1 //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file defines a set of templates that efficiently compute a dominator
11 /// tree over a generic graph. This is used typically in LLVM for fast
12 /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
13 /// graph types.
14 ///
15 /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
16 /// on the graph's NodeRef. The NodeRef should be a pointer and,
17 /// NodeRef->getParent() must return the parent node that is also a pointer.
18 ///
19 /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_SUPPORT_GENERICDOMTREE_H
24 #define LLVM_SUPPORT_GENERICDOMTREE_H
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/GraphTraits.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Support/CFGDiff.h"
32 #include "llvm/Support/CFGUpdate.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <iterator>
38 #include <memory>
39 #include <type_traits>
40 #include <utility>
41 
42 namespace llvm {
43 
44 template <typename NodeT, bool IsPostDom>
45 class DominatorTreeBase;
46 
47 namespace DomTreeBuilder {
48 template <typename DomTreeT>
49 struct SemiNCAInfo;
50 }  // namespace DomTreeBuilder
51 
52 /// Base class for the actual dominator tree node.
53 template <class NodeT> class DomTreeNodeBase {
54   friend class PostDominatorTree;
55   friend class DominatorTreeBase<NodeT, false>;
56   friend class DominatorTreeBase<NodeT, true>;
57   friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
58   friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
59 
60   NodeT *TheBB;
61   DomTreeNodeBase *IDom;
62   unsigned Level;
63   SmallVector<DomTreeNodeBase *, 4> Children;
64   mutable unsigned DFSNumIn = ~0;
65   mutable unsigned DFSNumOut = ~0;
66 
67  public:
68   DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
69       : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
70 
71   using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator;
72   using const_iterator =
73       typename SmallVector<DomTreeNodeBase *, 4>::const_iterator;
74 
75   iterator begin() { return Children.begin(); }
76   iterator end() { return Children.end(); }
77   const_iterator begin() const { return Children.begin(); }
78   const_iterator end() const { return Children.end(); }
79 
80   DomTreeNodeBase *const &back() const { return Children.back(); }
81   DomTreeNodeBase *&back() { return Children.back(); }
82 
83   iterator_range<iterator> children() { return make_range(begin(), end()); }
84   iterator_range<const_iterator> children() const {
85     return make_range(begin(), end());
86   }
87 
88   NodeT *getBlock() const { return TheBB; }
89   DomTreeNodeBase *getIDom() const { return IDom; }
90   unsigned getLevel() const { return Level; }
91 
92   std::unique_ptr<DomTreeNodeBase> addChild(
93       std::unique_ptr<DomTreeNodeBase> C) {
94     Children.push_back(C.get());
95     return C;
96   }
97 
98   bool isLeaf() const { return Children.empty(); }
99   size_t getNumChildren() const { return Children.size(); }
100 
101   void clearAllChildren() { Children.clear(); }
102 
103   bool compare(const DomTreeNodeBase *Other) const {
104     if (getNumChildren() != Other->getNumChildren())
105       return true;
106 
107     if (Level != Other->Level) return true;
108 
109     SmallPtrSet<const NodeT *, 4> OtherChildren;
110     for (const DomTreeNodeBase *I : *Other) {
111       const NodeT *Nd = I->getBlock();
112       OtherChildren.insert(Nd);
113     }
114 
115     for (const DomTreeNodeBase *I : *this) {
116       const NodeT *N = I->getBlock();
117       if (OtherChildren.count(N) == 0)
118         return true;
119     }
120     return false;
121   }
122 
123   void setIDom(DomTreeNodeBase *NewIDom) {
124     assert(IDom && "No immediate dominator?");
125     if (IDom == NewIDom) return;
126 
127     auto I = find(IDom->Children, this);
128     assert(I != IDom->Children.end() &&
129            "Not in immediate dominator children set!");
130     // I am no longer your child...
131     IDom->Children.erase(I);
132 
133     // Switch to new dominator
134     IDom = NewIDom;
135     IDom->Children.push_back(this);
136 
137     UpdateLevel();
138   }
139 
140   /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
141   /// in the dominator tree. They are only guaranteed valid if
142   /// updateDFSNumbers() has been called.
