1 //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
11 /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
12 /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
13 /// allocator.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_SUPPORT_ALLOCATOR_H
18 #define LLVM_SUPPORT_ALLOCATOR_H
19 
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Support/Alignment.h"
23 #include "llvm/Support/AllocatorBase.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/MathExtras.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <cstddef>
29 #include <cstdint>
30 #include <iterator>
31 #include <utility>
32 
33 namespace llvm {
34 
35 namespace detail {
36 
37 // We call out to an external function to actually print the message as the
38 // printing code uses Allocator.h in its implementation.
39 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
40                                 size_t TotalMemory);
41 
42 } // end namespace detail
43 
44 /// Allocate memory in an ever growing pool, as if by bump-pointer.
45 ///
46 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
47 /// memory rather than relying on a boundless contiguous heap. However, it has
48 /// bump-pointer semantics in that it is a monotonically growing pool of memory
49 /// where every allocation is found by merely allocating the next N bytes in
50 /// the slab, or the next N bytes in the next slab.
51 ///
52 /// Note that this also has a threshold for forcing allocations above a certain
53 /// size into their own slab.
54 ///
55 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
56 /// object, which wraps malloc, to allocate memory, but it can be changed to
57 /// use a custom allocator.
58 ///
59 /// The GrowthDelay specifies after how many allocated slabs the allocator
60 /// increases the size of the slabs.
61 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
62           size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
63 class BumpPtrAllocatorImpl
64     : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
65                                                 SizeThreshold, GrowthDelay>>,
66       private detail::AllocatorHolder<AllocatorT> {
67   using AllocTy = detail::AllocatorHolder<AllocatorT>;
68 
69 public:
70   static_assert(SizeThreshold <= SlabSize,
71                 "The SizeThreshold must be at most the SlabSize to ensure "
72                 "that objects larger than a slab go into their own memory "
73                 "allocation.");
74   static_assert(GrowthDelay > 0,
75                 "GrowthDelay must be at least 1 which already increases the"
76                 "slab size after each allocated slab.");
77 
78   BumpPtrAllocatorImpl() = default;
79 
80   template <typename T>
81   BumpPtrAllocatorImpl(T &&Allocator)
82       : AllocTy(std::forward<T &&>(Allocator)) {}
83 
84   // Manually implement a move constructor as we must clear the old allocator's
85   // slabs as a matter of correctness.
86   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
87       : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr),
88         End(Old.End), Slabs(std::move(Old.Slabs)),
89         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
90         BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
91     Old.CurPtr = Old.End = nullptr;
92     Old.BytesAllocated = 0;
93     Old.Slabs.clear();
94     Old.CustomSizedSlabs.clear();
95   }
96 
97   ~BumpPtrAllocatorImpl() {
98     DeallocateSlabs(Slabs.begin(), Slabs.end());
99     DeallocateCustomSizedSlabs();
100   }
101 
102   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
103     DeallocateSlabs(Slabs.begin(), Slabs.end());
104     DeallocateCustomSizedSlabs();
105 
106     CurPtr = RHS.CurPtr;
107     End = RHS.End;
108     BytesAllocated = RHS.BytesAllocated;
109     RedZoneSize = RHS.RedZoneSize;
110     Slabs = std::move(RHS.Slabs);
111     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
112     AllocTy::operator=(std::move(RHS.getAllocator()));
113 
114     RHS.CurPtr = RHS.End = nullptr;
115     RHS.BytesAllocated = 0;
116     RHS.Slabs.clear();
117     RHS.CustomSizedSlabs.clear();
118     return *this;
119   }
120 
121   /// Deallocate all but the current slab and reset the current pointer
122   /// to the beginning of it, freeing all memory allocated so far.
123   void Reset() {
124     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
125     DeallocateCustomSizedSlabs();
126     CustomSizedSlabs.clear();
127 
128     if (Slabs.empty())
129       return;
130 
131     // Reset the state.
132     BytesAllocated = 0;
133     CurPtr = (char *)Slabs.front();
134     End = CurPtr + SlabSize;
135 
136     __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
137     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
138     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
139   }
140 
141   /// Allocate space at the specified alignment.
142   // This method is *not* marked noalias, because
143   // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
144   // that loop is not based on the Allocate() return value.
145   //
146   // Allocate(0, N) is valid, it returns a non-null pointer (which should not
147   // be dereferenced).
148   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
149     // Keep track of how many bytes we've allocated.
150     BytesAllocated += Size;
151 
152     size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
153     assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
154 
155     size_t SizeToAllocate = Size;
156 #if LLVM_ADDRESS_SANITIZER_BUILD
157     // Add trailing bytes as a "red zone" under ASan.
158     SizeToAllocate += RedZoneSize;
159 #endif
160 
161     // Check if we have enough space.
162     if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)
163         // We can't return nullptr even for a zero-sized allocation!
