1 //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Type class.  For more "Type"
10 // stuff, look in DerivedTypes.h.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_TYPE_H
15 #define LLVM_IR_TYPE_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/Support/CBindingWrapping.h"
19 #include "llvm/Support/Casting.h"
20 #include "llvm/Support/Compiler.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/TypeSize.h"
23 #include <cassert>
24 #include <cstdint>
25 #include <iterator>
26 
27 namespace llvm {
28 
29 class IntegerType;
30 struct fltSemantics;
31 class LLVMContext;
32 class PointerType;
33 class raw_ostream;
34 class StringRef;
35 template <typename PtrType> class SmallPtrSetImpl;
36 
37 /// The instances of the Type class are immutable: once they are created,
38 /// they are never changed.  Also note that only one instance of a particular
39 /// type is ever created.  Thus seeing if two types are equal is a matter of
40 /// doing a trivial pointer comparison. To enforce that no two equal instances
41 /// are created, Type instances can only be created via static factory methods
42 /// in class Type and in derived classes.  Once allocated, Types are never
43 /// free'd.
44 ///
45 class Type {
46 public:
47   //===--------------------------------------------------------------------===//
48   /// Definitions of all of the base types for the Type system.  Based on this
49   /// value, you can cast to a class defined in DerivedTypes.h.
50   /// Note: If you add an element to this, you need to add an element to the
51   /// Type::getPrimitiveType function, or else things will break!
52   /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
53   ///
54   enum TypeID {
55     // PrimitiveTypes
56     HalfTyID = 0,  ///< 16-bit floating point type
57     BFloatTyID,    ///< 16-bit floating point type (7-bit significand)
58     FloatTyID,     ///< 32-bit floating point type
59     DoubleTyID,    ///< 64-bit floating point type
60     X86_FP80TyID,  ///< 80-bit floating point type (X87)
61     FP128TyID,     ///< 128-bit floating point type (112-bit significand)
62     PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC)
63     VoidTyID,      ///< type with no size
64     LabelTyID,     ///< Labels
65     MetadataTyID,  ///< Metadata
66     X86_MMXTyID,   ///< MMX vectors (64 bits, X86 specific)
67     X86_AMXTyID,   ///< AMX vectors (8192 bits, X86 specific)
68     TokenTyID,     ///< Tokens
69 
70     // Derived types... see DerivedTypes.h file.
71     IntegerTyID,       ///< Arbitrary bit width integers
72     FunctionTyID,      ///< Functions
73     PointerTyID,       ///< Pointers
74     StructTyID,        ///< Structures
75     ArrayTyID,         ///< Arrays
76     FixedVectorTyID,   ///< Fixed width SIMD vector type
77     ScalableVectorTyID ///< Scalable SIMD vector type
78   };
79 
80 private:
81   /// This refers to the LLVMContext in which this type was uniqued.
82   LLVMContext &Context;
83 
84   TypeID   ID : 8;            // The current base type of this type.
85   unsigned SubclassData : 24; // Space for subclasses to store data.
86                               // Note that this should be synchronized with
87                               // MAX_INT_BITS value in IntegerType class.
88 
89 protected:
90   friend class LLVMContextImpl;
91 
92   explicit Type(LLVMContext &C, TypeID tid)
93     : Context(C), ID(tid), SubclassData(0) {}
94   ~Type() = default;
95 
96   unsigned getSubclassData() const { return SubclassData; }
97 
98   void setSubclassData(unsigned val) {
99     SubclassData = val;
100     // Ensure we don't have any accidental truncation.
101     assert(getSubclassData() == val && "Subclass data too large for field");
102   }
103 
104   /// Keeps track of how many Type*'s there are in the ContainedTys list.
105   unsigned NumContainedTys = 0;
106 
107   /// A pointer to the array of Types contained by this Type. For example, this
108   /// includes the arguments of a function type, the elements of a structure,
109   /// the pointee of a pointer, the element type of an array, etc. This pointer
110   /// may be 0 for types that don't contain other types (Integer, Double,
111   /// Float).
112   Type * const *ContainedTys = nullptr;
113 
114 public:
115   /// Print the current type.
116   /// Omit the type details if \p NoDetails == true.
117   /// E.g., let %st = type { i32, i16 }
118   /// When \p NoDetails is true, we only print %st.
119   /// Put differently, \p NoDetails prints the type as if
120   /// inlined with the operands when printing an instruction.
121   void print(raw_ostream &O, bool IsForDebug = false,
122              bool NoDetails = false) const;
123 
124   void dump() const;
125 
126   /// Return the LLVMContext in which this type was uniqued.