143   unsigned getDFSNumIn() const { return DFSNumIn; }
144   unsigned getDFSNumOut() const { return DFSNumOut; }
145 
146 private:
147   // Return true if this node is dominated by other. Use this only if DFS info
148   // is valid.
149   bool DominatedBy(const DomTreeNodeBase *other) const {
150     return this->DFSNumIn >= other->DFSNumIn &&
151            this->DFSNumOut <= other->DFSNumOut;
152   }
153 
154   void UpdateLevel() {
155     assert(IDom);
156     if (Level == IDom->Level + 1) return;
157 
158     SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
159 
160     while (!WorkStack.empty()) {
161       DomTreeNodeBase *Current = WorkStack.pop_back_val();
162       Current->Level = Current->IDom->Level + 1;
163 
164       for (DomTreeNodeBase *C : *Current) {
165         assert(C->IDom);
166         if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
167       }
168     }
169   }
170 };
171 
172 template <class NodeT>
173 raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
174   if (Node->getBlock())
175     Node->getBlock()->printAsOperand(O, false);
176   else
177     O << " <<exit node>>";
178 
179   O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
180     << Node->getLevel() << "]\n";
181 
182   return O;
183 }
184 
185 template <class NodeT>
186 void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
187                   unsigned Lev) {
188   O.indent(2 * Lev) << "[" << Lev << "] " << N;
189   for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
190                                                        E = N->end();
191        I != E; ++I)
192     PrintDomTree<NodeT>(*I, O, Lev + 1);
193 }
194 
195 namespace DomTreeBuilder {
196 // The routines below are provided in a separate header but referenced here.
197 template <typename DomTreeT>
198 void Calculate(DomTreeT &DT);
199 
200 template <typename DomTreeT>
201 void CalculateWithUpdates(DomTreeT &DT,
202                           ArrayRef<typename DomTreeT::UpdateType> Updates);
203 
204 template <typename DomTreeT>
205 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
206                 typename DomTreeT::NodePtr To);
207 
208 template <typename DomTreeT>
209 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
210                 typename DomTreeT::NodePtr To);
211 
212 template <typename DomTreeT>
213 void ApplyUpdates(DomTreeT &DT,
214                   GraphDiff<typename DomTreeT::NodePtr,
215                             DomTreeT::IsPostDominator> &PreViewCFG,
216                   GraphDiff<typename DomTreeT::NodePtr,
217                             DomTreeT::IsPostDominator> *PostViewCFG);
218 
219 template <typename DomTreeT>
220 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
221 }  // namespace DomTreeBuilder
222 
223 /// Core dominator tree base class.
224 ///
225 /// This class is a generic template over graph nodes. It is instantiated for
226 /// various graphs in the LLVM IR or in the code generator.
227 template <typename NodeT, bool IsPostDom>
228 class DominatorTreeBase {
229  public:
230   static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
231                 "Currently DominatorTreeBase supports only pointer nodes");
232   using NodeType = NodeT;
233   using NodePtr = NodeT *;
234   using ParentPtr = decltype(std::declval<NodeT *>()->getParent());
235   static_assert(std::is_pointer<ParentPtr>::value,
236                 "Currently NodeT's parent must be a pointer type");
237   using ParentType = std::remove_pointer_t<ParentPtr>;
238   static constexpr bool IsPostDominator = IsPostDom;
239 
240   using UpdateType = cfg::Update<NodePtr>;
241   using UpdateKind = cfg::UpdateKind;
242   static constexpr UpdateKind Insert = UpdateKind::Insert;
243   static constexpr UpdateKind Delete = UpdateKind::Delete;
244 
245   enum class VerificationLevel { Fast, Basic, Full };
246 
247 protected:
248   // Dominators always have a single root, postdominators can have more.
