1 //===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_OBJECT_ELFTYPES_H
10 #define LLVM_OBJECT_ELFTYPES_H
11 
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/BinaryFormat/ELF.h"
15 #include "llvm/Object/Error.h"
16 #include "llvm/Support/Endian.h"
17 #include "llvm/Support/Error.h"
18 #include "llvm/Support/MathExtras.h"
19 #include <cassert>
20 #include <cstdint>
21 #include <cstring>
22 #include <type_traits>
23 
24 namespace llvm {
25 namespace object {
26 
27 using support::endianness;
28 
29 template <class ELFT> struct Elf_Ehdr_Impl;
30 template <class ELFT> struct Elf_Shdr_Impl;
31 template <class ELFT> struct Elf_Sym_Impl;
32 template <class ELFT> struct Elf_Dyn_Impl;
33 template <class ELFT> struct Elf_Phdr_Impl;
34 template <class ELFT, bool isRela> struct Elf_Rel_Impl;
35 template <class ELFT> struct Elf_Verdef_Impl;
36 template <class ELFT> struct Elf_Verdaux_Impl;
37 template <class ELFT> struct Elf_Verneed_Impl;
38 template <class ELFT> struct Elf_Vernaux_Impl;
39 template <class ELFT> struct Elf_Versym_Impl;
40 template <class ELFT> struct Elf_Hash_Impl;
41 template <class ELFT> struct Elf_GnuHash_Impl;
42 template <class ELFT> struct Elf_Chdr_Impl;
43 template <class ELFT> struct Elf_Nhdr_Impl;
44 template <class ELFT> class Elf_Note_Impl;
45 template <class ELFT> class Elf_Note_Iterator_Impl;
46 template <class ELFT> struct Elf_CGProfile_Impl;
47 
48 template <endianness E, bool Is64> struct ELFType {
49 private:
50   template <typename Ty>
51   using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
52 
53 public:
54   static const endianness TargetEndianness = E;
55   static const bool Is64Bits = Is64;
56 
57   using uint = std::conditional_t<Is64, uint64_t, uint32_t>;
58   using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
59   using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
60   using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
61   using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
62   using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
63   using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
64   using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
65   using Relr = packed<uint>;
66   using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
67   using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
68   using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
69   using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
70   using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
71   using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
72   using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
73   using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
74   using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
75   using Note = Elf_Note_Impl<ELFType<E, Is64>>;
76   using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
77   using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
78   using DynRange = ArrayRef<Dyn>;
79   using ShdrRange = ArrayRef<Shdr>;
80   using SymRange = ArrayRef<Sym>;
81   using RelRange = ArrayRef<Rel>;
82   using RelaRange = ArrayRef<Rela>;
83   using RelrRange = ArrayRef<Relr>;
84   using PhdrRange = ArrayRef<Phdr>;
85 
86   using Half = packed<uint16_t>;
87   using Word = packed<uint32_t>;
88   using Sword = packed<int32_t>;
89   using Xword = packed<uint64_t>;
90   using Sxword = packed<int64_t>;
91   using Addr = packed<uint>;
92   using Off = packed<uint>;
93 };
94 
95 using ELF32LE = ELFType<support::little, false>;
96 using ELF32BE = ELFType<support::big, false>;
97 using ELF64LE = ELFType<support::little, true>;
98 using ELF64BE = ELFType<support::big, true>;
99 
100 // Use an alignment of 2 for the typedefs since that is the worst case for
101 // ELF files in archives.
102 
103 // I really don't like doing this, but the alternative is copypasta.