127   LLVMContext &getContext() const { return Context; }
128 
129   //===--------------------------------------------------------------------===//
130   // Accessors for working with types.
131   //
132 
133   /// Return the type id for the type. This will return one of the TypeID enum
134   /// elements defined above.
135   TypeID getTypeID() const { return ID; }
136 
137   /// Return true if this is 'void'.
138   bool isVoidTy() const { return getTypeID() == VoidTyID; }
139 
140   /// Return true if this is 'half', a 16-bit IEEE fp type.
141   bool isHalfTy() const { return getTypeID() == HalfTyID; }
142 
143   /// Return true if this is 'bfloat', a 16-bit bfloat type.
144   bool isBFloatTy() const { return getTypeID() == BFloatTyID; }
145 
146   /// Return true if this is 'float', a 32-bit IEEE fp type.
147   bool isFloatTy() const { return getTypeID() == FloatTyID; }
148 
149   /// Return true if this is 'double', a 64-bit IEEE fp type.
150   bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151 
152   /// Return true if this is x86 long double.
153   bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154 
155   /// Return true if this is 'fp128'.
156   bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157 
158   /// Return true if this is powerpc long double.
159   bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160 
161   /// Return true if this is one of the six floating-point types
162   bool isFloatingPointTy() const {
163     return getTypeID() == HalfTyID || getTypeID() == BFloatTyID ||
164            getTypeID() == FloatTyID || getTypeID() == DoubleTyID ||
165            getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
166            getTypeID() == PPC_FP128TyID;
167   }
168 
169   const fltSemantics &getFltSemantics() const;
170 
171   /// Return true if this is X86 MMX.
172   bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
173 
174   /// Return true if this is X86 AMX.
175   bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; }
176 
177   /// Return true if this is a FP type or a vector of FP.
178   bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
179 
180   /// Return true if this is 'label'.
181   bool isLabelTy() const { return getTypeID() == LabelTyID; }
182 
183   /// Return true if this is 'metadata'.
184   bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
185 
186   /// Return true if this is 'token'.
187   bool isTokenTy() const { return getTypeID() == TokenTyID; }
188 
189   /// True if this is an instance of IntegerType.
190   bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
191 
192   /// Return true if this is an IntegerType of the given width.
193   bool isIntegerTy(unsigned Bitwidth) const;
194 
195   /// Return true if this is an integer type or a vector of integer types.
196   bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
197 
198   /// Return true if this is an integer type or a vector of integer types of
199   /// the given width.
200   bool isIntOrIntVectorTy(unsigned BitWidth) const {
201     return getScalarType()->isIntegerTy(BitWidth);
202   }
203 
204   /// Return true if this is an integer type or a pointer type.
205   bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
206 
207   /// True if this is an instance of FunctionType.
208   bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
209 
210   /// True if this is an instance of StructType.
211   bool isStructTy() const { return getTypeID() == StructTyID; }
212 
213   /// True if this is an instance of ArrayType.
214   bool isArrayTy() const { return getTypeID() == ArrayTyID; }
215 
216   /// True if this is an instance of PointerType.
217   bool isPointerTy() const { return getTypeID() == PointerTyID; }
218 
219   /// True if this is an instance of an opaque PointerType.
220   bool isOpaquePointerTy() const;
221 
222   /// Return true if this is a pointer type or a vector of pointer types.
223   bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
224 
225   /// True if this is an instance of VectorType.
226   inline bool isVectorTy() const {
227     return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID;
228   }
229 
230   /// Return true if this type could be converted with a lossless BitCast to
231   /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
232   /// same size only where no re-interpretation of the bits is done.
233   /// Determine if this type could be losslessly bitcast to Ty
234   bool canLosslesslyBitCastTo(Type *Ty) const;
235 
236   /// Return true if this type is empty, that is, it has no elements or all of
237   /// its elements are empty.
238   bool isEmptyTy() const;
239 
240   /// Return true if the type is "first class", meaning it is a valid type for a
241   /// Value.
242   bool isFirstClassType() const {
243     return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
244   }
245 
246   /// Return true if the type is a valid type for a register in codegen. This
247   /// includes all first-class types except struct and array types.
248   bool isSingleValueType() const {
249     return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
250            isPointerTy() || isVectorTy() || isX86_AMXTy();
251   }
252 
253   /// Return true if the type is an aggregate type. This means it is valid as
254   /// the first operand of an insertvalue or extractvalue instruction. This
255   /// includes struct and array types, but does not include vector types.