249   SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
250 
251   using DomTreeNodeMapType =
252      DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
253   DomTreeNodeMapType DomTreeNodes;
254   DomTreeNodeBase<NodeT> *RootNode = nullptr;
255   ParentPtr Parent = nullptr;
256 
257   mutable bool DFSInfoValid = false;
258   mutable unsigned int SlowQueries = 0;
259 
260   friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
261 
262  public:
263   DominatorTreeBase() = default;
264 
265   DominatorTreeBase(DominatorTreeBase &&Arg)
266       : Roots(std::move(Arg.Roots)),
267         DomTreeNodes(std::move(Arg.DomTreeNodes)),
268         RootNode(Arg.RootNode),
269         Parent(Arg.Parent),
270         DFSInfoValid(Arg.DFSInfoValid),
271         SlowQueries(Arg.SlowQueries) {
272     Arg.wipe();
273   }
274 
275   DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
276     Roots = std::move(RHS.Roots);
277     DomTreeNodes = std::move(RHS.DomTreeNodes);
278     RootNode = RHS.RootNode;
279     Parent = RHS.Parent;
280     DFSInfoValid = RHS.DFSInfoValid;
281     SlowQueries = RHS.SlowQueries;
282     RHS.wipe();
283     return *this;
284   }
285 
286   DominatorTreeBase(const DominatorTreeBase &) = delete;
287   DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
288 
289   /// Iteration over roots.
290   ///
291   /// This may include multiple blocks if we are computing post dominators.
292   /// For forward dominators, this will always be a single block (the entry
293   /// block).
294   using root_iterator = typename SmallVectorImpl<NodeT *>::iterator;
295   using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator;
296 
297   root_iterator root_begin() { return Roots.begin(); }
298   const_root_iterator root_begin() const { return Roots.begin(); }
299   root_iterator root_end() { return Roots.end(); }
300   const_root_iterator root_end() const { return Roots.end(); }
301 
302   size_t root_size() const { return Roots.size(); }
303 
304   iterator_range<root_iterator> roots() {
305     return make_range(root_begin(), root_end());
306   }
307   iterator_range<const_root_iterator> roots() const {
308     return make_range(root_begin(), root_end());
309   }
310 
311   /// isPostDominator - Returns true if analysis based of postdoms
312   ///
313   bool isPostDominator() const { return IsPostDominator; }
314 
315   /// compare - Return false if the other dominator tree base matches this
316   /// dominator tree base. Otherwise return true.
317   bool compare(const DominatorTreeBase &Other) const {
318     if (Parent != Other.Parent) return true;
319 
320     if (Roots.size() != Other.Roots.size())
321       return true;
322 
323     if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
324       return true;
325 
326     const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
327     if (DomTreeNodes.size() != OtherDomTreeNodes.size())
328       return true;
329 
330     for (const auto &DomTreeNode : DomTreeNodes) {
331       NodeT *BB = DomTreeNode.first;
332       typename DomTreeNodeMapType::const_iterator OI =
333           OtherDomTreeNodes.find(BB);
334       if (OI == OtherDomTreeNodes.end())
335         return true;
336 
337       DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
338       DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
339 
340       if (MyNd.compare(&OtherNd))
341         return true;
342     }
343 
344     return false;
345   }
346 
347   /// getNode - return the (Post)DominatorTree node for the specified basic
348   /// block.  This is the same as using operator[] on this class.  The result
349   /// may (but is not required to) be null for a forward (backwards)
350   /// statically unreachable block.
351   DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
352     auto I = DomTreeNodes.find(BB);
353     if (I != DomTreeNodes.end())
354       return I->second.get();
355     return nullptr;
356   }
357 
358   /// See getNode.
359   DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
360     return getNode(BB);
361   }
362 
363   /// getRootNode - This returns the entry node for the CFG of the function.  If
364   /// this tree represents the post-dominance relations for a function, however,
365   /// this root may be a node with the block == NULL.  This is the case when
366   /// there are multiple exit nodes from a particular function.  Consumers of
367   /// post-dominance information must be capable of dealing with this
368   /// possibility.
369   ///
370   DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
371   const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
372 
373   /// Get all nodes dominated by R, including R itself.
