1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54   return const_cast<Pattern &>(P).match(Mask);
55 }
56 
57 template <typename SubPattern_t> struct OneUse_match {
58   SubPattern_t SubPattern;
59 
60   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61 
62   template <typename OpTy> bool match(OpTy *V) {
63     return V->hasOneUse() && SubPattern.match(V);
64   }
65 };
66 
67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68   return SubPattern;
69 }
70 
71 template <typename Class> struct class_match {
72   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74 
75 /// Match an arbitrary value and ignore it.
76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77 
78 /// Match an arbitrary unary operation and ignore it.
79 inline class_match<UnaryOperator> m_UnOp() {
80   return class_match<UnaryOperator>();
81 }
82 
83 /// Match an arbitrary binary operation and ignore it.
84 inline class_match<BinaryOperator> m_BinOp() {
85   return class_match<BinaryOperator>();
86 }
87 
88 /// Matches any compare instruction and ignore it.
89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90 
91 struct undef_match {
92   static bool check(const Value *V) {
93     if (isa<UndefValue>(V))
94       return true;
95 
96     const auto *CA = dyn_cast<ConstantAggregate>(V);
97     if (!CA)
98       return false;
99 
100     SmallPtrSet<const ConstantAggregate *, 8> Seen;
101     SmallVector<const ConstantAggregate *, 8> Worklist;
102 
103     // Either UndefValue, PoisonValue, or an aggregate that only contains
104     // these is accepted by matcher.
105     // CheckValue returns false if CA cannot satisfy this constraint.
106     auto CheckValue = [&](const ConstantAggregate *CA) {
107       for (const Value *Op : CA->operand_values()) {
108         if (isa<UndefValue>(Op))
109           continue;
110 
111         const auto *CA = dyn_cast<ConstantAggregate>(Op);
112         if (!CA)
113           return false;
114         if (Seen.insert(CA).second)
115           Worklist.emplace_back(CA);
116       }
117 
118       return true;
119     };
120 
121     if (!CheckValue(CA))
122       return false;
123 
124     while (!Worklist.empty()) {
125       if (!CheckValue(Worklist.pop_back_val()))
126         return false;
127     }
128     return true;
129   }
130   template <typename ITy> bool match(ITy *V) { return check(V); }
131 };
132 
133 /// Match an arbitrary undef constant. This matches poison as well.
134 /// If this is an aggregate and contains a non-aggregate element that is
135 /// neither undef nor poison, the aggregate is not matched.
136 inline auto m_Undef() { return undef_match(); }
137 
138 /// Match an arbitrary poison constant.
139 inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
140 
141 /// Match an arbitrary Constant and ignore it.
142 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
143 
144 /// Match an arbitrary ConstantInt and ignore it.
145 inline class_match<ConstantInt> m_ConstantInt() {
146   return class_match<ConstantInt>();
147 }
148 
149 /// Match an arbitrary ConstantFP and ignore it.
150 inline class_match<ConstantFP> m_ConstantFP() {
151   return class_match<ConstantFP>();
152 }
153 
154 /// Match an arbitrary ConstantExpr and ignore it.
155 inline class_match<ConstantExpr> m_ConstantExpr() {
156   return class_match<ConstantExpr>();
157 }
158 
159 /// Match an arbitrary basic block value and ignore it.
160 inline class_match<BasicBlock> m_BasicBlock() {
161   return class_match<BasicBlock>();
162 }
163 
164 /// Inverting matcher
165 template <typename Ty> struct match_unless {
166   Ty M;
167 
168   match_unless(const Ty &Matcher) : M(Matcher) {}
169 
170   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
171 };
172 
173 /// Match if the inner matcher does *NOT* match.
174 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
175   return match_unless<Ty>(M);
176 }
177 
178 /// Matching combinators
179 template <typename LTy, typename RTy> struct match_combine_or {
180   LTy L;
181   RTy R;
182 
183   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
184 
185   template <typename ITy> bool match(ITy *V) {
186     if (L.match(V))
187       return true;
188     if (R.match(V))
189       return true;
190     return false;
191   }
192 };
193 
194 template <typename LTy, typename RTy> struct match_combine_and {
195   LTy L;
196   RTy R;
197 
198   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
199 
200   template <typename ITy> bool match(ITy *V) {
201     if (L.match(V))
202       if (R.match(V))
203         return true;
204     return false;
205   }
206 };
207 
208 /// Combine two pattern matchers matching L || R
209 template <typename LTy, typename RTy>
210 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
211   return match_combine_or<LTy, RTy>(L, R);
212 }
213 
214 /// Combine two pattern matchers matching L && R
215 template <typename LTy, typename RTy>
216 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
217   return match_combine_and<LTy, RTy>(L, R);
218 }
219 
220 struct apint_match {
221   const APInt *&Res;
222   bool AllowUndef;
223 
224   apint_match(const APInt *&Res, bool AllowUndef)
225     : Res(Res), AllowUndef(AllowUndef) {}
226 
227   template <typename ITy> bool match(ITy *V) {
228     if (auto *CI = dyn_cast<ConstantInt>(V)) {
229       Res = &CI->getValue();
230       return true;
231     }
232     if (V->getType()->isVectorTy())
233       if (const auto *C = dyn_cast<Constant>(V))
234         if (auto *CI = dyn_cast_or_null<ConstantInt>(
235                 C->getSplatValue(AllowUndef))) {
236           Res = &CI->getValue();
237           return true;
238         }
239     return false;
240   }
241 };
242 // Either constexpr if or renaming ConstantFP::getValueAPF to
243 // ConstantFP::getValue is needed to do it via single template
244 // function for both apint/apfloat.
245 struct apfloat_match {
246   const APFloat *&Res;
247   bool AllowUndef;
248 
249   apfloat_match(const APFloat *&Res, bool AllowUndef)
250       : Res(Res), AllowUndef(AllowUndef) {}
251 
252   template <typename ITy> bool match(ITy *V) {
253     if (auto *CI = dyn_cast<ConstantFP>(V)) {
254       Res = &CI->getValueAPF();
255       return true;
256     }
257     if (V->getType()->isVectorTy())
258       if (const auto *C = dyn_cast<Constant>(V))
259         if (auto *CI = dyn_cast_or_null<ConstantFP>(
260                 C->getSplatValue(AllowUndef))) {
261           Res = &CI->getValueAPF();
262           return true;
263         }
264     return false;
265   }
266 };
267 
268 /// Match a ConstantInt or splatted ConstantVector, binding the
269 /// specified pointer to the contained APInt.
270 inline apint_match m_APInt(const APInt *&Res) {
271   // Forbid undefs by default to maintain previous behavior.
272   return apint_match(Res, /* AllowUndef */ false);
273 }
274 
275 /// Match APInt while allowing undefs in splat vector constants.
276 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
277   return apint_match(Res, /* AllowUndef */ true);
278 }
279 
280 /// Match APInt while forbidding undefs in splat vector constants.
281 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
282   return apint_match(Res, /* AllowUndef */ false);
283 }
284 
285 /// Match a ConstantFP or splatted ConstantVector, binding the
286 /// specified pointer to the contained APFloat.
287 inline apfloat_match m_APFloat(const APFloat *&Res) {
288   // Forbid undefs by default to maintain previous behavior.
289   return apfloat_match(Res, /* AllowUndef */ false);
290 }
291 
292 /// Match APFloat while allowing undefs in splat vector constants.
293 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
294   return apfloat_match(Res, /* AllowUndef */ true);
295 }
296 
297 /// Match APFloat while forbidding undefs in splat vector constants.
298 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
299   return apfloat_match(Res, /* AllowUndef */ false);
300 }
301 
302 template <int64_t Val> struct constantint_match {
303   template <typename ITy> bool match(ITy *V) {
304     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
305       const APInt &CIV = CI->getValue();
306       if (Val >= 0)
307         return CIV == static_cast<uint64_t>(Val);
308       // If Val is negative, and CI is shorter than it, truncate to the right
309       // number of bits.  If it is larger, then we have to sign extend.  Just
310       // compare their negated values.
311       return -CIV == -Val;
312     }
313     return false;
314   }
315 };
316 
317 /// Match a ConstantInt with a specific value.
318 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
319   return constantint_match<Val>();
320 }
321 
322 /// This helper class is used to match constant scalars, vector splats,
323 /// and fixed width vectors that satisfy a specified predicate.
324 /// For fixed width vector constants, undefined elements are ignored.
325 template <typename Predicate, typename ConstantVal>
326 struct cstval_pred_ty : public Predicate {
327   template <typename ITy> bool match(ITy *V) {
328     if (const auto *CV = dyn_cast<ConstantVal>(V))
329       return this->isValue(CV->getValue());
330     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
331       if (const auto *C = dyn_cast<Constant>(V)) {
332         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
333           return this->isValue(CV->getValue());
334 
335         // Number of elements of a scalable vector unknown at compile time
336         auto *FVTy = dyn_cast<FixedVectorType>(VTy);
337         if (!FVTy)
338           return false;
339 
340         // Non-splat vector constant: check each element for a match.