104 #define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)                                       \
105   using Elf_Addr = typename ELFT::Addr;                                        \
106   using Elf_Off = typename ELFT::Off;                                          \
107   using Elf_Half = typename ELFT::Half;                                        \
108   using Elf_Word = typename ELFT::Word;                                        \
109   using Elf_Sword = typename ELFT::Sword;                                      \
110   using Elf_Xword = typename ELFT::Xword;                                      \
111   using Elf_Sxword = typename ELFT::Sxword;                                    \
112   using uintX_t = typename ELFT::uint;                                         \
113   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
114   using Elf_Shdr = typename ELFT::Shdr;                                        \
115   using Elf_Sym = typename ELFT::Sym;                                          \
116   using Elf_Dyn = typename ELFT::Dyn;                                          \
117   using Elf_Phdr = typename ELFT::Phdr;                                        \
118   using Elf_Rel = typename ELFT::Rel;                                          \
119   using Elf_Rela = typename ELFT::Rela;                                        \
120   using Elf_Relr = typename ELFT::Relr;                                        \
121   using Elf_Verdef = typename ELFT::Verdef;                                    \
122   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
123   using Elf_Verneed = typename ELFT::Verneed;                                  \
124   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
125   using Elf_Versym = typename ELFT::Versym;                                    \
126   using Elf_Hash = typename ELFT::Hash;                                        \
127   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
128   using Elf_Nhdr = typename ELFT::Nhdr;                                        \
129   using Elf_Note = typename ELFT::Note;                                        \
130   using Elf_Note_Iterator = typename ELFT::NoteIterator;                       \
131   using Elf_CGProfile = typename ELFT::CGProfile;                              \
132   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
133   using Elf_Shdr_Range = typename ELFT::ShdrRange;                             \
134   using Elf_Sym_Range = typename ELFT::SymRange;                               \
135   using Elf_Rel_Range = typename ELFT::RelRange;                               \
136   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
137   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
138   using Elf_Phdr_Range = typename ELFT::PhdrRange;
139 
140 #define LLVM_ELF_COMMA ,
141 #define LLVM_ELF_IMPORT_TYPES(E, W)                                            \
142   LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
143 
144 // Section header.
145 template <class ELFT> struct Elf_Shdr_Base;
146 
147 template <endianness TargetEndianness>
148 struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
149   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
150   Elf_Word sh_name;      // Section name (index into string table)
151   Elf_Word sh_type;      // Section type (SHT_*)
152   Elf_Word sh_flags;     // Section flags (SHF_*)
153   Elf_Addr sh_addr;      // Address where section is to be loaded
154   Elf_Off sh_offset;     // File offset of section data, in bytes
155   Elf_Word sh_size;      // Size of section, in bytes
156   Elf_Word sh_link;      // Section type-specific header table index link
157   Elf_Word sh_info;      // Section type-specific extra information
158   Elf_Word sh_addralign; // Section address alignment
159   Elf_Word sh_entsize;   // Size of records contained within the section
160 };
161 
162 template <endianness TargetEndianness>
163 struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
164   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
165   Elf_Word sh_name;       // Section name (index into string table)
166   Elf_Word sh_type;       // Section type (SHT_*)
167   Elf_Xword sh_flags;     // Section flags (SHF_*)
168   Elf_Addr sh_addr;       // Address where section is to be loaded
169   Elf_Off sh_offset;      // File offset of section data, in bytes
170   Elf_Xword sh_size;      // Size of section, in bytes
171   Elf_Word sh_link;       // Section type-specific header table index link
172   Elf_Word sh_info;       // Section type-specific extra information
173   Elf_Xword sh_addralign; // Section address alignment
174   Elf_Xword sh_entsize;   // Size of records contained within the section
175 };
176 
177 template <class ELFT>
178 struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
179   using Elf_Shdr_Base<ELFT>::sh_entsize;
180   using Elf_Shdr_Base<ELFT>::sh_size;
181 
182   /// Get the number of entities this section contains if it has any.
