1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCOperandInfo and MCInstrDesc classes, which
10 // are used to describe target instructions and their operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCINSTRDESC_H
15 #define LLVM_MC_MCINSTRDESC_H
16 
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/Support/DataTypes.h"
19 #include <string>
20 
21 namespace llvm {
22 
23 class MCInst;
24 
25 //===----------------------------------------------------------------------===//
26 // Machine Operand Flags and Description
27 //===----------------------------------------------------------------------===//
28 
29 namespace MCOI {
30 // Operand constraints
31 enum OperandConstraint {
32   TIED_TO = 0,  // Must be allocated the same register as.
33   EARLY_CLOBBER // Operand is an early clobber register operand
34 };
35 
36 /// These are flags set on operands, but should be considered
37 /// private, all access should go through the MCOperandInfo accessors.
38 /// See the accessors for a description of what these are.
39 enum OperandFlags {
40   LookupPtrRegClass = 0,
41   Predicate,
42   OptionalDef,
43   BranchTarget
44 };
45 
46 /// Operands are tagged with one of the values of this enum.
47 enum OperandType {
48   OPERAND_UNKNOWN = 0,
49   OPERAND_IMMEDIATE = 1,
50   OPERAND_REGISTER = 2,
51   OPERAND_MEMORY = 3,
52   OPERAND_PCREL = 4,
53 
54   OPERAND_FIRST_GENERIC = 6,
55   OPERAND_GENERIC_0 = 6,
56   OPERAND_GENERIC_1 = 7,
57   OPERAND_GENERIC_2 = 8,
58   OPERAND_GENERIC_3 = 9,
59   OPERAND_GENERIC_4 = 10,
60   OPERAND_GENERIC_5 = 11,
61   OPERAND_LAST_GENERIC = 11,
62 
63   OPERAND_FIRST_GENERIC_IMM = 12,
64   OPERAND_GENERIC_IMM_0 = 12,
65   OPERAND_LAST_GENERIC_IMM = 12,
66 
67   OPERAND_FIRST_TARGET = 13,
68 };
69 
70 }
71 
72 /// This holds information about one operand of a machine instruction,
73 /// indicating the register class for register operands, etc.
74 class MCOperandInfo {
75 public:
76   /// This specifies the register class enumeration of the operand
77   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
78   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
79   /// get a dynamic register class.
80   int16_t RegClass;
81 
82   /// These are flags from the MCOI::OperandFlags enum.
83   uint8_t Flags;
84 
85   /// Information about the type of the operand.
86   uint8_t OperandType;
87   /// The lower 16 bits are used to specify which constraints are set.
88   /// The higher 16 bits are used to specify the value of constraints (4 bits
89   /// each).
90   uint32_t Constraints;
91 
92   /// Set if this operand is a pointer value and it requires a callback
93   /// to look up its register class.
94   bool isLookupPtrRegClass() const {
95     return Flags & (1 << MCOI::LookupPtrRegClass);
96   }
97 
98   /// Set if this is one of the operands that made up of the predicate
99   /// operand that controls an isPredicable() instruction.
100   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
101 
102   /// Set if this operand is a optional def.
103   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
104 
105   /// Set if this operand is a branch target.
106   bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); }
107 
108   bool isGenericType() const {
109     return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
110            OperandType <= MCOI::OPERAND_LAST_GENERIC;
111   }
112 
113   unsigned getGenericTypeIndex() const {
114     assert(isGenericType() && "non-generic types don't have an index");
115     return OperandType - MCOI::OPERAND_FIRST_GENERIC;
116   }
117 
118   bool isGenericImm() const {
119     return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM &&
120            OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM;
121   }
122 
123   unsigned getGenericImmIndex() const {
124     assert(isGenericImm() && "non-generic immediates don't have an index");
125     return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM;
126   }
127 };
128 
129 //===----------------------------------------------------------------------===//
130 // Machine Instruction Flags and Description
131 //===----------------------------------------------------------------------===//
132 
133 namespace MCID {
134 /// These should be considered private to the implementation of the
135 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
136 /// not use these directly.  These all correspond to bitfields in the
137 /// MCInstrDesc::Flags field.