256   bool isAggregateType() const {
257     return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
258   }
259 
260   /// Return true if it makes sense to take the size of this type. To get the
261   /// actual size for a particular target, it is reasonable to use the
262   /// DataLayout subsystem to do this.
263   bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
264     // If it's a primitive, it is always sized.
265     if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
266         getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID ||
267         getTypeID() == X86_AMXTyID)
268       return true;
269     // If it is not something that can have a size (e.g. a function or label),
270     // it doesn't have a size.
271     if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy())
272       return false;
273     // Otherwise we have to try harder to decide.
274     return isSizedDerivedType(Visited);
275   }
276 
277   /// Return the basic size of this type if it is a primitive type. These are
278   /// fixed by LLVM and are not target-dependent.
279   /// This will return zero if the type does not have a size or is not a
280   /// primitive type.
281   ///
282   /// If this is a scalable vector type, the scalable property will be set and
283   /// the runtime size will be a positive integer multiple of the base size.
284   ///
285   /// Note that this may not reflect the size of memory allocated for an
286   /// instance of the type or the number of bytes that are written when an
287   /// instance of the type is stored to memory. The DataLayout class provides
288   /// additional query functions to provide this information.
289   ///
290   TypeSize getPrimitiveSizeInBits() const LLVM_READONLY;
291 
292   /// If this is a vector type, return the getPrimitiveSizeInBits value for the
293   /// element type. Otherwise return the getPrimitiveSizeInBits value for this
294   /// type.
295   unsigned getScalarSizeInBits() const LLVM_READONLY;
296 
297   /// Return the width of the mantissa of this type. This is only valid on
298   /// floating-point types. If the FP type does not have a stable mantissa (e.g.
299   /// ppc long double), this method returns -1.
300   int getFPMantissaWidth() const;
301 
302   /// Return whether the type is IEEE compatible, as defined by the eponymous
303   /// method in APFloat.
304   bool isIEEE() const;
305 
306   /// If this is a vector type, return the element type, otherwise return
307   /// 'this'.
308   inline Type *getScalarType() const {
309     if (isVectorTy())
310       return getContainedType(0);
311     return const_cast<Type *>(this);
312   }
313 
314   //===--------------------------------------------------------------------===//
315   // Type Iteration support.
316   //
317   using subtype_iterator = Type * const *;
318 
319   subtype_iterator subtype_begin() const { return ContainedTys; }
320   subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
321   ArrayRef<Type*> subtypes() const {
322     return makeArrayRef(subtype_begin(), subtype_end());
323   }
324 
325   using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
326 
327   subtype_reverse_iterator subtype_rbegin() const {
328     return subtype_reverse_iterator(subtype_end());
329   }
330   subtype_reverse_iterator subtype_rend() const {
331     return subtype_reverse_iterator(subtype_begin());
332   }
333 
334   /// This method is used to implement the type iterator (defined at the end of
335   /// the file). For derived types, this returns the types 'contained' in the
336   /// derived type.
337   Type *getContainedType(unsigned i) const {
338     assert(i < NumContainedTys && "Index out of range!");
339     return ContainedTys[i];
340   }
341 
342   /// Return the number of types in the derived type.
343   unsigned getNumContainedTypes() const { return NumContainedTys; }
344 
345   //===--------------------------------------------------------------------===//
346   // Helper methods corresponding to subclass methods.  This forces a cast to
347   // the specified subclass and calls its accessor.  "getArrayNumElements" (for
348   // example) is shorthand for cast<ArrayType>(Ty)->getNumElements().  This is
349   // only intended to cover the core methods that are frequently used, helper
350   // methods should not be added here.
351 
352   inline unsigned getIntegerBitWidth() const;
353 
354   inline Type *getFunctionParamType(unsigned i) const;
355   inline unsigned getFunctionNumParams() const;
356   inline bool isFunctionVarArg() const;
357 
358   inline StringRef getStructName() const;
359   inline unsigned getStructNumElements() const;
360   inline Type *getStructElementType(unsigned N) const;
361 
362   inline uint64_t getArrayNumElements() const;
363 
364   Type *getArrayElementType() const {
365     assert(getTypeID() == ArrayTyID);
366     return ContainedTys[0];
367   }
368 
369   /// This method is deprecated without replacement. Pointer element types are
370   /// not available with opaque pointers.
371   Type *getPointerElementType() const {
372     return getNonOpaquePointerElementType();
373   }
374 
375   /// Only use this method in code that is not reachable with opaque pointers,
376   /// or part of deprecated methods that will be removed as part of the opaque
377   /// pointers transition.