164         && CurPtr != nullptr) {
165       char *AlignedPtr = CurPtr + Adjustment;
166       CurPtr = AlignedPtr + SizeToAllocate;
167       // Update the allocation point of this memory block in MemorySanitizer.
168       // Without this, MemorySanitizer messages for values originated from here
169       // will point to the allocation of the entire slab.
170       __msan_allocated_memory(AlignedPtr, Size);
171       // Similarly, tell ASan about this space.
172       __asan_unpoison_memory_region(AlignedPtr, Size);
173       return AlignedPtr;
174     }
175 
176     // If Size is really big, allocate a separate slab for it.
177     size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
178     if (PaddedSize > SizeThreshold) {
179       void *NewSlab =
180           this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t));
181       // We own the new slab and don't want anyone reading anyting other than
182       // pieces returned from this method.  So poison the whole slab.
183       __asan_poison_memory_region(NewSlab, PaddedSize);
184       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
185 
186       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
187       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
188       char *AlignedPtr = (char*)AlignedAddr;
189       __msan_allocated_memory(AlignedPtr, Size);
190       __asan_unpoison_memory_region(AlignedPtr, Size);
191       return AlignedPtr;
192     }
193 
194     // Otherwise, start a new slab and try again.
195     StartNewSlab();
196     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
197     assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
198            "Unable to allocate memory!");
199     char *AlignedPtr = (char*)AlignedAddr;
200     CurPtr = AlignedPtr + SizeToAllocate;
201     __msan_allocated_memory(AlignedPtr, Size);
202     __asan_unpoison_memory_region(AlignedPtr, Size);
203     return AlignedPtr;
204   }
205 
206   inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
207   Allocate(size_t Size, size_t Alignment) {
208     assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
209     return Allocate(Size, Align(Alignment));
210   }
211 
212   // Pull in base class overloads.
213   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
214 
215   // Bump pointer allocators are expected to never free their storage; and
216   // clients expect pointers to remain valid for non-dereferencing uses even
217   // after deallocation.
218   void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
219     __asan_poison_memory_region(Ptr, Size);
220   }
221 
222   // Pull in base class overloads.
223   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
224 
225   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
226 
227   /// \return An index uniquely and reproducibly identifying
228   /// an input pointer \p Ptr in the given allocator.
229   /// The returned value is negative iff the object is inside a custom-size
230   /// slab.
231   /// Returns an empty optional if the pointer is not found in the allocator.
232   llvm::Optional<int64_t> identifyObject(const void *Ptr) {
233     const char *P = static_cast<const char *>(Ptr);
234     int64_t InSlabIdx = 0;
235     for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
236       const char *S = static_cast<const char *>(Slabs[Idx]);
237       if (P >= S && P < S + computeSlabSize(Idx))
238         return InSlabIdx + static_cast<int64_t>(P - S);
239       InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
240     }
241 
242     // Use negative index to denote custom sized slabs.
243     int64_t InCustomSizedSlabIdx = -1;
244     for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
245       const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
246       size_t Size = CustomSizedSlabs[Idx].second;
247       if (P >= S && P < S + Size)
248         return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
249       InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
250     }
251     return None;
252   }
253 
254   /// A wrapper around identifyObject that additionally asserts that
255   /// the object is indeed within the allocator.
256   /// \return An index uniquely and reproducibly identifying
257   /// an input pointer \p Ptr in the given allocator.
258   int64_t identifyKnownObject(const void *Ptr) {
259     Optional<int64_t> Out = identifyObject(Ptr);
260     assert(Out && "Wrong allocator used");
261     return *Out;
262   }
263 
264   /// A wrapper around identifyKnownObject. Accepts type information
265   /// about the object and produces a smaller identifier by relying on
266   /// the alignment information. Note that sub-classes may have different
267   /// alignment, so the most base class should be passed as template parameter
268   /// in order to obtain correct results. For that reason automatic template
269   /// parameter deduction is disabled.
270   /// \return An index uniquely and reproducibly identifying
271   /// an input pointer \p Ptr in the given allocator. This identifier is
272   /// different from the ones produced by identifyObject and
273   /// identifyAlignedObject.
274   template <typename T>
275   int64_t identifyKnownAlignedObject(const void *Ptr) {
276     int64_t Out = identifyKnownObject(Ptr);
277     assert(Out % alignof(T) == 0 && "Wrong alignment information");
278     return Out / alignof(T);
279   }
280 
281   size_t getTotalMemory() const {
282     size_t TotalMemory = 0;
283     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
284       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
285     for (const auto &PtrAndSize : CustomSizedSlabs)
286       TotalMemory += PtrAndSize.second;
287     return TotalMemory;
288   }
289 
290   size_t getBytesAllocated() const { return BytesAllocated; }
291 
292   void setRedZoneSize(size_t NewSize) {
293     RedZoneSize = NewSize;
294   }
295 
296   void PrintStats() const {
297     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
298                                        getTotalMemory());
299   }
300 
301 private:
302   /// The current pointer into the current slab.