183   unsigned getEntityCount() const {
184     if (sh_entsize == 0)
185       return 0;
186     return sh_size / sh_entsize;
187   }
188 };
189 
190 template <class ELFT> struct Elf_Sym_Base;
191 
192 template <endianness TargetEndianness>
193 struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
194   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
195   Elf_Word st_name;       // Symbol name (index into string table)
196   Elf_Addr st_value;      // Value or address associated with the symbol
197   Elf_Word st_size;       // Size of the symbol
198   unsigned char st_info;  // Symbol's type and binding attributes
199   unsigned char st_other; // Must be zero; reserved
200   Elf_Half st_shndx;      // Which section (header table index) it's defined in
201 };
202 
203 template <endianness TargetEndianness>
204 struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
205   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
206   Elf_Word st_name;       // Symbol name (index into string table)
207   unsigned char st_info;  // Symbol's type and binding attributes
208   unsigned char st_other; // Must be zero; reserved
209   Elf_Half st_shndx;      // Which section (header table index) it's defined in
210   Elf_Addr st_value;      // Value or address associated with the symbol
211   Elf_Xword st_size;      // Size of the symbol
212 };
213 
214 template <class ELFT>
215 struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
216   using Elf_Sym_Base<ELFT>::st_info;
217   using Elf_Sym_Base<ELFT>::st_shndx;
218   using Elf_Sym_Base<ELFT>::st_other;
219   using Elf_Sym_Base<ELFT>::st_value;
220 
221   // These accessors and mutators correspond to the ELF32_ST_BIND,
222   // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
223   unsigned char getBinding() const { return st_info >> 4; }
224   unsigned char getType() const { return st_info & 0x0f; }
225   uint64_t getValue() const { return st_value; }
226   void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
227   void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
228 
229   void setBindingAndType(unsigned char b, unsigned char t) {
230     st_info = (b << 4) + (t & 0x0f);
231   }
232 
233   /// Access to the STV_xxx flag stored in the first two bits of st_other.
234   /// STV_DEFAULT: 0
235   /// STV_INTERNAL: 1
236   /// STV_HIDDEN: 2
237   /// STV_PROTECTED: 3
238   unsigned char getVisibility() const { return st_other & 0x3; }
239   void setVisibility(unsigned char v) {
240     assert(v < 4 && "Invalid value for visibility");
241     st_other = (st_other & ~0x3) | v;
242   }
243 
244   bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
245 
246   bool isCommon() const {
247     return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
248   }
249 
250   bool isDefined() const { return !isUndefined(); }
251 
252   bool isProcessorSpecific() const {
253     return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
254   }
255 
256   bool isOSSpecific() const {
257     return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
258   }
259 
260   bool isReserved() const {
261     // ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
262     // true and some compilers warn about it.
263     return st_shndx >= ELF::SHN_LORESERVE;
264   }
265 
266   bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
267 
268   bool isExternal() const {
269     return getBinding() != ELF::STB_LOCAL;
270   }
271 
272   Expected<StringRef> getName(StringRef StrTab) const;
273 };
274 
275 template <class ELFT>
276 Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
277   uint32_t Offset = this->st_name;
278   if (Offset >= StrTab.size())
279     return createStringError(object_error::parse_failed,
280                              "st_name (0x%" PRIx32
281                              ") is past the end of the string table"
282                              " of size 0x%zx",
283                              Offset, StrTab.size());
284   return StringRef(StrTab.data() + Offset);
285 }
286 
287 /// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
288 /// (.gnu.version). This structure is identical for ELF32 and ELF64.
289 template <class ELFT>
290 struct Elf_Versym_Impl {
291   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
292   Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
293 };
294 
295 /// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
296 /// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
297 template <class ELFT>
298 struct Elf_Verdef_Impl {
299   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
300   Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
301   Elf_Half vd_flags;   // Bitwise flags (VER_DEF_*)
302   Elf_Half vd_ndx;     // Version index, used in .gnu.version entries
303   Elf_Half vd_cnt;     // Number of Verdaux entries
304   Elf_Word vd_hash;    // Hash of name
305   Elf_Word vd_aux;     // Offset to the first Verdaux entry (in bytes)
306   Elf_Word vd_next;    // Offset to the next Verdef entry (in bytes)
307 
308   /// Get the first Verdaux entry for this Verdef.
309   const Elf_Verdaux *getAux() const {
310     return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
311   }
312 };
313 
314 /// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
315 /// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
316 template <class ELFT>
317 struct Elf_Verdaux_Impl {
318   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
319   Elf_Word vda_name; // Version name (offset in string table)
320   Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
321 };
322 
323 /// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
324 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
325 template <class ELFT>
326 struct Elf_Verneed_Impl {
327   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
328   Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
329   Elf_Half vn_cnt;     // Number of associated Vernaux entries
330   Elf_Word vn_file;    // Library name (string table offset)
331   Elf_Word vn_aux;     // Offset to first Vernaux entry (in bytes)
332   Elf_Word vn_next;    // Offset to next Verneed entry (in bytes)
333 };
334 
335 /// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
336 /// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
337 template <class ELFT>
338 struct Elf_Vernaux_Impl {
339   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
340   Elf_Word vna_hash;  // Hash of dependency name
341   Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
342   Elf_Half vna_other; // Version index, used in .gnu.version entries
343   Elf_Word vna_name;  // Dependency name
344   Elf_Word vna_next;  // Offset to next Vernaux entry (in bytes)
345 };
346 
347 /// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
348 ///               table section (.dynamic) look like.