378   Type *getNonOpaquePointerElementType() const {
379     assert(getTypeID() == PointerTyID);
380     assert(NumContainedTys &&
381            "Attempting to get element type of opaque pointer");
382     return ContainedTys[0];
383   }
384 
385   /// Given vector type, change the element type,
386   /// whilst keeping the old number of elements.
387   /// For non-vectors simply returns \p EltTy.
388   inline Type *getWithNewType(Type *EltTy) const;
389 
390   /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
391   /// whilst keeping the old number of lanes.
392   inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
393 
394   /// Given scalar/vector integer type, returns a type with elements twice as
395   /// wide as in the original type. For vectors, preserves element count.
396   inline Type *getExtendedType() const;
397 
398   /// Get the address space of this pointer or pointer vector type.
399   inline unsigned getPointerAddressSpace() const;
400 
401   //===--------------------------------------------------------------------===//
402   // Static members exported by the Type class itself.  Useful for getting
403   // instances of Type.
404   //
405 
406   /// Return a type based on an identifier.
407   static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
408 
409   //===--------------------------------------------------------------------===//
410   // These are the builtin types that are always available.
411   //
412   static Type *getVoidTy(LLVMContext &C);
413   static Type *getLabelTy(LLVMContext &C);
414   static Type *getHalfTy(LLVMContext &C);
415   static Type *getBFloatTy(LLVMContext &C);
416   static Type *getFloatTy(LLVMContext &C);
417   static Type *getDoubleTy(LLVMContext &C);
418   static Type *getMetadataTy(LLVMContext &C);
419   static Type *getX86_FP80Ty(LLVMContext &C);
420   static Type *getFP128Ty(LLVMContext &C);
421   static Type *getPPC_FP128Ty(LLVMContext &C);
422   static Type *getX86_MMXTy(LLVMContext &C);
423   static Type *getX86_AMXTy(LLVMContext &C);
424   static Type *getTokenTy(LLVMContext &C);
425   static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
426   static IntegerType *getInt1Ty(LLVMContext &C);
427   static IntegerType *getInt8Ty(LLVMContext &C);
428   static IntegerType *getInt16Ty(LLVMContext &C);
429   static IntegerType *getInt32Ty(LLVMContext &C);
430   static IntegerType *getInt64Ty(LLVMContext &C);
431   static IntegerType *getInt128Ty(LLVMContext &C);
432   template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
433     int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
434     if (std::is_integral<ScalarTy>::value) {
435       return (Type*) Type::getIntNTy(C, noOfBits);
436     } else if (std::is_floating_point<ScalarTy>::value) {
437       switch (noOfBits) {
438       case 32:
439         return Type::getFloatTy(C);
440       case 64:
441         return Type::getDoubleTy(C);
442       }
443     }
444     llvm_unreachable("Unsupported type in Type::getScalarTy");
445   }
446   static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S);
447 
448   //===--------------------------------------------------------------------===//
449   // Convenience methods for getting pointer types with one of the above builtin
450   // types as pointee.
451   //
452   static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
453   static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0);
454   static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
455   static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
456   static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
457   static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
458   static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
459   static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
460   static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0);
461   static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
462   static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
463   static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
464   static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
465   static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
466   static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
467 
468   /// Return a pointer to the current type. This is equivalent to
469   /// PointerType::get(Foo, AddrSpace).
470   /// TODO: Remove this after opaque pointer transition is complete.
471   PointerType *getPointerTo(unsigned AddrSpace = 0) const;
472 
473 private:
474   /// Derived types like structures and arrays are sized iff all of the members
475   /// of the type are sized as well. Since asking for their size is relatively
476   /// uncommon, move this operation out-of-line.
477   bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
478 };
479 
480 // Printing of types.
481 inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
482   T.print(OS);
483   return OS;
484 }
485 
486 // allow isa<PointerType>(x) to work without DerivedTypes.h included.
487 template <> struct isa_impl<PointerType, Type> {
488   static inline bool doit(const Type &Ty) {
489     return Ty.getTypeID() == Type::PointerTyID;
490   }
491 };
492 
493 // Create wrappers for C Binding types (see CBindingWrapping.h).
494 DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
495 
496 /* Specialized opaque type conversions.
497  */
498 inline Type **unwrap(LLVMTypeRef* Tys) {
499   return reinterpret_cast<Type**>(Tys);
500 }
501 
502 inline LLVMTypeRef *wrap(Type **Tys) {
503   return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
504 }
505 
506 } // end namespace llvm
507 
508 #endif // LLVM_IR_TYPE_H
509