341         unsigned NumElts = FVTy->getNumElements();
342         assert(NumElts != 0 && "Constant vector with no elements?");
343         bool HasNonUndefElements = false;
344         for (unsigned i = 0; i != NumElts; ++i) {
345           Constant *Elt = C->getAggregateElement(i);
346           if (!Elt)
347             return false;
348           if (isa<UndefValue>(Elt))
349             continue;
350           auto *CV = dyn_cast<ConstantVal>(Elt);
351           if (!CV || !this->isValue(CV->getValue()))
352             return false;
353           HasNonUndefElements = true;
354         }
355         return HasNonUndefElements;
356       }
357     }
358     return false;
359   }
360 };
361 
362 /// specialization of cstval_pred_ty for ConstantInt
363 template <typename Predicate>
364 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
365 
366 /// specialization of cstval_pred_ty for ConstantFP
367 template <typename Predicate>
368 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
369 
370 /// This helper class is used to match scalar and vector constants that
371 /// satisfy a specified predicate, and bind them to an APInt.
372 template <typename Predicate> struct api_pred_ty : public Predicate {
373   const APInt *&Res;
374 
375   api_pred_ty(const APInt *&R) : Res(R) {}
376 
377   template <typename ITy> bool match(ITy *V) {
378     if (const auto *CI = dyn_cast<ConstantInt>(V))
379       if (this->isValue(CI->getValue())) {
380         Res = &CI->getValue();
381         return true;
382       }
383     if (V->getType()->isVectorTy())
384       if (const auto *C = dyn_cast<Constant>(V))
385         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
386           if (this->isValue(CI->getValue())) {
387             Res = &CI->getValue();
388             return true;
389           }
390 
391     return false;
392   }
393 };
394 
395 /// This helper class is used to match scalar and vector constants that
396 /// satisfy a specified predicate, and bind them to an APFloat.
397 /// Undefs are allowed in splat vector constants.
398 template <typename Predicate> struct apf_pred_ty : public Predicate {
399   const APFloat *&Res;
400 
401   apf_pred_ty(const APFloat *&R) : Res(R) {}
402 
403   template <typename ITy> bool match(ITy *V) {
404     if (const auto *CI = dyn_cast<ConstantFP>(V))
405       if (this->isValue(CI->getValue())) {
406         Res = &CI->getValue();
407         return true;
408       }
409     if (V->getType()->isVectorTy())
410       if (const auto *C = dyn_cast<Constant>(V))
411         if (auto *CI = dyn_cast_or_null<ConstantFP>(
412                 C->getSplatValue(/* AllowUndef */ true)))
413           if (this->isValue(CI->getValue())) {
414             Res = &CI->getValue();
415             return true;
416           }
417 
418     return false;
419   }
420 };
421 
422 ///////////////////////////////////////////////////////////////////////////////
423 //
424 // Encapsulate constant value queries for use in templated predicate matchers.
425 // This allows checking if constants match using compound predicates and works
426 // with vector constants, possibly with relaxed constraints. For example, ignore
427 // undef values.
428 //
429 ///////////////////////////////////////////////////////////////////////////////
430 
431 struct is_any_apint {
432   bool isValue(const APInt &C) { return true; }
433 };
434 /// Match an integer or vector with any integral constant.
435 /// For vectors, this includes constants with undefined elements.
436 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
437   return cst_pred_ty<is_any_apint>();
438 }
439 
440 struct is_all_ones {
441   bool isValue(const APInt &C) { return C.isAllOnes(); }
442 };
443 /// Match an integer or vector with all bits set.
444 /// For vectors, this includes constants with undefined elements.
445 inline cst_pred_ty<is_all_ones> m_AllOnes() {
446   return cst_pred_ty<is_all_ones>();
447 }
448 
449 struct is_maxsignedvalue {
450   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
451 };
452 /// Match an integer or vector with values having all bits except for the high
453 /// bit set (0x7f...).
454 /// For vectors, this includes constants with undefined elements.
455 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
456   return cst_pred_ty<is_maxsignedvalue>();
457 }
458 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
459   return V;
460 }
461 
462 struct is_negative {
463   bool isValue(const APInt &C) { return C.isNegative(); }
464 };
465 /// Match an integer or vector of negative values.
466 /// For vectors, this includes constants with undefined elements.
467 inline cst_pred_ty<is_negative> m_Negative() {
468   return cst_pred_ty<is_negative>();
469 }
470 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
471   return V;
472 }
473 
474 struct is_nonnegative {
475   bool isValue(const APInt &C) { return C.isNonNegative(); }
476 };
477 /// Match an integer or vector of non-negative values.
478 /// For vectors, this includes constants with undefined elements.
479 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
480   return cst_pred_ty<is_nonnegative>();
481 }
482 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
483   return V;
484 }
485 
486 struct is_strictlypositive {
487   bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
488 };
489 /// Match an integer or vector of strictly positive values.
490 /// For vectors, this includes constants with undefined elements.
491 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
492   return cst_pred_ty<is_strictlypositive>();
493 }
494 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
495   return V;
496 }
497 
498 struct is_nonpositive {
499   bool isValue(const APInt &C) { return C.isNonPositive(); }
500 };
501 /// Match an integer or vector of non-positive values.
502 /// For vectors, this includes constants with undefined elements.
503 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
504   return cst_pred_ty<is_nonpositive>();
505 }
506 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
507 
508 struct is_one {
509   bool isValue(const APInt &C) { return C.isOne(); }
510 };
511 /// Match an integer 1 or a vector with all elements equal to 1.
512 /// For vectors, this includes constants with undefined elements.
513 inline cst_pred_ty<is_one> m_One() {
514   return cst_pred_ty<is_one>();
515 }
516 
517 struct is_zero_int {
518   bool isValue(const APInt &C) { return C.isZero(); }
519 };
520 /// Match an integer 0 or a vector with all elements equal to 0.
521 /// For vectors, this includes constants with undefined elements.
522 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
523   return cst_pred_ty<is_zero_int>();
524 }
525 
526 struct is_zero {
527   template <typename ITy> bool match(ITy *V) {
528     auto *C = dyn_cast<Constant>(V);
529     // FIXME: this should be able to do something for scalable vectors
530     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
531   }
532 };
533 /// Match any null constant or a vector with all elements equal to 0.
534 /// For vectors, this includes constants with undefined elements.
535 inline is_zero m_Zero() {
536   return is_zero();
537 }
538 
539 struct is_power2 {
540   bool isValue(const APInt &C) { return C.isPowerOf2(); }
541 };
542 /// Match an integer or vector power-of-2.
543 /// For vectors, this includes constants with undefined elements.
544 inline cst_pred_ty<is_power2> m_Power2() {
545   return cst_pred_ty<is_power2>();
546 }
547 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
548   return V;
549 }
550 
551 struct is_negated_power2 {
552   bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
553 };
554 /// Match a integer or vector negated power-of-2.
555 /// For vectors, this includes constants with undefined elements.
556 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
557   return cst_pred_ty<is_negated_power2>();
558 }
559 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
560   return V;
561 }
562 
563 struct is_power2_or_zero {
564   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
565 };
566 /// Match an integer or vector of 0 or power-of-2 values.
567 /// For vectors, this includes constants with undefined elements.
568 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
569   return cst_pred_ty<is_power2_or_zero>();
570 }
571 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
572   return V;
573 }
574 
575 struct is_sign_mask {
576   bool isValue(const APInt &C) { return C.isSignMask(); }
577 };
578 /// Match an integer or vector with only the sign bit(s) set.
579 /// For vectors, this includes constants with undefined elements.
580 inline cst_pred_ty<is_sign_mask> m_SignMask() {
581   return cst_pred_ty<is_sign_mask>();
582 }
583 
584 struct is_lowbit_mask {
585   bool isValue(const APInt &C) { return C.isMask(); }
586 };
587 /// Match an integer or vector with only the low bit(s) set.
588 /// For vectors, this includes constants with undefined elements.
589 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
590   return cst_pred_ty<is_lowbit_mask>();
591 }
592 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) {
593   return V;
594 }
595 
596 struct icmp_pred_with_threshold {
597   ICmpInst::Predicate Pred;
598   const APInt *Thr;
599   bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
600 };
601 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
602 /// to Threshold. For vectors, this includes constants with undefined elements.
603 inline cst_pred_ty<icmp_pred_with_threshold>
604 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
605   cst_pred_ty<icmp_pred_with_threshold> P;
606   P.Pred = Predicate;
607   P.Thr = &Threshold;
608   return P;
609 }
610 
611 struct is_nan {
612   bool isValue(const APFloat &C) { return C.isNaN(); }
613 };
614 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
615 /// For vectors, this includes constants with undefined elements.
616 inline cstfp_pred_ty<is_nan> m_NaN() {
617   return cstfp_pred_ty<is_nan>();
618 }
619 
620 struct is_nonnan {
621   bool isValue(const APFloat &C) { return !C.isNaN(); }
622 };
623 /// Match a non-NaN FP constant.
624 /// For vectors, this includes constants with undefined elements.
