1 //===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Compute iterated dominance frontiers using a linear time algorithm.
10 ///
11 /// The algorithm used here is based on:
12 ///
13 ///   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
14 ///   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
15 ///   Programming Languages
16 ///   POPL '95. ACM, New York, NY, 62-73.
17 ///
18 /// It has been modified to not explicitly use the DJ graph data structure and
19 /// to directly compute pruned SSA using per-variable liveness information.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #ifndef LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H
24 #define LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/Support/GenericDomTree.h"
30 #include <queue>
31 
32 namespace llvm {
33 
34 namespace IDFCalculatorDetail {
35 
36 /// Generic utility class used for getting the children of a basic block.
37 /// May be specialized if, for example, one wouldn't like to return nullpointer
38 /// successors.
39 template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy {
40   using NodeRef = typename GraphTraits<NodeTy *>::NodeRef;
41   using ChildrenTy = SmallVector<NodeRef, 8>;
42 
43   ChildrenTy get(const NodeRef &N);
44 };
45 
46 } // end of namespace IDFCalculatorDetail
47 
48 /// Determine the iterated dominance frontier, given a set of defining
49 /// blocks, and optionally, a set of live-in blocks.
50 ///
51 /// In turn, the results can be used to place phi nodes.
52 ///
53 /// This algorithm is a linear time computation of Iterated Dominance Frontiers,
54 /// pruned using the live-in set.
55 /// By default, liveness is not used to prune the IDF computation.
56 /// The template parameters should be of a CFG block type.
57 template <class NodeTy, bool IsPostDom> class IDFCalculatorBase {
58 public:
59   using OrderedNodeTy =
60       std::conditional_t<IsPostDom, Inverse<NodeTy *>, NodeTy *>;
61   using ChildrenGetterTy =
62       IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>;
63 
64   IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {}
65 
66   IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT,
67                     const ChildrenGetterTy &C)
68       : DT(DT), ChildrenGetter(C) {}
69 
70   /// Give the IDF calculator the set of blocks in which the value is
71   /// defined.  This is equivalent to the set of starting blocks it should be
72   /// calculating the IDF for (though later gets pruned based on liveness).
73   ///
74   /// Note: This set *must* live for the entire lifetime of the IDF calculator.
75   void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
76     DefBlocks = &Blocks;
77   }
78 
79   /// Give the IDF calculator the set of blocks in which the value is
80   /// live on entry to the block.   This is used to prune the IDF calculation to
81   /// not include blocks where any phi insertion would be dead.
82   ///
83   /// Note: This set *must* live for the entire lifetime of the IDF calculator.
84   void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) {
85     LiveInBlocks = &Blocks;
86     useLiveIn = true;
87   }
88 
89   /// Reset the live-in block set to be empty, and tell the IDF
90   /// calculator to not use liveness anymore.
91   void resetLiveInBlocks() {
92     LiveInBlocks = nullptr;
93     useLiveIn = false;
94   }
95 
96   /// Calculate iterated dominance frontiers
97   ///
98   /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in
99   /// the file-level comment.  It performs DF->IDF pruning using the live-in
100   /// set, to avoid computing the IDF for blocks where an inserted PHI node
101   /// would be dead.
102   void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks);
103 
104 private:
105   DominatorTreeBase<NodeTy, IsPostDom> &DT;
106   ChildrenGetterTy ChildrenGetter;
107   bool useLiveIn = false;
108   const SmallPtrSetImpl<NodeTy *> *LiveInBlocks;
109   const SmallPtrSetImpl<NodeTy *> *DefBlocks;
110 };
111 
112 //===----------------------------------------------------------------------===//
113 // Implementation.
114 //===----------------------------------------------------------------------===//
115 
116 namespace IDFCalculatorDetail {
117 
118 template <class NodeTy, bool IsPostDom>
119 typename ChildrenGetterTy<NodeTy, IsPostDom>::ChildrenTy
120 ChildrenGetterTy<NodeTy, IsPostDom>::get(const NodeRef &N) {
121   using OrderedNodeTy =
122       typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy;
123 
124   auto Children = children<OrderedNodeTy>(N);
125   return {Children.begin(), Children.end()};
126 }
127 
128 } // end of namespace IDFCalculatorDetail
129 
130 template <class NodeTy, bool IsPostDom>
131 void IDFCalculatorBase<NodeTy, IsPostDom>::calculate(
132     SmallVectorImpl<NodeTy *> &IDFBlocks) {
133   // Use a priority queue keyed on dominator tree level so that inserted nodes
134   // are handled from the bottom of the dominator tree upwards. We also augment
135   // the level with a DFS number to ensure that the blocks are ordered in a
136   // deterministic way.
137   using DomTreeNodePair =
138       std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>;
139   using IDFPriorityQueue =
140       std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
141                           less_second>;
142 
143   IDFPriorityQueue PQ;
144 
145   DT.updateDFSNumbers();
146 
147   SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist;
148   SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedPQ;
149   SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedWorklist;
150 
151   for (NodeTy *BB : *DefBlocks)
152     if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB)) {
153       PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())});
154       VisitedWorklist.insert(Node);
155     }
156 
157   while (!PQ.empty()) {
158     DomTreeNodePair RootPair = PQ.top();
159     PQ.pop();
160     DomTreeNodeBase<NodeTy> *Root = RootPair.first;
161     unsigned RootLevel = RootPair.second.first;
162 
163     // Walk all dominator tree children of Root, inspecting their CFG edges with
164     // targets elsewhere on the dominator tree. Only targets whose level is at
165     // most Root's level are added to the iterated dominance frontier of the
166     // definition set.
167 
168     assert(Worklist.empty());
169     Worklist.push_back(Root);
170 
171     while (!Worklist.empty()) {
172       DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val();
173       NodeTy *BB = Node->getBlock();
174       // Succ is the successor in the direction we are calculating IDF, so it is
175       // successor for IDF, and predecessor for Reverse IDF.
176       auto DoWork = [&](NodeTy *Succ) {
177         DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ);
178 
179         const unsigned SuccLevel = SuccNode->getLevel();
180         if (SuccLevel > RootLevel)
181           return;
182 
183         if (!VisitedPQ.insert(SuccNode).second)
184           return;
185 
186         NodeTy *SuccBB = SuccNode->getBlock();
187         if (useLiveIn && !LiveInBlocks->count(SuccBB))
188           return;
189 
190         IDFBlocks.emplace_back(SuccBB);
191         if (!DefBlocks->count(SuccBB))
192           PQ.push(std::make_pair(
193               SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn())));
194       };
195 
196       for (auto *Succ : ChildrenGetter.get(BB))
197         DoWork(Succ);
198 
199       for (auto DomChild : *Node) {
200         if (VisitedWorklist.insert(DomChild).second)
201           Worklist.push_back(DomChild);
202       }
203     }
204   }
205 }
206 
207 } // end of namespace llvm
208 
209 #endif
210