374   void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
375     Result.clear();
376     const DomTreeNodeBase<NodeT> *RN = getNode(R);
377     if (!RN)
378       return; // If R is unreachable, it will not be present in the DOM tree.
379     SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
380     WL.push_back(RN);
381 
382     while (!WL.empty()) {
383       const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
384       Result.push_back(N->getBlock());
385       WL.append(N->begin(), N->end());
386     }
387   }
388 
389   /// properlyDominates - Returns true iff A dominates B and A != B.
390   /// Note that this is not a constant time operation!
391   ///
392   bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
393                          const DomTreeNodeBase<NodeT> *B) const {
394     if (!A || !B)
395       return false;
396     if (A == B)
397       return false;
398     return dominates(A, B);
399   }
400 
401   bool properlyDominates(const NodeT *A, const NodeT *B) const;
402 
403   /// isReachableFromEntry - Return true if A is dominated by the entry
404   /// block of the function containing it.
405   bool isReachableFromEntry(const NodeT *A) const {
406     assert(!this->isPostDominator() &&
407            "This is not implemented for post dominators");
408     return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
409   }
410 
411   bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
412 
413   /// dominates - Returns true iff A dominates B.  Note that this is not a
414   /// constant time operation!
415   ///
416   bool dominates(const DomTreeNodeBase<NodeT> *A,
417                  const DomTreeNodeBase<NodeT> *B) const {
418     // A node trivially dominates itself.
419     if (B == A)
420       return true;
421 
422     // An unreachable node is dominated by anything.
423     if (!isReachableFromEntry(B))
424       return true;
425 
426     // And dominates nothing.
427     if (!isReachableFromEntry(A))
428       return false;
429 
430     if (B->getIDom() == A) return true;
431 
432     if (A->getIDom() == B) return false;
433 
434     // A can only dominate B if it is higher in the tree.
435     if (A->getLevel() >= B->getLevel()) return false;
436 
437     // Compare the result of the tree walk and the dfs numbers, if expensive
438     // checks are enabled.
439 #ifdef EXPENSIVE_CHECKS
440     assert((!DFSInfoValid ||
441             (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
442            "Tree walk disagrees with dfs numbers!");
443 #endif
444 
445     if (DFSInfoValid)
446       return B->DominatedBy(A);
447 
448     // If we end up with too many slow queries, just update the
449     // DFS numbers on the theory that we are going to keep querying.
450     SlowQueries++;
451     if (SlowQueries > 32) {
452       updateDFSNumbers();
453       return B->DominatedBy(A);
454     }
455 
456     return dominatedBySlowTreeWalk(A, B);
457   }
458 
459   bool dominates(const NodeT *A, const NodeT *B) const;
460 
461   NodeT *getRoot() const {
462     assert(this->Roots.size() == 1 && "Should always have entry node!");
463     return this->Roots[0];
464   }
465 
466   /// Find nearest common dominator basic block for basic block A and B. A and B
467   /// must have tree nodes.
468   NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
469     assert(A && B && "Pointers are not valid");
470     assert(A->getParent() == B->getParent() &&
471            "Two blocks are not in same function");
472 
473     // If either A or B is a entry block then it is nearest common dominator
474     // (for forward-dominators).
475     if (!isPostDominator()) {
476       NodeT &Entry = A->getParent()->front();
477       if (A == &Entry || B == &Entry)
478         return &Entry;
479     }
480 
481     DomTreeNodeBase<NodeT> *NodeA = getNode(A);
482     DomTreeNodeBase<NodeT> *NodeB = getNode(B);
483     assert(NodeA && "A must be in the tree");
484     assert(NodeB && "B must be in the tree");
485 
486     // Use level information to go up the tree until the levels match. Then
487     // continue going up til we arrive at the same node.
488     while (NodeA != NodeB) {
489       if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
490 
491       NodeA = NodeA->IDom;
492     }
493 
494     return NodeA->getBlock();
495   }
496 
497   const NodeT *findNearestCommonDominator(const NodeT *A,
498                                           const NodeT *B) const {
499     // Cast away the const qualifiers here. This is ok since
500     // const is re-introduced on the return type.