625 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
626   return cstfp_pred_ty<is_nonnan>();
627 }
628 
629 struct is_inf {
630   bool isValue(const APFloat &C) { return C.isInfinity(); }
631 };
632 /// Match a positive or negative infinity FP constant.
633 /// For vectors, this includes constants with undefined elements.
634 inline cstfp_pred_ty<is_inf> m_Inf() {
635   return cstfp_pred_ty<is_inf>();
636 }
637 
638 struct is_noninf {
639   bool isValue(const APFloat &C) { return !C.isInfinity(); }
640 };
641 /// Match a non-infinity FP constant, i.e. finite or NaN.
642 /// For vectors, this includes constants with undefined elements.
643 inline cstfp_pred_ty<is_noninf> m_NonInf() {
644   return cstfp_pred_ty<is_noninf>();
645 }
646 
647 struct is_finite {
648   bool isValue(const APFloat &C) { return C.isFinite(); }
649 };
650 /// Match a finite FP constant, i.e. not infinity or NaN.
651 /// For vectors, this includes constants with undefined elements.
652 inline cstfp_pred_ty<is_finite> m_Finite() {
653   return cstfp_pred_ty<is_finite>();
654 }
655 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
656 
657 struct is_finitenonzero {
658   bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
659 };
660 /// Match a finite non-zero FP constant.
661 /// For vectors, this includes constants with undefined elements.
662 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
663   return cstfp_pred_ty<is_finitenonzero>();
664 }
665 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
666   return V;
667 }
668 
669 struct is_any_zero_fp {
670   bool isValue(const APFloat &C) { return C.isZero(); }
671 };
672 /// Match a floating-point negative zero or positive zero.
673 /// For vectors, this includes constants with undefined elements.
674 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
675   return cstfp_pred_ty<is_any_zero_fp>();
676 }
677 
678 struct is_pos_zero_fp {
679   bool isValue(const APFloat &C) { return C.isPosZero(); }
680 };
681 /// Match a floating-point positive zero.
682 /// For vectors, this includes constants with undefined elements.
683 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
684   return cstfp_pred_ty<is_pos_zero_fp>();
685 }
686 
687 struct is_neg_zero_fp {
688   bool isValue(const APFloat &C) { return C.isNegZero(); }
689 };
690 /// Match a floating-point negative zero.
691 /// For vectors, this includes constants with undefined elements.
692 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
693   return cstfp_pred_ty<is_neg_zero_fp>();
694 }
695 
696 struct is_non_zero_fp {
697   bool isValue(const APFloat &C) { return C.isNonZero(); }
698 };
699 /// Match a floating-point non-zero.
700 /// For vectors, this includes constants with undefined elements.
701 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
702   return cstfp_pred_ty<is_non_zero_fp>();
703 }
704 
705 ///////////////////////////////////////////////////////////////////////////////
706 
707 template <typename Class> struct bind_ty {
708   Class *&VR;
709 
710   bind_ty(Class *&V) : VR(V) {}
711 
712   template <typename ITy> bool match(ITy *V) {
713     if (auto *CV = dyn_cast<Class>(V)) {
714       VR = CV;
715       return true;
716     }
717     return false;
718   }
719 };
720 
721 /// Match a value, capturing it if we match.
722 inline bind_ty<Value> m_Value(Value *&V) { return V; }
723 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
724 
725 /// Match an instruction, capturing it if we match.
726 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
727 /// Match a unary operator, capturing it if we match.
728 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
729 /// Match a binary operator, capturing it if we match.
730 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
731 /// Match a with overflow intrinsic, capturing it if we match.
732 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
733 inline bind_ty<const WithOverflowInst>
734 m_WithOverflowInst(const WithOverflowInst *&I) {
735   return I;
736 }
737 
738 /// Match a Constant, capturing the value if we match.
739 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
740 
741 /// Match a ConstantInt, capturing the value if we match.
742 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
743 
744 /// Match a ConstantFP, capturing the value if we match.
745 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
746 
747 /// Match a ConstantExpr, capturing the value if we match.
748 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
749 
750 /// Match a basic block value, capturing it if we match.
751 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
752 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
753   return V;
754 }
755 
756 /// Match an arbitrary immediate Constant and ignore it.
757 inline match_combine_and<class_match<Constant>,
758                          match_unless<class_match<ConstantExpr>>>
759 m_ImmConstant() {
760   return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
761 }
762 
763 /// Match an immediate Constant, capturing the value if we match.
764 inline match_combine_and<bind_ty<Constant>,
765                          match_unless<class_match<ConstantExpr>>>
766 m_ImmConstant(Constant *&C) {
767   return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
768 }
769 
770 /// Match a specified Value*.
771 struct specificval_ty {
772   const Value *Val;
773 
774   specificval_ty(const Value *V) : Val(V) {}
775 
776   template <typename ITy> bool match(ITy *V) { return V == Val; }
777 };
778 
779 /// Match if we have a specific specified value.
780 inline specificval_ty m_Specific(const Value *V) { return V; }
781 
782 /// Stores a reference to the Value *, not the Value * itself,
783 /// thus can be used in commutative matchers.
784 template <typename Class> struct deferredval_ty {
785   Class *const &Val;
786 
787   deferredval_ty(Class *const &V) : Val(V) {}
788 
789   template <typename ITy> bool match(ITy *const V) { return V == Val; }
790 };
791 
792 /// Like m_Specific(), but works if the specific value to match is determined
793 /// as part of the same match() expression. For example:
794 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
795 /// bind X before the pattern match starts.
796 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
797 /// whichever value m_Value(X) populated.
798 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
799 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
800   return V;
801 }
802 
803 /// Match a specified floating point value or vector of all elements of
804 /// that value.
805 struct specific_fpval {
806   double Val;
807 
808   specific_fpval(double V) : Val(V) {}
809 
810   template <typename ITy> bool match(ITy *V) {
811     if (const auto *CFP = dyn_cast<ConstantFP>(V))
812       return CFP->isExactlyValue(Val);
813     if (V->getType()->isVectorTy())
814       if (const auto *C = dyn_cast<Constant>(V))
815         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
816           return CFP->isExactlyValue(Val);
817     return false;
818   }
819 };
820 
821 /// Match a specific floating point value or vector with all elements
822 /// equal to the value.
823 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
824 
825 /// Match a float 1.0 or vector with all elements equal to 1.0.
826 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
827 
828 struct bind_const_intval_ty {
829   uint64_t &VR;
830 
831   bind_const_intval_ty(uint64_t &V) : VR(V) {}
832 
833   template <typename ITy> bool match(ITy *V) {
834     if (const auto *CV = dyn_cast<ConstantInt>(V))
835       if (CV->getValue().ule(UINT64_MAX)) {
836         VR = CV->getZExtValue();
837         return true;
838       }
839     return false;
840   }
841 };
842 
843 /// Match a specified integer value or vector of all elements of that
844 /// value.
845 template <bool AllowUndefs>
846 struct specific_intval {
847   APInt Val;
848 
849   specific_intval(APInt V) : Val(std::move(V)) {}
850 
851   template <typename ITy> bool match(ITy *V) {
852     const auto *CI = dyn_cast<ConstantInt>(V);
853     if (!CI && V->getType()->isVectorTy())
854       if (const auto *C = dyn_cast<Constant>(V))
855         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
856 
857     return CI && APInt::isSameValue(CI->getValue(), Val);
858   }
859 };
860 
861 /// Match a specific integer value or vector with all elements equal to
862 /// the value.
863 inline specific_intval<false> m_SpecificInt(APInt V) {
864   return specific_intval<false>(std::move(V));
865 }
866 
867 inline specific_intval<false> m_SpecificInt(uint64_t V) {
868   return m_SpecificInt(APInt(64, V));
869 }
870 
871 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
872   return specific_intval<true>(std::move(V));
873 }
874 
875 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
876   return m_SpecificIntAllowUndef(APInt(64, V));
877 }
878 
879 /// Match a ConstantInt and bind to its value.  This does not match
880 /// ConstantInts wider than 64-bits.
881 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
882 
883 /// Match a specified basic block value.
884 struct specific_bbval {
885   BasicBlock *Val;
886 
887   specific_bbval(BasicBlock *Val) : Val(Val) {}
888 
889   template <typename ITy> bool match(ITy *V) {
890     const auto *BB = dyn_cast<BasicBlock>(V);
891     return BB && BB == Val;
892   }
893 };
894 
895 /// Match a specific basic block value.
896 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
897   return specific_bbval(BB);
898 }
899 
900 /// A commutative-friendly version of m_Specific().
901 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
902   return BB;
903 }
904 inline deferredval_ty<const BasicBlock>
905 m_Deferred(const BasicBlock *const &BB) {
906   return BB;
907 }
908 
909 //===----------------------------------------------------------------------===//
910 // Matcher for any binary operator.
911 //
912 template <typename LHS_t, typename RHS_t, bool Commutable = false>
913 struct AnyBinaryOp_match {
914   LHS_t L;
915   RHS_t R;
916 
917   // The evaluation order is always stable, regardless of Commutability.
918   // The LHS is always matched first.