349 template <class ELFT> struct Elf_Dyn_Base;
350 
351 template <endianness TargetEndianness>
352 struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
353   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
354   Elf_Sword d_tag;
355   union {
356     Elf_Word d_val;
357     Elf_Addr d_ptr;
358   } d_un;
359 };
360 
361 template <endianness TargetEndianness>
362 struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
363   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
364   Elf_Sxword d_tag;
365   union {
366     Elf_Xword d_val;
367     Elf_Addr d_ptr;
368   } d_un;
369 };
370 
371 /// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
372 template <class ELFT>
373 struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
374   using Elf_Dyn_Base<ELFT>::d_tag;
375   using Elf_Dyn_Base<ELFT>::d_un;
376   using intX_t = std::conditional_t<ELFT::Is64Bits, int64_t, int32_t>;
377   using uintX_t = std::conditional_t<ELFT::Is64Bits, uint64_t, uint32_t>;
378   intX_t getTag() const { return d_tag; }
379   uintX_t getVal() const { return d_un.d_val; }
380   uintX_t getPtr() const { return d_un.d_ptr; }
381 };
382 
383 template <endianness TargetEndianness>
384 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
385   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
386   static const bool IsRela = false;
387   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
388   Elf_Word r_info;   // Symbol table index and type of relocation to apply
389 
390   uint32_t getRInfo(bool isMips64EL) const {
391     assert(!isMips64EL);
392     return r_info;
393   }
394   void setRInfo(uint32_t R, bool IsMips64EL) {
395     assert(!IsMips64EL);
396     r_info = R;
397   }
398 
399   // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
400   // and ELF32_R_INFO macros defined in the ELF specification:
401   uint32_t getSymbol(bool isMips64EL) const {
402     return this->getRInfo(isMips64EL) >> 8;
403   }
404   unsigned char getType(bool isMips64EL) const {
405     return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
406   }
407   void setSymbol(uint32_t s, bool IsMips64EL) {
408     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
409   }
410   void setType(unsigned char t, bool IsMips64EL) {
411     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
412   }
413   void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
414     this->setRInfo((s << 8) + t, IsMips64EL);
415   }
416 };
417 
418 template <endianness TargetEndianness>
419 struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
420     : public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
421   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
422   static const bool IsRela = true;
423   Elf_Sword r_addend; // Compute value for relocatable field by adding this
424 };
425 
426 template <endianness TargetEndianness>
427 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
428   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
429   static const bool IsRela = false;
430   Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
431   Elf_Xword r_info;  // Symbol table index and type of relocation to apply
432 
433   uint64_t getRInfo(bool isMips64EL) const {
434     uint64_t t = r_info;
435     if (!isMips64EL)
436       return t;
437     // Mips64 little endian has a "special" encoding of r_info. Instead of one
438     // 64 bit little endian number, it is a little endian 32 bit number followed
439     // by a 32 bit big endian number.