501     return findNearestCommonDominator(const_cast<NodeT *>(A),
502                                       const_cast<NodeT *>(B));
503   }
504 
505   bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
506     return isPostDominator() && !A->getBlock();
507   }
508 
509   //===--------------------------------------------------------------------===//
510   // API to update (Post)DominatorTree information based on modifications to
511   // the CFG...
512 
513   /// Inform the dominator tree about a sequence of CFG edge insertions and
514   /// deletions and perform a batch update on the tree.
515   ///
516   /// This function should be used when there were multiple CFG updates after
517   /// the last dominator tree update. It takes care of performing the updates
518   /// in sync with the CFG and optimizes away the redundant operations that
519   /// cancel each other.
520   /// The functions expects the sequence of updates to be balanced. Eg.:
521   ///  - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
522   ///    logically it results in a single insertions.
523   ///  - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
524   ///    sense to insert the same edge twice.
525   ///
526   /// What's more, the functions assumes that it's safe to ask every node in the
527   /// CFG about its children and inverse children. This implies that deletions
528   /// of CFG edges must not delete the CFG nodes before calling this function.
529   ///
530   /// The applyUpdates function can reorder the updates and remove redundant
531   /// ones internally (as long as it is done in a deterministic fashion). The
532   /// batch updater is also able to detect sequences of zero and exactly one
533   /// update -- it's optimized to do less work in these cases.
534   ///
535   /// Note that for postdominators it automatically takes care of applying
536   /// updates on reverse edges internally (so there's no need to swap the
537   /// From and To pointers when constructing DominatorTree::UpdateType).
538   /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
539   /// with the same template parameter T.
540   ///
541   /// \param Updates An ordered sequence of updates to perform. The current CFG
542   /// and the reverse of these updates provides the pre-view of the CFG.
543   ///
544   void applyUpdates(ArrayRef<UpdateType> Updates) {
545     GraphDiff<NodePtr, IsPostDominator> PreViewCFG(
546         Updates, /*ReverseApplyUpdates=*/true);
547     DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr);
548   }
549 
550   /// \param Updates An ordered sequence of updates to perform. The current CFG
551   /// and the reverse of these updates provides the pre-view of the CFG.
552   /// \param PostViewUpdates An ordered sequence of update to perform in order
553   /// to obtain a post-view of the CFG. The DT will be updated assuming the
554   /// obtained PostViewCFG is the desired end state.
555   void applyUpdates(ArrayRef<UpdateType> Updates,
556                     ArrayRef<UpdateType> PostViewUpdates) {
557     if (Updates.empty()) {
558       GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
559       DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG);
560     } else {
561       // PreViewCFG needs to merge Updates and PostViewCFG. The updates in
562       // Updates need to be reversed, and match the direction in PostViewCFG.
563       // The PostViewCFG is created with updates reversed (equivalent to changes
564       // made to the CFG), so the PreViewCFG needs all the updates reverse
565       // applied.
566       SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end());
567       append_range(AllUpdates, PostViewUpdates);
568       GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates,
569                                                /*ReverseApplyUpdates=*/true);
570       GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
571       DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG);
572     }
573   }
574 
575   /// Inform the dominator tree about a CFG edge insertion and update the tree.
576   ///
577   /// This function has to be called just before or just after making the update
578   /// on the actual CFG. There cannot be any other updates that the dominator
579   /// tree doesn't know about.
580   ///
581   /// Note that for postdominators it automatically takes care of inserting
582   /// a reverse edge internally (so there's no need to swap the parameters).
583   ///
584   void insertEdge(NodeT *From, NodeT *To) {
585     assert(From);
586     assert(To);
587     assert(From->getParent() == Parent);
588     assert(To->getParent() == Parent);
589     DomTreeBuilder::InsertEdge(*this, From, To);
590   }
591 
592   /// Inform the dominator tree about a CFG edge deletion and update the tree.
593   ///
594   /// This function has to be called just after making the update on the actual
595   /// CFG. An internal functions checks if the edge doesn't exist in the CFG in
596   /// DEBUG mode. There cannot be any other updates that the
597   /// dominator tree doesn't know about.