138 enum Flag {
139   PreISelOpcode = 0,
140   Variadic,
141   HasOptionalDef,
142   Pseudo,
143   Return,
144   EHScopeReturn,
145   Call,
146   Barrier,
147   Terminator,
148   Branch,
149   IndirectBranch,
150   Compare,
151   MoveImm,
152   MoveReg,
153   Bitcast,
154   Select,
155   DelaySlot,
156   FoldableAsLoad,
157   MayLoad,
158   MayStore,
159   MayRaiseFPException,
160   Predicable,
161   NotDuplicable,
162   UnmodeledSideEffects,
163   Commutable,
164   ConvertibleTo3Addr,
165   UsesCustomInserter,
166   HasPostISelHook,
167   Rematerializable,
168   CheapAsAMove,
169   ExtraSrcRegAllocReq,
170   ExtraDefRegAllocReq,
171   RegSequence,
172   ExtractSubreg,
173   InsertSubreg,
174   Convergent,
175   Add,
176   Trap,
177   VariadicOpsAreDefs,
178   Authenticated,
179 };
180 }
181 
182 /// Describe properties that are true of each instruction in the target
183 /// description file.  This captures information about side effects, register
184 /// use and many other things.  There is one instance of this struct for each
185 /// target instruction class, and the MachineInstr class points to this struct
186 /// directly to describe itself.
187 class MCInstrDesc {
188 public:
189   unsigned short Opcode;         // The opcode number
190   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
191   unsigned char NumDefs;         // Num of args that are definitions
192   unsigned char Size;            // Number of bytes in encoding.
193   unsigned short SchedClass;     // enum identifying instr sched class
194   uint64_t Flags;                // Flags identifying machine instr class
195   uint64_t TSFlags;              // Target Specific Flag values
196   const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
197   const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
198   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
199 
200   /// Returns the value of the specific constraint if
201   /// it is set. Returns -1 if it is not set.
202   int getOperandConstraint(unsigned OpNum,
203                            MCOI::OperandConstraint Constraint) const {
204     if (OpNum < NumOperands &&
205         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
206       unsigned Pos = 16 + Constraint * 4;
207       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
208     }
209     return -1;
210   }
211 
212   /// Return the opcode number for this descriptor.
213   unsigned getOpcode() const { return Opcode; }
214 
215   /// Return the number of declared MachineOperands for this
216   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
217   /// instructions may have additional operands at the end of the list, and note
218   /// that the machine instruction may include implicit register def/uses as
219   /// well.
220   unsigned getNumOperands() const { return NumOperands; }
221 
222   using const_opInfo_iterator = const MCOperandInfo *;
223 
224   const_opInfo_iterator opInfo_begin() const { return OpInfo; }
225   const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
226 
227   iterator_range<const_opInfo_iterator> operands() const {
228     return make_range(opInfo_begin(), opInfo_end());
229   }
230 
231   /// Return the number of MachineOperands that are register
232   /// definitions.  Register definitions always occur at the start of the
233   /// machine operand list.  This is the number of "outs" in the .td file,
234   /// and does not include implicit defs.
235   unsigned getNumDefs() const { return NumDefs; }
236 
237   /// Return flags of this instruction.
238   uint64_t getFlags() const { return Flags; }
239 
240   /// \returns true if this instruction is emitted before instruction selection
241   /// and should be legalized/regbankselected/selected.
242   bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); }
243 
244   /// Return true if this instruction can have a variable number of
245   /// operands.  In this case, the variable operands will be after the normal
246   /// operands but before the implicit definitions and uses (if any are
247   /// present).
248   bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
249 
250   /// Set if this instruction has an optional definition, e.g.
251   /// ARM instructions which can set condition code if 's' bit is set.
252   bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
253 
254   /// Return true if this is a pseudo instruction that doesn't
255   /// correspond to a real machine instruction.
256   bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
257 
258   /// Return true if the instruction is a return.
259   bool isReturn() const { return Flags & (1ULL << MCID::Return); }
260 
261   /// Return true if the instruction is an add instruction.
262   bool isAdd() const { return Flags & (1ULL << MCID::Add); }
263 
264   /// Return true if this instruction is a trap.
265   bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
266 
267   /// Return true if the instruction is a register to register move.
268   bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
269 
270   ///  Return true if the instruction is a call.
271   bool isCall() const { return Flags & (1ULL << MCID::Call); }
272 
273   /// Returns true if the specified instruction stops control flow
274   /// from executing the instruction immediately following it.  Examples include
275   /// unconditional branches and return instructions.