440     return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
441            ((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
442   }
443 
444   void setRInfo(uint64_t R, bool IsMips64EL) {
445     if (IsMips64EL)
446       r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
447                ((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
448     else
449       r_info = R;
450   }
451 
452   // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
453   // and ELF64_R_INFO macros defined in the ELF specification:
454   uint32_t getSymbol(bool isMips64EL) const {
455     return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
456   }
457   uint32_t getType(bool isMips64EL) const {
458     return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
459   }
460   void setSymbol(uint32_t s, bool IsMips64EL) {
461     setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
462   }
463   void setType(uint32_t t, bool IsMips64EL) {
464     setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
465   }
466   void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
467     this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
468   }
469 };
470 
471 template <endianness TargetEndianness>
472 struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
473     : public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
474   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
475   static const bool IsRela = true;
476   Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
477 };
478 
479 template <class ELFT>
480 struct Elf_Ehdr_Impl {
481   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
482   unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
483   Elf_Half e_type;                       // Type of file (see ET_*)
484   Elf_Half e_machine;   // Required architecture for this file (see EM_*)
485   Elf_Word e_version;   // Must be equal to 1
486   Elf_Addr e_entry;     // Address to jump to in order to start program
487   Elf_Off e_phoff;      // Program header table's file offset, in bytes
488   Elf_Off e_shoff;      // Section header table's file offset, in bytes
489   Elf_Word e_flags;     // Processor-specific flags
490   Elf_Half e_ehsize;    // Size of ELF header, in bytes
491   Elf_Half e_phentsize; // Size of an entry in the program header table
492   Elf_Half e_phnum;     // Number of entries in the program header table
493   Elf_Half e_shentsize; // Size of an entry in the section header table
494   Elf_Half e_shnum;     // Number of entries in the section header table
495   Elf_Half e_shstrndx;  // Section header table index of section name
496                         // string table
497 
498   bool checkMagic() const {
499     return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
500   }
501 
502   unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
503   unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
504 };
505 
506 template <endianness TargetEndianness>
507 struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
508   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
509   Elf_Word p_type;   // Type of segment
510   Elf_Off p_offset;  // FileOffset where segment is located, in bytes
511   Elf_Addr p_vaddr;  // Virtual Address of beginning of segment
512   Elf_Addr p_paddr;  // Physical address of beginning of segment (OS-specific)
513   Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
514   Elf_Word p_memsz;  // Num. of bytes in mem image of segment (may be zero)
515   Elf_Word p_flags;  // Segment flags
516   Elf_Word p_align;  // Segment alignment constraint
517 };
518 
519 template <endianness TargetEndianness>
520 struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
521   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
522   Elf_Word p_type;    // Type of segment
523   Elf_Word p_flags;   // Segment flags
524   Elf_Off p_offset;   // FileOffset where segment is located, in bytes
525   Elf_Addr p_vaddr;   // Virtual Address of beginning of segment
526   Elf_Addr p_paddr;   // Physical address of beginning of segment (OS-specific)
527   Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
528   Elf_Xword p_memsz;  // Num. of bytes in mem image of segment (may be zero)
529   Elf_Xword p_align;  // Segment alignment constraint
530 };
531 
532 // ELFT needed for endianness.
533 template <class ELFT>
534 struct Elf_Hash_Impl {
535   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
536   Elf_Word nbucket;
537   Elf_Word nchain;
538 
539   ArrayRef<Elf_Word> buckets() const {
540     return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
541   }
542 
543   ArrayRef<Elf_Word> chains() const {
544     return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
545                               &nbucket + 2 + nbucket + nchain);
546   }
547 };
548 
549 // .gnu.hash section
550 template <class ELFT>
551 struct Elf_GnuHash_Impl {
552   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
553   Elf_Word nbuckets;
554   Elf_Word symndx;
555   Elf_Word maskwords;
556   Elf_Word shift2;
557 
558   ArrayRef<Elf_Off> filter() const {
559     return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
560                              maskwords);
561   }
562 
563   ArrayRef<Elf_Word> buckets() const {
564     return ArrayRef<Elf_Word>(
565         reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
566   }
567 
568   ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
569     assert(DynamicSymCount >= symndx);
570     return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
571   }
572 };
573 
574 // Compressed section headers.
575 // http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
576 template <endianness TargetEndianness>
577 struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
578   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
579   Elf_Word ch_type;
580   Elf_Word ch_size;
581   Elf_Word ch_addralign;
582 };
583 
584 template <endianness TargetEndianness>
585 struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
586   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
587   Elf_Word ch_type;
588   Elf_Word ch_reserved;
589   Elf_Xword ch_size;
590   Elf_Xword ch_addralign;
591 };
592 
593 /// Note header
594 template <class ELFT>
595 struct Elf_Nhdr_Impl {
596   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
597   Elf_Word n_namesz;
598   Elf_Word n_descsz;
599   Elf_Word n_type;
600 
601   /// The alignment of the name and descriptor.
602   ///
603   /// Implementations differ from the specification here: in practice all
604   /// variants align both the name and descriptor to 4-bytes.