598   ///
599   /// Note that for postdominators it automatically takes care of deleting
600   /// a reverse edge internally (so there's no need to swap the parameters).
601   ///
602   void deleteEdge(NodeT *From, NodeT *To) {
603     assert(From);
604     assert(To);
605     assert(From->getParent() == Parent);
606     assert(To->getParent() == Parent);
607     DomTreeBuilder::DeleteEdge(*this, From, To);
608   }
609 
610   /// Add a new node to the dominator tree information.
611   ///
612   /// This creates a new node as a child of DomBB dominator node, linking it
613   /// into the children list of the immediate dominator.
614   ///
615   /// \param BB New node in CFG.
616   /// \param DomBB CFG node that is dominator for BB.
617   /// \returns New dominator tree node that represents new CFG node.
618   ///
619   DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
620     assert(getNode(BB) == nullptr && "Block already in dominator tree!");
621     DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
622     assert(IDomNode && "Not immediate dominator specified for block!");
623     DFSInfoValid = false;
624     return createChild(BB, IDomNode);
625   }
626 
627   /// Add a new node to the forward dominator tree and make it a new root.
628   ///
629   /// \param BB New node in CFG.
630   /// \returns New dominator tree node that represents new CFG node.
631   ///
632   DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
633     assert(getNode(BB) == nullptr && "Block already in dominator tree!");
634     assert(!this->isPostDominator() &&
635            "Cannot change root of post-dominator tree");
636     DFSInfoValid = false;
637     DomTreeNodeBase<NodeT> *NewNode = createNode(BB);
638     if (Roots.empty()) {
639       addRoot(BB);
640     } else {
641       assert(Roots.size() == 1);
642       NodeT *OldRoot = Roots.front();
643       auto &OldNode = DomTreeNodes[OldRoot];
644       OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
645       OldNode->IDom = NewNode;
646       OldNode->UpdateLevel();
647       Roots[0] = BB;
648     }
649     return RootNode = NewNode;
650   }
651 
652   /// changeImmediateDominator - This method is used to update the dominator
653   /// tree information when a node's immediate dominator changes.
654   ///
655   void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
656                                 DomTreeNodeBase<NodeT> *NewIDom) {
657     assert(N && NewIDom && "Cannot change null node pointers!");
658     DFSInfoValid = false;
659     N->setIDom(NewIDom);
660   }
661 
662   void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
663     changeImmediateDominator(getNode(BB), getNode(NewBB));
664   }
665 
666   /// eraseNode - Removes a node from the dominator tree. Block must not
667   /// dominate any other blocks. Removes node from its immediate dominator's
668   /// children list. Deletes dominator node associated with basic block BB.
669   void eraseNode(NodeT *BB) {
670     DomTreeNodeBase<NodeT> *Node = getNode(BB);
671     assert(Node && "Removing node that isn't in dominator tree.");
672     assert(Node->isLeaf() && "Node is not a leaf node.");
673 
674     DFSInfoValid = false;
675 
676     // Remove node from immediate dominator's children list.
677     DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
678     if (IDom) {
679       const auto I = find(IDom->Children, Node);
680       assert(I != IDom->Children.end() &&
681              "Not in immediate dominator children set!");
682       // I am no longer your child...
683       IDom->Children.erase(I);
684     }
685 
686     DomTreeNodes.erase(BB);
687 
688     if (!IsPostDom) return;
689 
690     // Remember to update PostDominatorTree roots.
691     auto RIt = llvm::find(Roots, BB);
692     if (RIt != Roots.end()) {
693       std::swap(*RIt, Roots.back());
694       Roots.pop_back();
695     }
696   }
697 
698   /// splitBlock - BB is split and now it has one successor. Update dominator
699   /// tree to reflect this change.