919   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
920 
921   template <typename OpTy> bool match(OpTy *V) {
922     if (auto *I = dyn_cast<BinaryOperator>(V))
923       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
924              (Commutable && L.match(I->getOperand(1)) &&
925               R.match(I->getOperand(0)));
926     return false;
927   }
928 };
929 
930 template <typename LHS, typename RHS>
931 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
932   return AnyBinaryOp_match<LHS, RHS>(L, R);
933 }
934 
935 //===----------------------------------------------------------------------===//
936 // Matcher for any unary operator.
937 // TODO fuse unary, binary matcher into n-ary matcher
938 //
939 template <typename OP_t> struct AnyUnaryOp_match {
940   OP_t X;
941 
942   AnyUnaryOp_match(const OP_t &X) : X(X) {}
943 
944   template <typename OpTy> bool match(OpTy *V) {
945     if (auto *I = dyn_cast<UnaryOperator>(V))
946       return X.match(I->getOperand(0));
947     return false;
948   }
949 };
950 
951 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
952   return AnyUnaryOp_match<OP_t>(X);
953 }
954 
955 //===----------------------------------------------------------------------===//
956 // Matchers for specific binary operators.
957 //
958 
959 template <typename LHS_t, typename RHS_t, unsigned Opcode,
960           bool Commutable = false>
961 struct BinaryOp_match {
962   LHS_t L;
963   RHS_t R;
964 
965   // The evaluation order is always stable, regardless of Commutability.
966   // The LHS is always matched first.
967   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
968 
969   template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
970     if (V->getValueID() == Value::InstructionVal + Opc) {
971       auto *I = cast<BinaryOperator>(V);
972       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
973              (Commutable && L.match(I->getOperand(1)) &&
974               R.match(I->getOperand(0)));
975     }
976     if (auto *CE = dyn_cast<ConstantExpr>(V))
977       return CE->getOpcode() == Opc &&
978              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
979               (Commutable && L.match(CE->getOperand(1)) &&
980                R.match(CE->getOperand(0))));
981     return false;
982   }
983 
984   template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
985 };
986 
987 template <typename LHS, typename RHS>
988 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
989                                                         const RHS &R) {
990   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
991 }
992 
993 template <typename LHS, typename RHS>
994 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
995                                                           const RHS &R) {
996   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
997 }
998 
999 template <typename LHS, typename RHS>
1000 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1001                                                         const RHS &R) {
1002   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1003 }
1004 
1005 template <typename LHS, typename RHS>
1006 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1007                                                           const RHS &R) {
1008   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1009 }
1010 
1011 template <typename Op_t> struct FNeg_match {
1012   Op_t X;
1013 
1014   FNeg_match(const Op_t &Op) : X(Op) {}
1015   template <typename OpTy> bool match(OpTy *V) {
1016     auto *FPMO = dyn_cast<FPMathOperator>(V);
1017     if (!FPMO) return false;
1018 
1019     if (FPMO->getOpcode() == Instruction::FNeg)
1020       return X.match(FPMO->getOperand(0));
1021 
1022     if (FPMO->getOpcode() == Instruction::FSub) {
1023       if (FPMO->hasNoSignedZeros()) {
1024         // With 'nsz', any zero goes.
1025         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1026           return false;
1027       } else {
1028         // Without 'nsz', we need fsub -0.0, X exactly.
1029         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1030           return false;
1031       }
1032 
1033       return X.match(FPMO->getOperand(1));
1034     }
1035 
1036     return false;
1037   }
1038 };
1039 
1040 /// Match 'fneg X' as 'fsub -0.0, X'.
1041 template <typename OpTy>
1042 inline FNeg_match<OpTy>
1043 m_FNeg(const OpTy &X) {
1044   return FNeg_match<OpTy>(X);
1045 }
1046 
1047 /// Match 'fneg X' as 'fsub +-0.0, X'.
1048 template <typename RHS>
1049 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1050 m_FNegNSZ(const RHS &X) {
1051   return m_FSub(m_AnyZeroFP(), X);
1052 }
1053 
1054 template <typename LHS, typename RHS>
1055 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1056                                                         const RHS &R) {
1057   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1058 }
1059 
1060 template <typename LHS, typename RHS>
1061 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1062                                                           const RHS &R) {
1063   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1064 }
1065 
1066 template <typename LHS, typename RHS>
1067 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1068                                                           const RHS &R) {
1069   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1070 }
1071 
1072 template <typename LHS, typename RHS>
1073 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1074                                                           const RHS &R) {
1075   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1076 }
1077 
1078 template <typename LHS, typename RHS>
1079 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1080                                                           const RHS &R) {
1081   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1082 }
1083 
1084 template <typename LHS, typename RHS>
1085 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1086                                                           const RHS &R) {
1087   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1088 }
1089 
1090 template <typename LHS, typename RHS>
1091 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1092                                                           const RHS &R) {
1093   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1094 }
1095 
1096 template <typename LHS, typename RHS>
1097 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1098                                                           const RHS &R) {
1099   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1100 }
1101 
1102 template <typename LHS, typename RHS>
1103 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1104                                                         const RHS &R) {
1105   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1106 }
1107 
1108 template <typename LHS, typename RHS>
1109 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1110                                                       const RHS &R) {
1111   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1112 }
1113 
1114 template <typename LHS, typename RHS>
1115 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1116                                                         const RHS &R) {
1117   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1118 }
1119 
1120 template <typename LHS, typename RHS>
1121 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1122                                                         const RHS &R) {
1123   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1124 }
1125 
1126 template <typename LHS, typename RHS>
1127 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1128                                                           const RHS &R) {
1129   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1130 }
1131 
1132 template <typename LHS, typename RHS>
1133 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1134                                                           const RHS &R) {
1135   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1136 }
1137 
1138 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1139           unsigned WrapFlags = 0>
1140 struct OverflowingBinaryOp_match {
1141   LHS_t L;
1142   RHS_t R;
1143 
1144   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1145       : L(LHS), R(RHS) {}
1146 
1147   template <typename OpTy> bool match(OpTy *V) {
1148     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1149       if (Op->getOpcode() != Opcode)
1150         return false;
1151       if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1152           !Op->hasNoUnsignedWrap())
1153         return false;
1154       if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1155           !Op->hasNoSignedWrap())
1156         return false;
1157       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1158     }
1159     return false;
1160   }
1161 };
1162 
1163 template <typename LHS, typename RHS>
1164 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1165                                  OverflowingBinaryOperator::NoSignedWrap>
1166 m_NSWAdd(const LHS &L, const RHS &R) {
1167   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1168                                    OverflowingBinaryOperator::NoSignedWrap>(
1169       L, R);
1170 }
1171 template <typename LHS, typename RHS>
1172 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1173                                  OverflowingBinaryOperator::NoSignedWrap>
1174 m_NSWSub(const LHS &L, const RHS &R) {
1175   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1176                                    OverflowingBinaryOperator::NoSignedWrap>(
1177       L, R);
1178 }
1179 template <typename LHS, typename RHS>
1180 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1181                                  OverflowingBinaryOperator::NoSignedWrap>
1182 m_NSWMul(const LHS &L, const RHS &R) {
1183   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1184                                    OverflowingBinaryOperator::NoSignedWrap>(
1185       L, R);
1186 }
1187 template <typename LHS, typename RHS>
1188 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1189                                  OverflowingBinaryOperator::NoSignedWrap>
1190 m_NSWShl(const LHS &L, const RHS &R) {
1191   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1192                                    OverflowingBinaryOperator::NoSignedWrap>(
1193       L, R);
1194 }
1195 
1196 template <typename LHS, typename RHS>
1197 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1198                                  OverflowingBinaryOperator::NoUnsignedWrap>
1199 m_NUWAdd(const LHS &L, const RHS &R) {
1200   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1201                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1202       L, R);
1203 }
1204 template <typename LHS, typename RHS>
1205 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1206                                  OverflowingBinaryOperator::NoUnsignedWrap>
1207 m_NUWSub(const LHS &L, const RHS &R) {
1208   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1209                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1210       L, R);
1211 }
1212 template <typename LHS, typename RHS>
1213 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1214                                  OverflowingBinaryOperator::NoUnsignedWrap>
1215 m_NUWMul(const LHS &L, const RHS &R) {
1216   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1217                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1218       L, R);
1219 }
1220 template <typename LHS, typename RHS>
1221 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1222                                  OverflowingBinaryOperator::NoUnsignedWrap>
1223 m_NUWShl(const LHS &L, const RHS &R) {
1224   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1225                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1226       L, R);
1227 }
1228 
1229 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1230 struct SpecificBinaryOp_match
1231     : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1232   unsigned Opcode;
1233 
1234   SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1235       : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1236 
1237   template <typename OpTy> bool match(OpTy *V) {
1238     return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1239   }
1240 };
1241 
1242 /// Matches a specific opcode.
1243 template <typename LHS, typename RHS>
1244 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1245                                                 const RHS &R) {
1246   return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1247 }
1248 
1249 //===----------------------------------------------------------------------===//
1250 // Class that matches a group of binary opcodes.