303   ///
304   /// This points to the next free byte in the slab.
305   char *CurPtr = nullptr;
306 
307   /// The end of the current slab.
308   char *End = nullptr;
309 
310   /// The slabs allocated so far.
311   SmallVector<void *, 4> Slabs;
312 
313   /// Custom-sized slabs allocated for too-large allocation requests.
314   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
315 
316   /// How many bytes we've allocated.
317   ///
318   /// Used so that we can compute how much space was wasted.
319   size_t BytesAllocated = 0;
320 
321   /// The number of bytes to put between allocations when running under
322   /// a sanitizer.
323   size_t RedZoneSize = 1;
324 
325   static size_t computeSlabSize(unsigned SlabIdx) {
326     // Scale the actual allocated slab size based on the number of slabs
327     // allocated. Every GrowthDelay slabs allocated, we double
328     // the allocated size to reduce allocation frequency, but saturate at
329     // multiplying the slab size by 2^30.
330     return SlabSize *
331            ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
332   }
333 
334   /// Allocate a new slab and move the bump pointers over into the new
335   /// slab, modifying CurPtr and End.
336   void StartNewSlab() {
337     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
338 
339     void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize,
340                                                   alignof(std::max_align_t));
341     // We own the new slab and don't want anyone reading anything other than
342     // pieces returned from this method.  So poison the whole slab.
343     __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
344 
345     Slabs.push_back(NewSlab);
346     CurPtr = (char *)(NewSlab);
347     End = ((char *)NewSlab) + AllocatedSlabSize;
348   }
349 
350   /// Deallocate a sequence of slabs.
351   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
352                        SmallVectorImpl<void *>::iterator E) {
353     for (; I != E; ++I) {
354       size_t AllocatedSlabSize =
355           computeSlabSize(std::distance(Slabs.begin(), I));
356       this->getAllocator().Deallocate(*I, AllocatedSlabSize,
357                                       alignof(std::max_align_t));
358     }
359   }
360 
361   /// Deallocate all memory for custom sized slabs.
362   void DeallocateCustomSizedSlabs() {
363     for (auto &PtrAndSize : CustomSizedSlabs) {
364       void *Ptr = PtrAndSize.first;
365       size_t Size = PtrAndSize.second;
366       this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t));
367     }
368   }
369 
370   template <typename T> friend class SpecificBumpPtrAllocator;
371 };
372 
373 /// The standard BumpPtrAllocator which just uses the default template
374 /// parameters.
375 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
376 
377 /// A BumpPtrAllocator that allows only elements of a specific type to be
378 /// allocated.
379 ///
380 /// This allows calling the destructor in DestroyAll() and when the allocator is
381 /// destroyed.
382 template <typename T> class SpecificBumpPtrAllocator {
383   BumpPtrAllocator Allocator;
384 
385 public:
386   SpecificBumpPtrAllocator() {
387     // Because SpecificBumpPtrAllocator walks the memory to call destructors,
388     // it can't have red zones between allocations.
389     Allocator.setRedZoneSize(0);
390   }
391   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
392       : Allocator(std::move(Old.Allocator)) {}
393   ~SpecificBumpPtrAllocator() { DestroyAll(); }
394 
395   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
396     Allocator = std::move(RHS.Allocator);
397     return *this;
398   }
399 
400   /// Call the destructor of each allocated object and deallocate all but the
401   /// current slab and reset the current pointer to the beginning of it, freeing
402   /// all memory allocated so far.
403   void DestroyAll() {
404     auto DestroyElements = [](char *Begin, char *End) {
405       assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
406       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
407         reinterpret_cast<T *>(Ptr)->~T();
408     };
409 
410     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
411          ++I) {
412       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
413           std::distance(Allocator.Slabs.begin(), I));
414       char *Begin = (char *)alignAddr(*I, Align::Of<T>());
415       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
416                                                : (char *)*I + AllocatedSlabSize;
417 
418       DestroyElements(Begin, End);
419     }
420 
421     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
422       void *Ptr = PtrAndSize.first;
423       size_t Size = PtrAndSize.second;
424       DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
425                       (char *)Ptr + Size);
426     }
427 
428     Allocator.Reset();
429   }
430 
431   /// Allocate space for an array of objects without constructing them.
432   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
433 };
434 
435 } // end namespace llvm
436 
437 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
438           size_t GrowthDelay>
439 void *
440 operator new(size_t Size,
441              llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
442                                         GrowthDelay> &Allocator) {
443   return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
444                                            alignof(std::max_align_t)));
445 }
446 
447 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
448           size_t GrowthDelay>
449 void operator delete(void *,
450                      llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
451                                                 SizeThreshold, GrowthDelay> &) {
452 }
453 
454 #endif // LLVM_SUPPORT_ALLOCATOR_H
455