700   void splitBlock(NodeT *NewBB) {
701     if (IsPostDominator)
702       Split<Inverse<NodeT *>>(NewBB);
703     else
704       Split<NodeT *>(NewBB);
705   }
706 
707   /// print - Convert to human readable form
708   ///
709   void print(raw_ostream &O) const {
710     O << "=============================--------------------------------\n";
711     if (IsPostDominator)
712       O << "Inorder PostDominator Tree: ";
713     else
714       O << "Inorder Dominator Tree: ";
715     if (!DFSInfoValid)
716       O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
717     O << "\n";
718 
719     // The postdom tree can have a null root if there are no returns.
720     if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
721     O << "Roots: ";
722     for (const NodePtr Block : Roots) {
723       Block->printAsOperand(O, false);
724       O << " ";
725     }
726     O << "\n";
727   }
728 
729 public:
730   /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
731   /// dominator tree in dfs order.
732   void updateDFSNumbers() const {
733     if (DFSInfoValid) {
734       SlowQueries = 0;
735       return;
736     }
737 
738     SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
739                           typename DomTreeNodeBase<NodeT>::const_iterator>,
740                 32> WorkStack;
741 
742     const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
743     assert((!Parent || ThisRoot) && "Empty constructed DomTree");
744     if (!ThisRoot)
745       return;
746 
747     // Both dominators and postdominators have a single root node. In the case
748     // case of PostDominatorTree, this node is a virtual root.
749     WorkStack.push_back({ThisRoot, ThisRoot->begin()});
750 
751     unsigned DFSNum = 0;
752     ThisRoot->DFSNumIn = DFSNum++;
753 
754     while (!WorkStack.empty()) {
755       const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
756       const auto ChildIt = WorkStack.back().second;
757 
758       // If we visited all of the children of this node, "recurse" back up the
759       // stack setting the DFOutNum.
760       if (ChildIt == Node->end()) {
761         Node->DFSNumOut = DFSNum++;
762         WorkStack.pop_back();
763       } else {
764         // Otherwise, recursively visit this child.
765         const DomTreeNodeBase<NodeT> *Child = *ChildIt;
766         ++WorkStack.back().second;
767 
768         WorkStack.push_back({Child, Child->begin()});
769         Child->DFSNumIn = DFSNum++;
770       }
771     }
772 
773     SlowQueries = 0;
774     DFSInfoValid = true;
775   }
776 
777   /// recalculate - compute a dominator tree for the given function
778   void recalculate(ParentType &Func) {
779     Parent = &Func;
780     DomTreeBuilder::Calculate(*this);
781   }
782 
783   void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
784     Parent = &Func;
785     DomTreeBuilder::CalculateWithUpdates(*this, Updates);
786   }
787 
788   /// verify - checks if the tree is correct. There are 3 level of verification:
789   ///  - Full --  verifies if the tree is correct by making sure all the
790   ///             properties (including the parent and the sibling property)
791   ///             hold.
792   ///             Takes O(N^3) time.
793   ///
794   ///  - Basic -- checks if the tree is correct, but compares it to a freshly
795   ///             constructed tree instead of checking the sibling property.
796   ///             Takes O(N^2) time.
797   ///
798   ///  - Fast  -- checks basic tree structure and compares it with a freshly
799   ///             constructed tree.
800   ///             Takes O(N^2) time worst case, but is faster in practise (same
801   ///             as tree construction).
802   bool verify(VerificationLevel VL = VerificationLevel::Full) const {
803     return DomTreeBuilder::Verify(*this, VL);
804   }
805 
806   void reset() {
807     DomTreeNodes.clear();
808     Roots.clear();
809     RootNode = nullptr;
810     Parent = nullptr;
811     DFSInfoValid = false;
812     SlowQueries = 0;
813   }
814 
815 protected:
816   void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
817 
818   DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) {
819     return (DomTreeNodes[BB] = IDom->addChild(
820                 std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom)))
821         .get();
822   }
823 
824   DomTreeNodeBase<NodeT> *createNode(NodeT *BB) {
825     return (DomTreeNodes[BB] =
826                 std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr))
827         .get();
828   }
829 
830   // NewBB is split and now it has one successor. Update dominator tree to
831   // reflect this change.
