 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1830 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1831   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1832 }
1833 
1834 template <typename Opnd_t> struct Argument_match {
1835   unsigned OpI;
1836   Opnd_t Val;
1837 
1838   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1839 
1840   template <typename OpTy> bool match(OpTy *V) {
1841     // FIXME: Should likely be switched to use `CallBase`.
1842     if (const auto *CI = dyn_cast<CallInst>(V))
1843       return Val.match(CI->getArgOperand(OpI));
1844     return false;
1845   }
1846 };
1847 
1848 /// Match an argument.
1849 template <unsigned OpI, typename Opnd_t>
1850 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1851   return Argument_match<Opnd_t>(OpI, Op);
1852 }
1853 
1854 /// Intrinsic matchers.
1855 struct IntrinsicID_match {
1856   unsigned ID;
1857 
1858   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1859 
1860   template <typename OpTy> bool match(OpTy *V) {
1861     if (const auto *CI = dyn_cast<CallInst>(V))
1862       if (const auto *F = CI->getCalledFunction())
1863         return F->getIntrinsicID() == ID;
1864     return false;
1865   }
1866 };
1867 
1868 /// Intrinsic matches are combinations of ID matchers, and argument
1869 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1870 /// them with lower arity matchers. Here's some convenient typedefs for up to
1871 /// several arguments, and more can be added as needed
1872 template <typename T0 = void, typename T1 = void, typename T2 = void,
1873           typename T3 = void, typename T4 = void, typename T5 = void,
1874           typename T6 = void, typename T7 = void, typename T8 = void,
1875           typename T9 = void, typename T10 = void>
1876 struct m_Intrinsic_Ty;
1877 template <typename T0> struct m_Intrinsic_Ty<T0> {
1878   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1879 };
1880 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1881   using Ty =
1882       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1883 };
1884 template <typename T0, typename T1, typename T2>
1885 struct m_Intrinsic_Ty<T0, T1, T2> {
1886   using Ty =
1887       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1888                         Argument_match<T2>>;
1889 };
1890 template <typename T0, typename T1, typename T2, typename T3>
1891 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1892   using Ty =
1893       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1894                         Argument_match<T3>>;
1895 };
1896 
1897 template <typename T0, typename T1, typename T2, typename T3, typename T4>
1898 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
1899   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
1900                                Argument_match<T4>>;
1901 };
1902 
1903 template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
1904 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
1905   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
1906                                Argument_match<T5>>;
1907 };
1908 
1909 /// Match intrinsic calls like this:
1910 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1911 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1912   return IntrinsicID_match(IntrID);
1913 }
1914 
1915 template <Intrinsic::ID IntrID, typename T0>
1916 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1917   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1918 }
1919 
1920 template <Intrinsic::ID IntrID, typename T0, typename T1>
1921 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1922                                                        const T1 &Op1) {
1923   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1924 }
1925 
1926 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1927 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1928 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1929   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1930 }
1931 
1932 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1933           typename T3>
1934 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1935 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1936   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1937 }
1938 
1939 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1940           typename T3, typename T4>
1941 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
1942 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
1943             const T4 &Op4) {
1944   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
1945                       m_Argument<4>(Op4));
1946 }
1947 
1948 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1949           typename T3, typename T4, typename T5>
1950 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
1951 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
1952             const T4 &Op4, const T5 &Op5) {
1953   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
1954                       m_Argument<5>(Op5));
1955 }
1956 
1957 // Helper intrinsic matching specializations.
1958 template <typename Opnd0>
1959 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1960   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1961 }
1962 
1963 template <typename Opnd0>
1964 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1965   return m_Intrinsic<Intrinsic::bswap>(Op0);
1966 }
1967 
1968 template <typename Opnd0>
1969 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1970   return m_Intrinsic<Intrinsic::fabs>(Op0);
1971 }
1972 
1973 template <typename Opnd0>
1974 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1975   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1976 }
1977 
1978 template <typename Opnd0, typename Opnd1>
1979 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1980                                                         const Opnd1 &Op1) {
1981   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1982 }
1983 
1984 template <typename Opnd0, typename Opnd1>
1985 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1986                                                         const Opnd1 &Op1) {
1987   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1988 }
1989 
1990 //===----------------------------------------------------------------------===//
1991 // Matchers for two-operands operators with the operators in either order
1992 //
1993 
1994 /// Matches a BinaryOperator with LHS and RHS in either order.
1995 template <typename LHS, typename RHS>
1996 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1997   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1998 }
1999 
2000 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2001 /// Swaps the predicate if operands are commuted.
2002 template <typename LHS, typename RHS>
2003 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2004 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2005   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2006                                                                        R);
2007 }
2008 
2009 /// Matches a Add with LHS and RHS in either order.
2010 template <typename LHS, typename RHS>
2011 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2012                                                                 const RHS &R) {
2013   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2014 }
2015 
2016 /// Matches a Mul with LHS and RHS in either order.
2017 template <typename LHS, typename RHS>
2018 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2019                                                                 const RHS &R) {
2020   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2021 }
2022 
2023 /// Matches an And with LHS and RHS in either order.
2024 template <typename LHS, typename RHS>
2025 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2026                                                                 const RHS &R) {
2027   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2028 }
2029 
2030 /// Matches an Or with LHS and RHS in either order.