1251 //
1252 template <typename LHS_t, typename RHS_t, typename Predicate>
1253 struct BinOpPred_match : Predicate {
1254   LHS_t L;
1255   RHS_t R;
1256 
1257   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1258 
1259   template <typename OpTy> bool match(OpTy *V) {
1260     if (auto *I = dyn_cast<Instruction>(V))
1261       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1262              R.match(I->getOperand(1));
1263     if (auto *CE = dyn_cast<ConstantExpr>(V))
1264       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1265              R.match(CE->getOperand(1));
1266     return false;
1267   }
1268 };
1269 
1270 struct is_shift_op {
1271   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1272 };
1273 
1274 struct is_right_shift_op {
1275   bool isOpType(unsigned Opcode) {
1276     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1277   }
1278 };
1279 
1280 struct is_logical_shift_op {
1281   bool isOpType(unsigned Opcode) {
1282     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1283   }
1284 };
1285 
1286 struct is_bitwiselogic_op {
1287   bool isOpType(unsigned Opcode) {
1288     return Instruction::isBitwiseLogicOp(Opcode);
1289   }
1290 };
1291 
1292 struct is_idiv_op {
1293   bool isOpType(unsigned Opcode) {
1294     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1295   }
1296 };
1297 
1298 struct is_irem_op {
1299   bool isOpType(unsigned Opcode) {
1300     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1301   }
1302 };
1303 
1304 /// Matches shift operations.
1305 template <typename LHS, typename RHS>
1306 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1307                                                       const RHS &R) {
1308   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1309 }
1310 
1311 /// Matches logical shift operations.
1312 template <typename LHS, typename RHS>
1313 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1314                                                           const RHS &R) {
1315   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1316 }
1317 
1318 /// Matches logical shift operations.
1319 template <typename LHS, typename RHS>
1320 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1321 m_LogicalShift(const LHS &L, const RHS &R) {
1322   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1323 }
1324 
1325 /// Matches bitwise logic operations.
1326 template <typename LHS, typename RHS>
1327 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1328 m_BitwiseLogic(const LHS &L, const RHS &R) {
1329   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1330 }
1331 
1332 /// Matches integer division operations.
1333 template <typename LHS, typename RHS>
1334 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1335                                                     const RHS &R) {
1336   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1337 }
1338 
1339 /// Matches integer remainder operations.
1340 template <typename LHS, typename RHS>
1341 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1342                                                     const RHS &R) {
1343   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1344 }
1345 
1346 //===----------------------------------------------------------------------===//
1347 // Class that matches exact binary ops.
1348 //
1349 template <typename SubPattern_t> struct Exact_match {
1350   SubPattern_t SubPattern;
1351 
1352   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1353 
1354   template <typename OpTy> bool match(OpTy *V) {
1355     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1356       return PEO->isExact() && SubPattern.match(V);
1357     return false;
1358   }
1359 };
1360 
1361 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1362   return SubPattern;
1363 }
1364 
1365 //===----------------------------------------------------------------------===//
1366 // Matchers for CmpInst classes
1367 //
1368 
1369 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1370           bool Commutable = false>
1371 struct CmpClass_match {
1372   PredicateTy &Predicate;
1373   LHS_t L;
1374   RHS_t R;
1375 
1376   // The evaluation order is always stable, regardless of Commutability.
1377   // The LHS is always matched first.
1378   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1379       : Predicate(Pred), L(LHS), R(RHS) {}
1380 
1381   template <typename OpTy> bool match(OpTy *V) {
1382     if (auto *I = dyn_cast<Class>(V)) {
1383       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1384         Predicate = I->getPredicate();
1385         return true;
1386       } else if (Commutable && L.match(I->getOperand(1)) &&
1387            R.match(I->getOperand(0))) {
1388         Predicate = I->getSwappedPredicate();
1389         return true;
1390       }
1391     }
1392     return false;
1393   }
1394 };
1395 
1396 template <typename LHS, typename RHS>
1397 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1398 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1399   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1400 }
1401 
1402 template <typename LHS, typename RHS>
1403 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1404 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1405   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1406 }
1407 
1408 template <typename LHS, typename RHS>
1409 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1410 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1411   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 // Matchers for instructions with a given opcode and number of operands.
1416 //
1417 
1418 /// Matches instructions with Opcode and three operands.
1419 template <typename T0, unsigned Opcode> struct OneOps_match {
1420   T0 Op1;
1421 
1422   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1423 
1424   template <typename OpTy> bool match(OpTy *V) {
1425     if (V->getValueID() == Value::InstructionVal + Opcode) {
1426       auto *I = cast<Instruction>(V);
1427       return Op1.match(I->getOperand(0));
1428     }
1429     return false;
1430   }
1431 };
1432 
1433 /// Matches instructions with Opcode and three operands.
1434 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1435   T0 Op1;
1436   T1 Op2;
1437 
1438   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1439 
1440   template <typename OpTy> bool match(OpTy *V) {
1441     if (V->getValueID() == Value::InstructionVal + Opcode) {
1442       auto *I = cast<Instruction>(V);
1443       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1444     }
1445     return false;
1446   }
1447 };
1448 
1449 /// Matches instructions with Opcode and three operands.
1450 template <typename T0, typename T1, typename T2, unsigned Opcode>
1451 struct ThreeOps_match {
1452   T0 Op1;
1453   T1 Op2;
1454   T2 Op3;
1455 
1456   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1457       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1458 
1459   template <typename OpTy> bool match(OpTy *V) {
1460     if (V->getValueID() == Value::InstructionVal + Opcode) {
1461       auto *I = cast<Instruction>(V);
1462       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1463              Op3.match(I->getOperand(2));
1464     }
1465     return false;
1466   }
1467 };
1468 
1469 /// Matches SelectInst.
1470 template <typename Cond, typename LHS, typename RHS>
1471 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1472 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1473   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1474 }
1475 
1476 /// This matches a select of two constants, e.g.:
1477 /// m_SelectCst<-1, 0>(m_Value(V))
1478 template <int64_t L, int64_t R, typename Cond>
1479 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1480                       Instruction::Select>
1481 m_SelectCst(const Cond &C) {
1482   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1483 }
1484 
1485 /// Matches FreezeInst.
1486 template <typename OpTy>
1487 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1488   return OneOps_match<OpTy, Instruction::Freeze>(Op);
1489 }
1490 
1491 /// Matches InsertElementInst.
1492 template <typename Val_t, typename Elt_t, typename Idx_t>
1493 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1494 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1495   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1496       Val, Elt, Idx);
1497 }
1498 
1499 /// Matches ExtractElementInst.
1500 template <typename Val_t, typename Idx_t>
1501 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1502 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1503   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1504 }
1505 
1506 /// Matches shuffle.
1507 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1508   T0 Op1;
1509   T1 Op2;
1510   T2 Mask;
1511 
1512   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1513       : Op1(Op1), Op2(Op2), Mask(Mask) {}
1514 
1515   template <typename OpTy> bool match(OpTy *V) {
1516     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1517       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1518              Mask.match(I->getShuffleMask());
1519     }
1520     return false;
1521   }
1522 };
1523 
1524 struct m_Mask {
1525   ArrayRef<int> &MaskRef;
1526   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1527   bool match(ArrayRef<int> Mask) {
1528     MaskRef = Mask;
1529     return true;
1530   }
1531 };
1532 
1533 struct m_ZeroMask {
1534   bool match(ArrayRef<int> Mask) {
1535     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1536   }
1537 };
1538 
1539 struct m_SpecificMask {
1540   ArrayRef<int> &MaskRef;
1541   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1542   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1543 };
1544 
1545 struct m_SplatOrUndefMask {
1546   int &SplatIndex;
1547   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1548   bool match(ArrayRef<int> Mask) {
1549     auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1550     if (First == Mask.end())
1551       return false;
1552     SplatIndex = *First;
1553     return all_of(Mask,
1554                   [First](int Elem) { return Elem == *First || Elem == -1; });
1555   }
1556 };
1557 
1558 /// Matches ShuffleVectorInst independently of mask value.
1559 template <typename V1_t, typename V2_t>
1560 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1561 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1562   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1563 }
1564 
1565 template <typename V1_t, typename V2_t, typename Mask_t>
1566 inline Shuffle_match<V1_t, V2_t, Mask_t>
1567 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1568   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1569 }
1570 
1571 /// Matches LoadInst.
1572 template <typename OpTy>
1573 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1574   return OneOps_match<OpTy, Instruction::Load>(Op);
1575 }
1576 
1577 /// Matches StoreInst.
1578 template <typename ValueOpTy, typename PointerOpTy>
1579 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1580 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1581   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1582                                                                   PointerOp);
1583 }
1584 
1585 //===----------------------------------------------------------------------===//
1586 // Matchers for CastInst classes
1587 //
1588 
1589 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1590   Op_t Op;
1591 
1592   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1593 
1594   template <typename OpTy> bool match(OpTy *V) {
1595     if (auto *O = dyn_cast<Operator>(V))
1596       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1597     return false;
1598   }
1599 };
1600 
1601 /// Matches BitCast.