276   bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
277 
278   /// Returns true if this instruction part of the terminator for
279   /// a basic block.  Typically this is things like return and branch
280   /// instructions.
281   ///
282   /// Various passes use this to insert code into the bottom of a basic block,
283   /// but before control flow occurs.
284   bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
285 
286   /// Returns true if this is a conditional, unconditional, or
287   /// indirect branch.  Predicates below can be used to discriminate between
288   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
289   /// get more information.
290   bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
291 
292   /// Return true if this is an indirect branch, such as a
293   /// branch through a register.
294   bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
295 
296   /// Return true if this is a branch which may fall
297   /// through to the next instruction or may transfer control flow to some other
298   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
299   /// information about this branch.
300   bool isConditionalBranch() const {
301     return isBranch() && !isBarrier() && !isIndirectBranch();
302   }
303 
304   /// Return true if this is a branch which always
305   /// transfers control flow to some other block.  The
306   /// TargetInstrInfo::analyzeBranch method can be used to get more information
307   /// about this branch.
308   bool isUnconditionalBranch() const {
309     return isBranch() && isBarrier() && !isIndirectBranch();
310   }
311 
312   /// Return true if this is a branch or an instruction which directly
313   /// writes to the program counter. Considered 'may' affect rather than
314   /// 'does' affect as things like predication are not taken into account.
315   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
316 
317   /// Return true if this instruction has a predicate operand
318   /// that controls execution. It may be set to 'always', or may be set to other
319   /// values. There are various methods in TargetInstrInfo that can be used to
320   /// control and modify the predicate in this instruction.
321   bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
322 
323   /// Return true if this instruction is a comparison.
324   bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
325 
326   /// Return true if this instruction is a move immediate
327   /// (including conditional moves) instruction.
328   bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
329 
330   /// Return true if this instruction is a bitcast instruction.
331   bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
332 
333   /// Return true if this is a select instruction.
334   bool isSelect() const { return Flags & (1ULL << MCID::Select); }
335 
336   /// Return true if this instruction cannot be safely
337   /// duplicated.  For example, if the instruction has a unique labels attached
338   /// to it, duplicating it would cause multiple definition errors.
339   bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
340 
341   /// Returns true if the specified instruction has a delay slot which
342   /// must be filled by the code generator.
343   bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
344 
345   /// Return true for instructions that can be folded as memory operands
346   /// in other instructions. The most common use for this is instructions that
347   /// are simple loads from memory that don't modify the loaded value in any
348   /// way, but it can also be used for instructions that can be expressed as
349   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
350   /// folded when it is beneficial.  This should only be set on instructions
351   /// that return a value in their only virtual register definition.
352   bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
353 
354   /// Return true if this instruction behaves
355   /// the same way as the generic REG_SEQUENCE instructions.
356   /// E.g., on ARM,
357   /// dX VMOVDRR rY, rZ
358   /// is equivalent to
359   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
360   ///
361   /// Note that for the optimizers to be able to take advantage of
362   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
363   /// override accordingly.
364   bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
365 
366   /// Return true if this instruction behaves
367   /// the same way as the generic EXTRACT_SUBREG instructions.
368   /// E.g., on ARM,
369   /// rX, rY VMOVRRD dZ
370   /// is equivalent to two EXTRACT_SUBREG:
371   /// rX = EXTRACT_SUBREG dZ, ssub_0
372   /// rY = EXTRACT_SUBREG dZ, ssub_1
373   ///
374   /// Note that for the optimizers to be able to take advantage of
375   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
376   /// override accordingly.
377   bool isExtractSubregLike() const {
378     return Flags & (1ULL << MCID::ExtractSubreg);
379   }
380 
381   /// Return true if this instruction behaves
382   /// the same way as the generic INSERT_SUBREG instructions.
383   /// E.g., on ARM,
384   /// dX = VSETLNi32 dY, rZ, Imm
385   /// is equivalent to a INSERT_SUBREG:
386   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
387   ///
388   /// Note that for the optimizers to be able to take advantage of
389   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
390   /// override accordingly.
391   bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
392 
393 
394   /// Return true if this instruction is convergent.
395   ///
396   /// Convergent instructions may not be made control-dependent on any
397   /// additional values.
398   bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
399 
400   /// Return true if variadic operands of this instruction are definitions.