605   static const unsigned int Align = 4;
606 
607   /// Get the size of the note, including name, descriptor, and padding.
608   size_t getSize() const {
609     return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
610   }
611 };
612 
613 /// An ELF note.
614 ///
615 /// Wraps a note header, providing methods for accessing the name and
616 /// descriptor safely.
617 template <class ELFT>
618 class Elf_Note_Impl {
619   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
620 
621   const Elf_Nhdr_Impl<ELFT> &Nhdr;
622 
623   template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
624 
625 public:
626   Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
627 
628   /// Get the note's name, excluding the terminating null byte.
629   StringRef getName() const {
630     if (!Nhdr.n_namesz)
631       return StringRef();
632     return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
633                      Nhdr.n_namesz - 1);
634   }
635 
636   /// Get the note's descriptor.
637   ArrayRef<uint8_t> getDesc() const {
638     if (!Nhdr.n_descsz)
639       return ArrayRef<uint8_t>();
640     return ArrayRef<uint8_t>(
641         reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
642           alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz),
643         Nhdr.n_descsz);
644   }
645 
646   /// Get the note's descriptor as StringRef
647   StringRef getDescAsStringRef() const {
648     ArrayRef<uint8_t> Desc = getDesc();
649     return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
650   }
651 
652   /// Get the note's type.
653   Elf_Word getType() const { return Nhdr.n_type; }
654 };
655 
656 template <class ELFT> class Elf_Note_Iterator_Impl {
657 public:
658   using iterator_category = std::forward_iterator_tag;
659   using value_type = Elf_Note_Impl<ELFT>;
660   using difference_type = std::ptrdiff_t;
661   using pointer = value_type *;
662   using reference = value_type &;
663 
664 private:
665   // Nhdr being a nullptr marks the end of iteration.
666   const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
667   size_t RemainingSize = 0u;
668   Error *Err = nullptr;
669 
670   template <class ELFFileELFT> friend class ELFFile;
671 
672   // Stop iteration and indicate an overflow.
673   void stopWithOverflowError() {
674     Nhdr = nullptr;
675     *Err = make_error<StringError>("ELF note overflows container",
676                                    object_error::parse_failed);
677   }
678 
679   // Advance Nhdr by NoteSize bytes, starting from NhdrPos.
680   //
681   // Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
682   // upon returning. Handles stopping iteration when reaching the end of the
683   // container, either cleanly or with an overflow error.
684   void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
685     RemainingSize -= NoteSize;
686     if (RemainingSize == 0u) {
687       // Ensure that if the iterator walks to the end, the error is checked
688       // afterwards.
689       *Err = Error::success();
690       Nhdr = nullptr;
691     } else if (sizeof(*Nhdr) > RemainingSize)
692       stopWithOverflowError();
693     else {
694       Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
695       if (Nhdr->getSize() > RemainingSize)
696         stopWithOverflowError();
697       else
698         *Err = Error::success();
699     }
700   }
701 
702   Elf_Note_Iterator_Impl() = default;
703   explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
704   Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
705       : RemainingSize(Size), Err(&Err) {
706     consumeError(std::move(Err));
707     assert(Start && "ELF note iterator starting at NULL");
708     advanceNhdr(Start, 0u);
709   }
710 
711 public:
712   Elf_Note_Iterator_Impl &operator++() {
713     assert(Nhdr && "incremented ELF note end iterator");
714     const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
715     size_t NoteSize = Nhdr->getSize();
716     advanceNhdr(NhdrPos, NoteSize);
717     return *this;
718   }
719   bool operator==(Elf_Note_Iterator_Impl Other) const {
720     if (!Nhdr && Other.Err)
721       (void)(bool)(*Other.Err);
722     if (!Other.Nhdr && Err)
723       (void)(bool)(*Err);
724     return Nhdr == Other.Nhdr;
725   }
726   bool operator!=(Elf_Note_Iterator_Impl Other) const {
727     return !(*this == Other);
728   }
729   Elf_Note_Impl<ELFT> operator*() const {
730     assert(Nhdr && "dereferenced ELF note end iterator");
731     return Elf_Note_Impl<ELFT>(*Nhdr);