1602 template <typename OpTy>
1603 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1604   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1605 }
1606 
1607 /// Matches PtrToInt.
1608 template <typename OpTy>
1609 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1610   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1611 }
1612 
1613 /// Matches IntToPtr.
1614 template <typename OpTy>
1615 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1616   return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1617 }
1618 
1619 /// Matches Trunc.
1620 template <typename OpTy>
1621 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1622   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1623 }
1624 
1625 template <typename OpTy>
1626 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1627 m_TruncOrSelf(const OpTy &Op) {
1628   return m_CombineOr(m_Trunc(Op), Op);
1629 }
1630 
1631 /// Matches SExt.
1632 template <typename OpTy>
1633 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1634   return CastClass_match<OpTy, Instruction::SExt>(Op);
1635 }
1636 
1637 /// Matches ZExt.
1638 template <typename OpTy>
1639 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1640   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1641 }
1642 
1643 template <typename OpTy>
1644 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1645 m_ZExtOrSelf(const OpTy &Op) {
1646   return m_CombineOr(m_ZExt(Op), Op);
1647 }
1648 
1649 template <typename OpTy>
1650 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1651 m_SExtOrSelf(const OpTy &Op) {
1652   return m_CombineOr(m_SExt(Op), Op);
1653 }
1654 
1655 template <typename OpTy>
1656 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1657                         CastClass_match<OpTy, Instruction::SExt>>
1658 m_ZExtOrSExt(const OpTy &Op) {
1659   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1660 }
1661 
1662 template <typename OpTy>
1663 inline match_combine_or<
1664     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1665                      CastClass_match<OpTy, Instruction::SExt>>,
1666     OpTy>
1667 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1668   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1669 }
1670 
1671 template <typename OpTy>
1672 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1673   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1674 }
1675 
1676 template <typename OpTy>
1677 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1678   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1679 }
1680 
1681 template <typename OpTy>
1682 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1683   return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1684 }
1685 
1686 template <typename OpTy>
1687 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1688   return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1689 }
1690 
1691 template <typename OpTy>
1692 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1693   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1694 }
1695 
1696 template <typename OpTy>
1697 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1698   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1699 }
1700 
1701 //===----------------------------------------------------------------------===//
1702 // Matchers for control flow.
1703 //
1704 
1705 struct br_match {
1706   BasicBlock *&Succ;
1707 
1708   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1709 
1710   template <typename OpTy> bool match(OpTy *V) {
1711     if (auto *BI = dyn_cast<BranchInst>(V))
1712       if (BI->isUnconditional()) {
1713         Succ = BI->getSuccessor(0);
1714         return true;
1715       }
1716     return false;
1717   }
1718 };
1719 
1720 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1721 
1722 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1723 struct brc_match {
1724   Cond_t Cond;
1725   TrueBlock_t T;
1726   FalseBlock_t F;
1727 
1728   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1729       : Cond(C), T(t), F(f) {}
1730 
1731   template <typename OpTy> bool match(OpTy *V) {
1732     if (auto *BI = dyn_cast<BranchInst>(V))
1733       if (BI->isConditional() && Cond.match(BI->getCondition()))
1734         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1735     return false;
1736   }
1737 };
1738 
1739 template <typename Cond_t>
1740 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1741 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1742   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1743       C, m_BasicBlock(T), m_BasicBlock(F));
1744 }
1745 
1746 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1747 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1748 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1749   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1750 }
1751 
1752 //===----------------------------------------------------------------------===//
1753 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1754 //
1755 
1756 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1757           bool Commutable = false>
1758 struct MaxMin_match {
1759   using PredType = Pred_t;
1760   LHS_t L;
1761   RHS_t R;
1762 
1763   // The evaluation order is always stable, regardless of Commutability.
1764   // The LHS is always matched first.
1765   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1766 
1767   template <typename OpTy> bool match(OpTy *V) {
1768     if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1769       Intrinsic::ID IID = II->getIntrinsicID();
1770       if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1771           (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1772           (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1773           (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1774         Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1775         return (L.match(LHS) && R.match(RHS)) ||
1776                (Commutable && L.match(RHS) && R.match(LHS));
1777       }
1778     }
1779     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1780     auto *SI = dyn_cast<SelectInst>(V);
1781     if (!SI)
1782       return false;
1783     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1784     if (!Cmp)
1785       return false;
1786     // At this point we have a select conditioned on a comparison.  Check that
1787     // it is the values returned by the select that are being compared.
1788     auto *TrueVal = SI->getTrueValue();
1789     auto *FalseVal = SI->getFalseValue();
1790     auto *LHS = Cmp->getOperand(0);
1791     auto *RHS = Cmp->getOperand(1);
1792     if ((TrueVal != LHS || FalseVal != RHS) &&
1793         (TrueVal != RHS || FalseVal != LHS))
1794       return false;
1795     typename CmpInst_t::Predicate Pred =
1796         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1797     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1798     if (!Pred_t::match(Pred))
1799       return false;
1800     // It does!  Bind the operands.
1801     return (L.match(LHS) && R.match(RHS)) ||
1802            (Commutable && L.match(RHS) && R.match(LHS));
1803   }
1804 };
1805 
1806 /// Helper class for identifying signed max predicates.
1807 struct smax_pred_ty {
1808   static bool match(ICmpInst::Predicate Pred) {
1809     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1810   }
1811 };
1812 
1813 /// Helper class for identifying signed min predicates.
1814 struct smin_pred_ty {
1815   static bool match(ICmpInst::Predicate Pred) {
1816     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1817   }
1818 };
1819 
1820 /// Helper class for identifying unsigned max predicates.
1821 struct umax_pred_ty {
1822   static bool match(ICmpInst::Predicate Pred) {
1823     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1824   }
1825 };
1826 
1827 /// Helper class for identifying unsigned min predicates.
1828 struct umin_pred_ty {
1829   static bool match(ICmpInst::Predicate Pred) {
1830     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1831   }
1832 };
1833 
1834 /// Helper class for identifying ordered max predicates.
1835 struct ofmax_pred_ty {
1836   static bool match(FCmpInst::Predicate Pred) {
1837     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1838   }
1839 };
1840 
1841 /// Helper class for identifying ordered min predicates.
1842 struct ofmin_pred_ty {
1843   static bool match(FCmpInst::Predicate Pred) {
1844     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1845   }
1846 };
1847 
1848 /// Helper class for identifying unordered max predicates.
1849 struct ufmax_pred_ty {
1850   static bool match(FCmpInst::Predicate Pred) {
1851     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1852   }
1853 };
1854 
1855 /// Helper class for identifying unordered min predicates.
1856 struct ufmin_pred_ty {
1857   static bool match(FCmpInst::Predicate Pred) {
1858     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1859   }
1860 };
1861 
1862 template <typename LHS, typename RHS>
1863 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1864                                                              const RHS &R) {
1865   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1866 }
1867 
1868 template <typename LHS, typename RHS>
1869 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1870                                                              const RHS &R) {
1871   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1872 }
1873 
1874 template <typename LHS, typename RHS>
1875 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1876                                                              const RHS &R) {
1877   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1878 }
1879 
1880 template <typename LHS, typename RHS>
1881 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1882                                                              const RHS &R) {
1883   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1884 }
1885 
1886 template <typename LHS, typename RHS>
1887 inline match_combine_or<
1888     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1889                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1890     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1891                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1892 m_MaxOrMin(const LHS &L, const RHS &R) {
1893   return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1894                      m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1895 }
1896 
1897 /// Match an 'ordered' floating point maximum function.
1898 /// Floating point has one special value 'NaN'. Therefore, there is no total
1899 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1900 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1901 /// semantics. In the presence of 'NaN' we have to preserve the original
1902 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1903 ///
1904 ///                         max(L, R)  iff L and R are not NaN
1905 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1906 template <typename LHS, typename RHS>
1907 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1908                                                                  const RHS &R) {
1909   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1910 }
1911 
1912 /// Match an 'ordered' floating point minimum function.
1913 /// Floating point has one special value 'NaN'. Therefore, there is no total
1914 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1915 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1916 /// semantics. In the presence of 'NaN' we have to preserve the original
1917 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1918 ///
1919 ///                         min(L, R)  iff L and R are not NaN
1920 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1921 template <typename LHS, typename RHS>
1922 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1923                                                                  const RHS &R) {
1924   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1925 }
1926 
1927 /// Match an 'unordered' floating point maximum function.
1928 /// Floating point has one special value 'NaN'. Therefore, there is no total
1929 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1930 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1931 /// semantics. In the presence of 'NaN' we have to preserve the original
1932 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1933 ///
1934 ///                         max(L, R)  iff L and R are not NaN
1935 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1936 template <typename LHS, typename RHS>
1937 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1938 m_UnordFMax(const LHS &L, const RHS &R) {
1939   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1940 }
1941 
1942 /// Match an 'unordered' floating point minimum function.