401   bool variadicOpsAreDefs() const {
402     return Flags & (1ULL << MCID::VariadicOpsAreDefs);
403   }
404 
405   /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx
406   /// from ARMv8.3, which perform loads/branches with authentication).
407   ///
408   /// An authenticated instruction may fail in an ABI-defined manner when
409   /// operating on an invalid signed pointer.
410   bool isAuthenticated() const {
411     return Flags & (1ULL << MCID::Authenticated);
412   }
413 
414   //===--------------------------------------------------------------------===//
415   // Side Effect Analysis
416   //===--------------------------------------------------------------------===//
417 
418   /// Return true if this instruction could possibly read memory.
419   /// Instructions with this flag set are not necessarily simple load
420   /// instructions, they may load a value and modify it, for example.
421   bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
422 
423   /// Return true if this instruction could possibly modify memory.
424   /// Instructions with this flag set are not necessarily simple store
425   /// instructions, they may store a modified value based on their operands, or
426   /// may not actually modify anything, for example.
427   bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
428 
429   /// Return true if this instruction may raise a floating-point exception.
430   bool mayRaiseFPException() const {
431     return Flags & (1ULL << MCID::MayRaiseFPException);
432   }
433 
434   /// Return true if this instruction has side
435   /// effects that are not modeled by other flags.  This does not return true
436   /// for instructions whose effects are captured by:
437   ///
438   ///  1. Their operand list and implicit definition/use list.  Register use/def
439   ///     info is explicit for instructions.
440   ///  2. Memory accesses.  Use mayLoad/mayStore.
441   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
442   ///
443   /// Examples of side effects would be modifying 'invisible' machine state like
444   /// a control register, flushing a cache, modifying a register invisible to
445   /// LLVM, etc.
446   bool hasUnmodeledSideEffects() const {
447     return Flags & (1ULL << MCID::UnmodeledSideEffects);
448   }
449 
450   //===--------------------------------------------------------------------===//
451   // Flags that indicate whether an instruction can be modified by a method.
452   //===--------------------------------------------------------------------===//
453 
454   /// Return true if this may be a 2- or 3-address instruction (of the
455   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
456   /// exchanged.  If this flag is set, then the
457   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
458   /// instruction.
459   ///
460   /// Note that this flag may be set on instructions that are only commutable
461   /// sometimes.  In these cases, the call to commuteInstruction will fail.
462   /// Also note that some instructions require non-trivial modification to
463   /// commute them.
464   bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
465 
466   /// Return true if this is a 2-address instruction which can be changed
467   /// into a 3-address instruction if needed.  Doing this transformation can be
468   /// profitable in the register allocator, because it means that the
469   /// instruction can use a 2-address form if possible, but degrade into a less
470   /// efficient form if the source and dest register cannot be assigned to the
471   /// same register.  For example, this allows the x86 backend to turn a "shl
472   /// reg, 3" instruction into an LEA instruction, which is the same speed as
473   /// the shift but has bigger code size.
474   ///
475   /// If this returns true, then the target must implement the
476   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
477   /// is allowed to fail if the transformation isn't valid for this specific
478   /// instruction (e.g. shl reg, 4 on x86).
479   ///
480   bool isConvertibleTo3Addr() const {
481     return Flags & (1ULL << MCID::ConvertibleTo3Addr);
482   }
483 
484   /// Return true if this instruction requires custom insertion support
485   /// when the DAG scheduler is inserting it into a machine basic block.  If
486   /// this is true for the instruction, it basically means that it is a pseudo
487   /// instruction used at SelectionDAG time that is expanded out into magic code
488   /// by the target when MachineInstrs are formed.
489   ///
490   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
491   /// is used to insert this into the MachineBasicBlock.
492   bool usesCustomInsertionHook() const {
493     return Flags & (1ULL << MCID::UsesCustomInserter);
494   }
495 
496   /// Return true if this instruction requires *adjustment* after
497   /// instruction selection by calling a target hook. For example, this can be
498   /// used to fill in ARM 's' optional operand depending on whether the
499   /// conditional flag register is used.
500   bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
501 
502   /// Returns true if this instruction is a candidate for remat. This
503   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
504   ///
505   /// If this flag is set, the isReallyTriviallyReMaterializable()
506   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
507   /// the instruction is really rematable.