732   }
733 };
734 
735 template <class ELFT> struct Elf_CGProfile_Impl {
736   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
737   Elf_Xword cgp_weight;
738 };
739 
740 // MIPS .reginfo section
741 template <class ELFT>
742 struct Elf_Mips_RegInfo;
743 
744 template <support::endianness TargetEndianness>
745 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
746   LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
747   Elf_Word ri_gprmask;     // bit-mask of used general registers
748   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
749   Elf_Addr ri_gp_value;    // gp register value
750 };
751 
752 template <support::endianness TargetEndianness>
753 struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
754   LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
755   Elf_Word ri_gprmask;     // bit-mask of used general registers
756   Elf_Word ri_pad;         // unused padding field
757   Elf_Word ri_cprmask[4];  // bit-mask of used co-processor registers
758   Elf_Addr ri_gp_value;    // gp register value
759 };
760 
761 // .MIPS.options section
762 template <class ELFT> struct Elf_Mips_Options {
763   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
764   uint8_t kind;     // Determines interpretation of variable part of descriptor
765   uint8_t size;     // Byte size of descriptor, including this header
766   Elf_Half section; // Section header index of section affected,
767                     // or 0 for global options
768   Elf_Word info;    // Kind-specific information
769 
770   Elf_Mips_RegInfo<ELFT> &getRegInfo() {
771     assert(kind == ELF::ODK_REGINFO);
772     return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
773         (uint8_t *)this + sizeof(Elf_Mips_Options));
774   }
775   const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
776     return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
777   }
778 };
779 
780 // .MIPS.abiflags section content
781 template <class ELFT> struct Elf_Mips_ABIFlags {
782   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
783   Elf_Half version;  // Version of the structure
784   uint8_t isa_level; // ISA level: 1-5, 32, and 64
785   uint8_t isa_rev;   // ISA revision (0 for MIPS I - MIPS V)
786   uint8_t gpr_size;  // General purpose registers size
787   uint8_t cpr1_size; // Co-processor 1 registers size
788   uint8_t cpr2_size; // Co-processor 2 registers size
789   uint8_t fp_abi;    // Floating-point ABI flag
790   Elf_Word isa_ext;  // Processor-specific extension
791   Elf_Word ases;     // ASEs flags
792   Elf_Word flags1;   // General flags
793   Elf_Word flags2;   // General flags
794 };
795 
796 // Struct representing the BBAddrMap for one function.
797 struct BBAddrMap {
798   uint64_t Addr; // Function address
799   // Struct representing the BBAddrMap information for one basic block.
800   struct BBEntry {
801     uint32_t Offset; // Offset of basic block relative to function start.
802     uint32_t Size;   // Size of the basic block.
803 
804     // The following fields are decoded from the Metadata field. The encoding
805     // happens in AsmPrinter.cpp:getBBAddrMapMetadata.
806     bool HasReturn;      // If this block ends with a return (or tail call).
807     bool HasTailCall;    // If this block ends with a tail call.
808     bool IsEHPad;        // If this is an exception handling block.
809     bool CanFallThrough; // If this block can fall through to its next.
810 
811     BBEntry(uint32_t Offset, uint32_t Size, uint32_t Metadata)
812         : Offset(Offset), Size(Size), HasReturn(Metadata & 1),
813           HasTailCall(Metadata & (1 << 1)), IsEHPad(Metadata & (1 << 2)),
814           CanFallThrough(Metadata & (1 << 3)){};
815 
816     bool operator==(const BBEntry &Other) const {
817       return Offset == Other.Offset && Size == Other.Size &&
818              HasReturn == Other.HasReturn && HasTailCall == Other.HasTailCall &&
819              IsEHPad == Other.IsEHPad && CanFallThrough == Other.CanFallThrough;
820     }
821   };
822   std::vector<BBEntry> BBEntries; // Basic block entries for this function.
823 
824   // Equality operator for unit testing.
825   bool operator==(const BBAddrMap &Other) const {
826     return Addr == Other.Addr && std::equal(BBEntries.begin(), BBEntries.end(),
827                                             Other.BBEntries.begin());
828   }
829 };
830 
831 } // end namespace object.
832 } // end namespace llvm.
833 
834 #endif // LLVM_OBJECT_ELFTYPES_H
835