1943 /// Floating point has one special value 'NaN'. Therefore, there is no total
1944 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1945 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1946 /// semantics. In the presence of 'NaN' we have to preserve the original
1947 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1948 ///
1949 ///                          min(L, R)  iff L and R are not NaN
1950 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1951 template <typename LHS, typename RHS>
1952 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1953 m_UnordFMin(const LHS &L, const RHS &R) {
1954   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1955 }
1956 
1957 //===----------------------------------------------------------------------===//
1958 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1959 // Note that S might be matched to other instructions than AddInst.
1960 //
1961 
1962 template <typename LHS_t, typename RHS_t, typename Sum_t>
1963 struct UAddWithOverflow_match {
1964   LHS_t L;
1965   RHS_t R;
1966   Sum_t S;
1967 
1968   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1969       : L(L), R(R), S(S) {}
1970 
1971   template <typename OpTy> bool match(OpTy *V) {
1972     Value *ICmpLHS, *ICmpRHS;
1973     ICmpInst::Predicate Pred;
1974     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1975       return false;
1976 
1977     Value *AddLHS, *AddRHS;
1978     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1979 
1980     // (a + b) u< a, (a + b) u< b
1981     if (Pred == ICmpInst::ICMP_ULT)
1982       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1983         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1984 
1985     // a >u (a + b), b >u (a + b)
1986     if (Pred == ICmpInst::ICMP_UGT)
1987       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1988         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1989 
1990     Value *Op1;
1991     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1992     // (a ^ -1) <u b
1993     if (Pred == ICmpInst::ICMP_ULT) {
1994       if (XorExpr.match(ICmpLHS))
1995         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1996     }
1997     //  b > u (a ^ -1)
1998     if (Pred == ICmpInst::ICMP_UGT) {
1999       if (XorExpr.match(ICmpRHS))
2000         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2001     }
2002 
2003     // Match special-case for increment-by-1.
2004     if (Pred == ICmpInst::ICMP_EQ) {
2005       // (a + 1) == 0
2006       // (1 + a) == 0
2007       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2008           (m_One().match(AddLHS) || m_One().match(AddRHS)))
2009         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2010       // 0 == (a + 1)
2011       // 0 == (1 + a)
2012       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2013           (m_One().match(AddLHS) || m_One().match(AddRHS)))
2014         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2015     }
2016 
2017     return false;
2018   }
2019 };
2020 
2021 /// Match an icmp instruction checking for unsigned overflow on addition.
2022 ///
2023 /// S is matched to the addition whose result is being checked for overflow, and
2024 /// L and R are matched to the LHS and RHS of S.
2025 template <typename LHS_t, typename RHS_t, typename Sum_t>
2026 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2027 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2028   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2029 }
2030 
2031 template <typename Opnd_t> struct Argument_match {
2032   unsigned OpI;
2033   Opnd_t Val;
2034 
2035   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2036 
2037   template <typename OpTy> bool match(OpTy *V) {
2038     // FIXME: Should likely be switched to use `CallBase`.
2039     if (const auto *CI = dyn_cast<CallInst>(V))
2040       return Val.match(CI->getArgOperand(OpI));
2041     return false;
2042   }
2043 };
2044 
2045 /// Match an argument.
2046 template <unsigned OpI, typename Opnd_t>
2047 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2048   return Argument_match<Opnd_t>(OpI, Op);
2049 }
2050 
2051 /// Intrinsic matchers.
2052 struct IntrinsicID_match {
2053   unsigned ID;
2054 
2055   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2056 
2057   template <typename OpTy> bool match(OpTy *V) {
2058     if (const auto *CI = dyn_cast<CallInst>(V))
2059       if (const auto *F = CI->getCalledFunction())
2060         return F->getIntrinsicID() == ID;
2061     return false;
2062   }
2063 };
2064 
2065 /// Intrinsic matches are combinations of ID matchers, and argument
2066 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2067 /// them with lower arity matchers. Here's some convenient typedefs for up to
2068 /// several arguments, and more can be added as needed
2069 template <typename T0 = void, typename T1 = void, typename T2 = void,
2070           typename T3 = void, typename T4 = void, typename T5 = void,
2071           typename T6 = void, typename T7 = void, typename T8 = void,
2072           typename T9 = void, typename T10 = void>
2073 struct m_Intrinsic_Ty;
2074 template <typename T0> struct m_Intrinsic_Ty<T0> {
2075   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2076 };
2077 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2078   using Ty =
2079       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2080 };
2081 template <typename T0, typename T1, typename T2>
2082 struct m_Intrinsic_Ty<T0, T1, T2> {
2083   using Ty =
2084       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2085                         Argument_match<T2>>;
2086 };
2087 template <typename T0, typename T1, typename T2, typename T3>
2088 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2089   using Ty =
2090       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2091                         Argument_match<T3>>;
2092 };
2093 
2094 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2095 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2096   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2097                                Argument_match<T4>>;
2098 };
2099 
2100 template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2101 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2102   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2103                                Argument_match<T5>>;
2104 };
2105 
2106 /// Match intrinsic calls like this:
2107 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2108 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2109   return IntrinsicID_match(IntrID);
2110 }
2111 
2112 /// Matches MaskedLoad Intrinsic.
2113 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2114 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2115 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2116              const Opnd3 &Op3) {
2117   return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2118 }
2119 
2120 template <Intrinsic::ID IntrID, typename T0>
2121 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2122   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2123 }
2124 
2125 template <Intrinsic::ID IntrID, typename T0, typename T1>
2126 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2127                                                        const T1 &Op1) {
2128   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2129 }
2130 
2131 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2132 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2133 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2134   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2135 }
2136 
2137 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2138           typename T3>
2139 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2140 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2141   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2142 }
2143 
2144 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2145           typename T3, typename T4>
2146 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2147 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2148             const T4 &Op4) {
2149   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2150                       m_Argument<4>(Op4));
2151 }
2152 
2153 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2154           typename T3, typename T4, typename T5>
2155 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2156 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2157             const T4 &Op4, const T5 &Op5) {
2158   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2159                       m_Argument<5>(Op5));
2160 }
2161 
2162 // Helper intrinsic matching specializations.
2163 template <typename Opnd0>
2164 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2165   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2166 }
2167 
2168 template <typename Opnd0>
2169 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2170   return m_Intrinsic<Intrinsic::bswap>(Op0);
2171 }
2172 
2173 template <typename Opnd0>
2174 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2175   return m_Intrinsic<Intrinsic::fabs>(Op0);
2176 }
2177 
2178 template <typename Opnd0>
2179 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2180   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2181 }
2182 
2183 template <typename Opnd0, typename Opnd1>
2184 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2185                                                         const Opnd1 &Op1) {
2186   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2187 }
2188 
2189 template <typename Opnd0, typename Opnd1>
2190 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2191                                                         const Opnd1 &Op1) {
2192   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2193 }
2194 
2195 template <typename Opnd0, typename Opnd1, typename Opnd2>
2196 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2197 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2198   return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2199 }
2200 
2201 template <typename Opnd0, typename Opnd1, typename Opnd2>
2202 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2203 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2204   return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2205 }
2206 
2207 //===----------------------------------------------------------------------===//
2208 // Matchers for two-operands operators with the operators in either order
2209 //
2210 
2211 /// Matches a BinaryOperator with LHS and RHS in either order.
2212 template <typename LHS, typename RHS>
2213 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2214   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2215 }
2216 
2217 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2218 /// Swaps the predicate if operands are commuted.
2219 template <typename LHS, typename RHS>
2220 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2221 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2222   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2223                                                                        R);
2224 }
2225 
2226 /// Matches a specific opcode with LHS and RHS in either order.
2227 template <typename LHS, typename RHS>
2228 inline SpecificBinaryOp_match<LHS, RHS, true>
2229 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2230   return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2231 }
2232 
2233 /// Matches a Add with LHS and RHS in either order.
2234 template <typename LHS, typename RHS>
2235 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2236                                                                 const RHS &R) {
2237   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2238 }
2239 
2240 /// Matches a Mul with LHS and RHS in either order.
2241 template <typename LHS, typename RHS>
2242 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2243                                                                 const RHS &R) {
2244   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2245 }
2246 
2247 /// Matches an And with LHS and RHS in either order.
2248 template <typename LHS, typename RHS>
2249 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2250                                                                 const RHS &R) {
2251   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2252 }
2253 
2254 /// Matches an Or with LHS and RHS in either order.
2255 template <typename LHS, typename RHS>
2256 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2257                                                               const RHS &R) {
2258   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2259 }
2260 
2261 /// Matches an Xor with LHS and RHS in either order.
2262 template <typename LHS, typename RHS>
2263 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2264                                                                 const RHS &R) {
2265   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2266 }
2267 
2268 /// Matches a 'Neg' as 'sub 0, V'.
2269 template <typename ValTy>
2270 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2271 m_Neg(const ValTy &V) {
2272   return m_Sub(m_ZeroInt(), V);
2273 }
2274 
2275 /// Matches a 'Neg' as 'sub nsw 0, V'.