508   bool isRematerializable() const {
509     return Flags & (1ULL << MCID::Rematerializable);
510   }
511 
512   /// Returns true if this instruction has the same cost (or less) than a
513   /// move instruction. This is useful during certain types of optimizations
514   /// (e.g., remat during two-address conversion or machine licm) where we would
515   /// like to remat or hoist the instruction, but not if it costs more than
516   /// moving the instruction into the appropriate register. Note, we are not
517   /// marking copies from and to the same register class with this flag.
518   ///
519   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
520   /// for different subtargets.
521   bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
522 
523   /// Returns true if this instruction source operands have special
524   /// register allocation requirements that are not captured by the operand
525   /// register classes. e.g. ARM::STRD's two source registers must be an even /
526   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
527   /// allocation passes should not attempt to change allocations for sources of
528   /// instructions with this flag.
529   bool hasExtraSrcRegAllocReq() const {
530     return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
531   }
532 
533   /// Returns true if this instruction def operands have special register
534   /// allocation requirements that are not captured by the operand register
535   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
536   /// ARM::LDM registers have to be in ascending order.  Post-register
537   /// allocation passes should not attempt to change allocations for definitions
538   /// of instructions with this flag.
539   bool hasExtraDefRegAllocReq() const {
540     return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
541   }
542 
543   /// Return a list of registers that are potentially read by any
544   /// instance of this machine instruction.  For example, on X86, the "adc"
545   /// instruction adds two register operands and adds the carry bit in from the
546   /// flags register.  In this case, the instruction is marked as implicitly
547   /// reading the flags.  Likewise, the variable shift instruction on X86 is
548   /// marked as implicitly reading the 'CL' register, which it always does.
549   ///
550   /// This method returns null if the instruction has no implicit uses.
551   const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
552 
553   /// Return the number of implicit uses this instruction has.
554   unsigned getNumImplicitUses() const {
555     if (!ImplicitUses)
556       return 0;
557     unsigned i = 0;
558     for (; ImplicitUses[i]; ++i) /*empty*/
559       ;
560     return i;
561   }
562 
563   /// Return a list of registers that are potentially written by any
564   /// instance of this machine instruction.  For example, on X86, many
565   /// instructions implicitly set the flags register.  In this case, they are
566   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
567   /// their result in a physical register.  For example, the X86 divide
568   /// instruction always deposits the quotient and remainder in the EAX/EDX
569   /// registers.  For that instruction, this will return a list containing the
570   /// EAX/EDX/EFLAGS registers.
571   ///
572   /// This method returns null if the instruction has no implicit defs.
573   const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
574 
575   /// Return the number of implicit defs this instruct has.
576   unsigned getNumImplicitDefs() const {
577     if (!ImplicitDefs)
578       return 0;
579     unsigned i = 0;
580     for (; ImplicitDefs[i]; ++i) /*empty*/
581       ;
582     return i;
583   }
584 
585   /// Return true if this instruction implicitly
586   /// uses the specified physical register.
587   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
588     if (const MCPhysReg *ImpUses = ImplicitUses)
589       for (; *ImpUses; ++ImpUses)
590         if (*ImpUses == Reg)
591           return true;
592     return false;
593   }
594 
595   /// Return true if this instruction implicitly
596   /// defines the specified physical register.
597   bool hasImplicitDefOfPhysReg(unsigned Reg,
598                                const MCRegisterInfo *MRI = nullptr) const;
599 
600   /// Return the scheduling class for this instruction.  The
601   /// scheduling class is an index into the InstrItineraryData table.  This
602   /// returns zero if there is no known scheduling information for the
603   /// instruction.
604   unsigned getSchedClass() const { return SchedClass; }
605 
606   /// Return the number of bytes in the encoding of this instruction,
607   /// or zero if the encoding size cannot be known from the opcode.
608   unsigned getSize() const { return Size; }
609 
610   /// Find the index of the first operand in the
611   /// operand list that is used to represent the predicate. It returns -1 if
612   /// none is found.
613   int findFirstPredOperandIdx() const {
614     if (isPredicable()) {
615       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
616         if (OpInfo[i].isPredicate())
617           return i;
618     }
619     return -1;
620   }
621 
622   /// Return true if this instruction defines the specified physical
623   /// register, either explicitly or implicitly.
624   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
625                        const MCRegisterInfo &RI) const;
626 };
627 
628 } // end namespace llvm
629 
630 #endif
631