2031 template <typename LHS, typename RHS>
2032 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2033                                                               const RHS &R) {
2034   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2035 }
2036 
2037 /// Matches an Xor with LHS and RHS in either order.
2038 template <typename LHS, typename RHS>
2039 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2040                                                                 const RHS &R) {
2041   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2042 }
2043 
2044 /// Matches a 'Neg' as 'sub 0, V'.
2045 template <typename ValTy>
2046 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2047 m_Neg(const ValTy &V) {
2048   return m_Sub(m_ZeroInt(), V);
2049 }
2050 
2051 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2052 template <typename ValTy>
2053 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2054 m_Not(const ValTy &V) {
2055   return m_c_Xor(V, m_AllOnes());
2056 }
2057 
2058 /// Matches an SMin with LHS and RHS in either order.
2059 template <typename LHS, typename RHS>
2060 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2061 m_c_SMin(const LHS &L, const RHS &R) {
2062   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2063 }
2064 /// Matches an SMax with LHS and RHS in either order.
2065 template <typename LHS, typename RHS>
2066 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2067 m_c_SMax(const LHS &L, const RHS &R) {
2068   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2069 }
2070 /// Matches a UMin with LHS and RHS in either order.
2071 template <typename LHS, typename RHS>
2072 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2073 m_c_UMin(const LHS &L, const RHS &R) {
2074   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2075 }
2076 /// Matches a UMax with LHS and RHS in either order.
2077 template <typename LHS, typename RHS>
2078 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2079 m_c_UMax(const LHS &L, const RHS &R) {
2080   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2081 }
2082 
2083 /// Matches FAdd with LHS and RHS in either order.
2084 template <typename LHS, typename RHS>
2085 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2086 m_c_FAdd(const LHS &L, const RHS &R) {
2087   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2088 }
2089 
2090 /// Matches FMul with LHS and RHS in either order.
2091 template <typename LHS, typename RHS>
2092 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2093 m_c_FMul(const LHS &L, const RHS &R) {
2094   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2095 }
2096 
2097 template <typename Opnd_t> struct Signum_match {
2098   Opnd_t Val;
2099   Signum_match(const Opnd_t &V) : Val(V) {}
2100 
2101   template <typename OpTy> bool match(OpTy *V) {
2102     unsigned TypeSize = V->getType()->getScalarSizeInBits();
2103     if (TypeSize == 0)
2104       return false;
2105 
2106     unsigned ShiftWidth = TypeSize - 1;
2107     Value *OpL = nullptr, *OpR = nullptr;
2108 
2109     // This is the representation of signum we match:
2110     //
2111     //  signum(x) == (x >> 63) | (-x >>u 63)
2112     //
2113     // An i1 value is its own signum, so it's correct to match
2114     //
2115     //  signum(x) == (x >> 0)  | (-x >>u 0)
2116     //
2117     // for i1 values.
2118 
2119     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2120     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2121     auto Signum = m_Or(LHS, RHS);
2122 
2123     return Signum.match(V) && OpL == OpR && Val.match(OpL);
2124   }
2125 };
2126 
2127 /// Matches a signum pattern.
2128 ///
2129 /// signum(x) =
2130 ///      x >  0  ->  1
2131 ///      x == 0  ->  0
2132 ///      x <  0  -> -1
2133 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2134   return Signum_match<Val_t>(V);
2135 }
2136 
2137 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2138   Opnd_t Val;
2139   ExtractValue_match(const Opnd_t &V) : Val(V) {}
2140 
2141   template <typename OpTy> bool match(OpTy *V) {
2142     if (auto *I = dyn_cast<ExtractValueInst>(V))
2143       return I->getNumIndices() == 1 && I->getIndices()[0] == Ind &&
2144              Val.match(I->getAggregateOperand());
2145     return false;
2146   }
2147 };
2148 
2149 /// Match a single index ExtractValue instruction.
2150 /// For example m_ExtractValue<1>(...)
2151 template <int Ind, typename Val_t>
2152 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2153   return ExtractValue_match<Ind, Val_t>(V);
2154 }
2155 
2156 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2157 /// the constant expression
2158 ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2159 /// under the right conditions determined by DataLayout.
2160 struct VScaleVal_match {
2161 private:
2162   template <typename Base, typename Offset>
2163   inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2164   m_OffsetGep(const Base &B, const Offset &O) {
2165     return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2166   }
2167 
2168 public:
2169   const DataLayout &DL;
2170   VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2171 
2172   template <typename ITy> bool match(ITy *V) {
2173     if (m_Intrinsic<Intrinsic::vscale>().match(V))
2174       return true;
2175 
2176     if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2177       Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
2178       auto *DerefTy = PtrTy->getPointerElementType();
2179       if (isa<ScalableVectorType>(DerefTy) &&
2180           DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2181         return true;
2182     }
2183 
2184     return false;
2185   }
2186 };
2187 
2188 inline VScaleVal_match m_VScale(const DataLayout &DL) {
2189   return VScaleVal_match(DL);
2190 }
2191 
2192 } // end namespace PatternMatch
2193 } // end namespace llvm
2194 
2195 #endif // LLVM_IR_PATTERNMATCH_H
2196