832   template <class N>
833   void Split(typename GraphTraits<N>::NodeRef NewBB) {
834     using GraphT = GraphTraits<N>;
835     using NodeRef = typename GraphT::NodeRef;
836     assert(std::distance(GraphT::child_begin(NewBB),
837                          GraphT::child_end(NewBB)) == 1 &&
838            "NewBB should have a single successor!");
839     NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
840 
841     SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB));
842 
843     assert(!PredBlocks.empty() && "No predblocks?");
844 
845     bool NewBBDominatesNewBBSucc = true;
846     for (auto Pred : children<Inverse<N>>(NewBBSucc)) {
847       if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
848           isReachableFromEntry(Pred)) {
849         NewBBDominatesNewBBSucc = false;
850         break;
851       }
852     }
853 
854     // Find NewBB's immediate dominator and create new dominator tree node for
855     // NewBB.
856     NodeT *NewBBIDom = nullptr;
857     unsigned i = 0;
858     for (i = 0; i < PredBlocks.size(); ++i)
859       if (isReachableFromEntry(PredBlocks[i])) {
860         NewBBIDom = PredBlocks[i];
861         break;
862       }
863 
864     // It's possible that none of the predecessors of NewBB are reachable;
865     // in that case, NewBB itself is unreachable, so nothing needs to be
866     // changed.
867     if (!NewBBIDom) return;
868 
869     for (i = i + 1; i < PredBlocks.size(); ++i) {
870       if (isReachableFromEntry(PredBlocks[i]))
871         NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
872     }
873 
874     // Create the new dominator tree node... and set the idom of NewBB.
875     DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
876 
877     // If NewBB strictly dominates other blocks, then it is now the immediate
878     // dominator of NewBBSucc.  Update the dominator tree as appropriate.
879     if (NewBBDominatesNewBBSucc) {
880       DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
881       changeImmediateDominator(NewBBSuccNode, NewBBNode);
882     }
883   }
884 
885  private:
886   bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
887                                const DomTreeNodeBase<NodeT> *B) const {
888     assert(A != B);
889     assert(isReachableFromEntry(B));
890     assert(isReachableFromEntry(A));
891 
892     const unsigned ALevel = A->getLevel();
893     const DomTreeNodeBase<NodeT> *IDom;
894 
895     // Don't walk nodes above A's subtree. When we reach A's level, we must
896     // either find A or be in some other subtree not dominated by A.
897     while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
898       B = IDom;  // Walk up the tree
899 
900     return B == A;
901   }
902 
903   /// Wipe this tree's state without releasing any resources.
904   ///
905   /// This is essentially a post-move helper only. It leaves the object in an
906   /// assignable and destroyable state, but otherwise invalid.
907   void wipe() {
908     DomTreeNodes.clear();
909     RootNode = nullptr;
910     Parent = nullptr;
911   }
912 };
913 
914 template <typename T>
915 using DomTreeBase = DominatorTreeBase<T, false>;
916 
917 template <typename T>
918 using PostDomTreeBase = DominatorTreeBase<T, true>;
919 
920 // These two functions are declared out of line as a workaround for building
921 // with old (< r147295) versions of clang because of pr11642.
922 template <typename NodeT, bool IsPostDom>
923 bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
924                                                     const NodeT *B) const {
925   if (A == B)
926     return true;
927 
928   // Cast away the const qualifiers here. This is ok since
929   // this function doesn't actually return the values returned
930   // from getNode.
931   return dominates(getNode(const_cast<NodeT *>(A)),
932                    getNode(const_cast<NodeT *>(B)));
933 }
934 template <typename NodeT, bool IsPostDom>
935 bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
936     const NodeT *A, const NodeT *B) const {
937   if (A == B)
938     return false;
939 
940   // Cast away the const qualifiers here. This is ok since
941   // this function doesn't actually return the values returned
942   // from getNode.
943   return dominates(getNode(const_cast<NodeT *>(A)),
944                    getNode(const_cast<NodeT *>(B)));
945 }
946 
947 } // end namespace llvm
948 
949 #endif // LLVM_SUPPORT_GENERICDOMTREE_H
950