2276 template <typename ValTy>
2277 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2278                                  Instruction::Sub,
2279                                  OverflowingBinaryOperator::NoSignedWrap>
2280 m_NSWNeg(const ValTy &V) {
2281   return m_NSWSub(m_ZeroInt(), V);
2282 }
2283 
2284 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2285 template <typename ValTy>
2286 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2287 m_Not(const ValTy &V) {
2288   return m_c_Xor(V, m_AllOnes());
2289 }
2290 
2291 template <typename ValTy> struct NotForbidUndef_match {
2292   ValTy Val;
2293   NotForbidUndef_match(const ValTy &V) : Val(V) {}
2294 
2295   template <typename OpTy> bool match(OpTy *V) {
2296     // We do not use m_c_Xor because that could match an arbitrary APInt that is
2297     // not -1 as C and then fail to match the other operand if it is -1.
2298     // This code should still work even when both operands are constants.
2299     Value *X;
2300     const APInt *C;
2301     if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2302       return Val.match(X);
2303     if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2304       return Val.match(X);
2305     return false;
2306   }
2307 };
2308 
2309 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2310 /// constant value must be composed of only -1 scalar elements.
2311 template <typename ValTy>
2312 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2313   return NotForbidUndef_match<ValTy>(V);
2314 }
2315 
2316 /// Matches an SMin with LHS and RHS in either order.
2317 template <typename LHS, typename RHS>
2318 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2319 m_c_SMin(const LHS &L, const RHS &R) {
2320   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2321 }
2322 /// Matches an SMax with LHS and RHS in either order.
2323 template <typename LHS, typename RHS>
2324 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2325 m_c_SMax(const LHS &L, const RHS &R) {
2326   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2327 }
2328 /// Matches a UMin with LHS and RHS in either order.
2329 template <typename LHS, typename RHS>
2330 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2331 m_c_UMin(const LHS &L, const RHS &R) {
2332   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2333 }
2334 /// Matches a UMax with LHS and RHS in either order.
2335 template <typename LHS, typename RHS>
2336 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2337 m_c_UMax(const LHS &L, const RHS &R) {
2338   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2339 }
2340 
2341 template <typename LHS, typename RHS>
2342 inline match_combine_or<
2343     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2344                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2345     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2346                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2347 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2348   return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2349                      m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2350 }
2351 
2352 /// Matches FAdd with LHS and RHS in either order.
2353 template <typename LHS, typename RHS>
2354 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2355 m_c_FAdd(const LHS &L, const RHS &R) {
2356   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2357 }
2358 
2359 /// Matches FMul with LHS and RHS in either order.
2360 template <typename LHS, typename RHS>
2361 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2362 m_c_FMul(const LHS &L, const RHS &R) {
2363   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2364 }
2365 
2366 template <typename Opnd_t> struct Signum_match {
2367   Opnd_t Val;
2368   Signum_match(const Opnd_t &V) : Val(V) {}
2369 
2370   template <typename OpTy> bool match(OpTy *V) {
2371     unsigned TypeSize = V->getType()->getScalarSizeInBits();
2372     if (TypeSize == 0)
2373       return false;
2374 
2375     unsigned ShiftWidth = TypeSize - 1;
2376     Value *OpL = nullptr, *OpR = nullptr;
2377 
2378     // This is the representation of signum we match:
2379     //
2380     //  signum(x) == (x >> 63) | (-x >>u 63)
2381     //
2382     // An i1 value is its own signum, so it's correct to match
2383     //
2384     //  signum(x) == (x >> 0)  | (-x >>u 0)
2385     //
2386     // for i1 values.
2387 
2388     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2389     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2390     auto Signum = m_Or(LHS, RHS);
2391 
2392     return Signum.match(V) && OpL == OpR && Val.match(OpL);
2393   }
2394 };
2395 
2396 /// Matches a signum pattern.
2397 ///
2398 /// signum(x) =
2399 ///      x >  0  ->  1
2400 ///      x == 0  ->  0
2401 ///      x <  0  -> -1
2402 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2403   return Signum_match<Val_t>(V);
2404 }
2405 
2406 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2407   Opnd_t Val;
2408   ExtractValue_match(const Opnd_t &V) : Val(V) {}
2409 
2410   template <typename OpTy> bool match(OpTy *V) {
2411     if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2412       // If Ind is -1, don't inspect indices
2413       if (Ind != -1 &&
2414           !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2415         return false;
2416       return Val.match(I->getAggregateOperand());
2417     }
2418     return false;
2419   }
2420 };
2421 
2422 /// Match a single index ExtractValue instruction.
2423 /// For example m_ExtractValue<1>(...)
2424 template <int Ind, typename Val_t>
2425 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2426   return ExtractValue_match<Ind, Val_t>(V);
2427 }
2428 
2429 /// Match an ExtractValue instruction with any index.
2430 /// For example m_ExtractValue(...)
2431 template <typename Val_t>
2432 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2433   return ExtractValue_match<-1, Val_t>(V);
2434 }
2435 
2436 /// Matcher for a single index InsertValue instruction.
2437 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2438   T0 Op0;
2439   T1 Op1;
2440 
2441   InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2442 
2443   template <typename OpTy> bool match(OpTy *V) {
2444     if (auto *I = dyn_cast<InsertValueInst>(V)) {
2445       return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2446              I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2447     }
2448     return false;
2449   }
2450 };
2451 
2452 /// Matches a single index InsertValue instruction.
2453 template <int Ind, typename Val_t, typename Elt_t>
2454 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2455                                                           const Elt_t &Elt) {
2456   return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2457 }
2458 
2459 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2460 /// the constant expression
2461 ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2462 /// under the right conditions determined by DataLayout.
2463 struct VScaleVal_match {
2464   const DataLayout &DL;
2465   VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2466 
2467   template <typename ITy> bool match(ITy *V) {
2468     if (m_Intrinsic<Intrinsic::vscale>().match(V))
2469       return true;
2470 
2471     Value *Ptr;
2472     if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2473       if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2474         auto *DerefTy = GEP->getSourceElementType();
2475         if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2476             m_Zero().match(GEP->getPointerOperand()) &&
2477             m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2478             DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2479           return true;
2480       }
2481     }
2482 
2483     return false;
2484   }
2485 };
2486 
2487 inline VScaleVal_match m_VScale(const DataLayout &DL) {
2488   return VScaleVal_match(DL);
2489 }
2490 
2491 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2492 struct LogicalOp_match {
2493   LHS L;
2494   RHS R;
2495 
2496   LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2497 
2498   template <typename T> bool match(T *V) {
2499     auto *I = dyn_cast<Instruction>(V);
2500     if (!I || !I->getType()->isIntOrIntVectorTy(1))
2501       return false;
2502 
2503     if (I->getOpcode() == Opcode) {
2504       auto *Op0 = I->getOperand(0);
2505       auto *Op1 = I->getOperand(1);
2506       return (L.match(Op0) && R.match(Op1)) ||
2507              (Commutable && L.match(Op1) && R.match(Op0));
2508     }
2509 
2510     if (auto *Select = dyn_cast<SelectInst>(I)) {
2511       auto *Cond = Select->getCondition();
2512       auto *TVal = Select->getTrueValue();
2513       auto *FVal = Select->getFalseValue();
2514       if (Opcode == Instruction::And) {
2515         auto *C = dyn_cast<Constant>(FVal);
2516         if (C && C->isNullValue())
2517           return (L.match(Cond) && R.match(TVal)) ||
2518                  (Commutable && L.match(TVal) && R.match(Cond));
2519       } else {
2520         assert(Opcode == Instruction::Or);
2521         auto *C = dyn_cast<Constant>(TVal);
2522         if (C && C->isOneValue())
2523           return (L.match(Cond) && R.match(FVal)) ||
2524                  (Commutable && L.match(FVal) && R.match(Cond));
2525       }
2526     }
2527 
2528     return false;
2529   }
2530 };
2531 
2532 /// Matches L && R either in the form of L & R or L ? R : false.
2533 /// Note that the latter form is poison-blocking.
2534 template <typename LHS, typename RHS>
2535 inline LogicalOp_match<LHS, RHS, Instruction::And>
2536 m_LogicalAnd(const LHS &L, const RHS &R) {
2537   return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2538 }
2539 
2540 /// Matches L && R where L and R are arbitrary values.
2541 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2542 
2543 /// Matches L && R with LHS and RHS in either order.
2544 template <typename LHS, typename RHS>
2545 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2546 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2547   return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2548 }
2549 
2550 /// Matches L || R either in the form of L | R or L ? true : R.
2551 /// Note that the latter form is poison-blocking.
2552 template <typename LHS, typename RHS>
2553 inline LogicalOp_match<LHS, RHS, Instruction::Or>
2554 m_LogicalOr(const LHS &L, const RHS &R) {
2555   return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2556 }
2557 
2558 /// Matches L || R where L and R are arbitrary values.
2559 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2560 
2561 /// Matches L || R with LHS and RHS in either order.
2562 template <typename LHS, typename RHS>
2563 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2564 m_c_LogicalOr(const LHS &L, const RHS &R) {
2565   return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2566 }
2567 
2568 } // end namespace PatternMatch
2569 } // end namespace llvm
2570 
2571 #endif // LLVM_IR_PATTERNMATCH_H
2572