1//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target-independent interfaces which should be
10// implemented by each target which is using a TableGen based code generator.
11//
12//===----------------------------------------------------------------------===//
13
14// Include all information about LLVM intrinsics.
15include "llvm/IR/Intrinsics.td"
16
17//===----------------------------------------------------------------------===//
18// Register file description - These classes are used to fill in the target
19// description classes.
20
21class RegisterClass; // Forward def
22
23class HwMode<string FS> {
24  // A string representing subtarget features that turn on this HW mode.
25  // For example, "+feat1,-feat2" will indicate that the mode is active
26  // when "feat1" is enabled and "feat2" is disabled at the same time.
27  // Any other features are not checked.
28  // When multiple modes are used, they should be mutually exclusive,
29  // otherwise the results are unpredictable.
30  string Features = FS;
31}
32
33// A special mode recognized by tablegen. This mode is considered active
34// when no other mode is active. For targets that do not use specific hw
35// modes, this is the only mode.
36def DefaultMode : HwMode<"">;
37
38// A class used to associate objects with HW modes. It is only intended to
39// be used as a base class, where the derived class should contain a member
40// "Objects", which is a list of the same length as the list of modes.
41// The n-th element on the Objects list will be associated with the n-th
42// element on the Modes list.
43class HwModeSelect<list<HwMode> Ms> {
44  list<HwMode> Modes = Ms;
45}
46
47// A common class that implements a counterpart of ValueType, which is
48// dependent on a HW mode. This class inherits from ValueType itself,
49// which makes it possible to use objects of this class where ValueType
50// objects could be used. This is specifically applicable to selection
51// patterns.
52class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
53    : HwModeSelect<Ms>, ValueType<0, 0> {
54  // The length of this list must be the same as the length of Ms.
55  list<ValueType> Objects = Ts;
56}
57
58// A class representing the register size, spill size and spill alignment
59// in bits of a register.
60class RegInfo<int RS, int SS, int SA> {
61  int RegSize = RS;         // Register size in bits.
62  int SpillSize = SS;       // Spill slot size in bits.
63  int SpillAlignment = SA;  // Spill slot alignment in bits.
64}
65
66// The register size/alignment information, parameterized by a HW mode.
67class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
68    : HwModeSelect<Ms> {
69  // The length of this list must be the same as the length of Ms.
70  list<RegInfo> Objects = Ts;
71}
72
73// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
74class SubRegIndex<int size, int offset = 0> {
75  string Namespace = "";
76
77  // Size - Size (in bits) of the sub-registers represented by this index.
78  int Size = size;
79
80  // Offset - Offset of the first bit that is part of this sub-register index.
81  // Set it to -1 if the same index is used to represent sub-registers that can
82  // be at different offsets (for example when using an index to access an
83  // element in a register tuple).
84  int Offset = offset;
85
86  // ComposedOf - A list of two SubRegIndex instances, [A, B].
87  // This indicates that this SubRegIndex is the result of composing A and B.
88  // See ComposedSubRegIndex.
89  list<SubRegIndex> ComposedOf = [];
90
91  // CoveringSubRegIndices - A list of two or more sub-register indexes that
92  // cover this sub-register.
93  //
94  // This field should normally be left blank as TableGen can infer it.
95  //
96  // TableGen automatically detects sub-registers that straddle the registers
97  // in the SubRegs field of a Register definition. For example:
98  //
99  //   Q0    = dsub_0 -> D0, dsub_1 -> D1
100  //   Q1    = dsub_0 -> D2, dsub_1 -> D3
101  //   D1_D2 = dsub_0 -> D1, dsub_1 -> D2
102  //   QQ0   = qsub_0 -> Q0, qsub_1 -> Q1
103  //
104  // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
105  // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
106  // CoveringSubRegIndices = [dsub_1, dsub_2].
107  list<SubRegIndex> CoveringSubRegIndices = [];
108}
109
110// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
111// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
112class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
113  : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
114                        !if(!eq(B.Offset, -1), -1,
115                            !add(A.Offset, B.Offset)))> {
116  // See SubRegIndex.
117  let ComposedOf = [A, B];
118}
119
120// RegAltNameIndex - The alternate name set to use for register operands of
121// this register class when printing.
122class RegAltNameIndex {
123  string Namespace = "";
124
125  // A set to be used if the name for a register is not defined in this set.
126  // This allows creating name sets with only a few alternative names.
127  RegAltNameIndex FallbackRegAltNameIndex = ?;
128}
129def NoRegAltName : RegAltNameIndex;
130
131// Register - You should define one instance of this class for each register
132// in the target machine.  String n will become the "name" of the register.
133class Register<string n, list<string> altNames = []> {
134  string Namespace = "";
135  string AsmName = n;
136  list<string> AltNames = altNames;
137
138  // Aliases - A list of registers that this register overlaps with.  A read or
139  // modification of this register can potentially read or modify the aliased
140  // registers.
141  list<Register> Aliases = [];
142
143  // SubRegs - A list of registers that are parts of this register. Note these
144  // are "immediate" sub-registers and the registers within the list do not
145  // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
146  // not [AX, AH, AL].
147  list<Register> SubRegs = [];
148
149  // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
150  // to address it. Sub-sub-register indices are automatically inherited from
151  // SubRegs.
152  list<SubRegIndex> SubRegIndices = [];
153
154  // RegAltNameIndices - The alternate name indices which are valid for this
155  // register.
156  list<RegAltNameIndex> RegAltNameIndices = [];
157
158  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
159  // These values can be determined by locating the <target>.h file in the
160  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
161  // order of these names correspond to the enumeration used by gcc.  A value of
162  // -1 indicates that the gcc number is undefined and -2 that register number
163  // is invalid for this mode/flavour.
164  list<int> DwarfNumbers = [];
165
166  // CostPerUse - Additional cost of instructions using this register compared
167  // to other registers in its class. The register allocator will try to
168  // minimize the number of instructions using a register with a CostPerUse.
169  // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
170  // some registers require larger instruction encodings, by the RISC-V target,
171  // where some registers preclude using some C instructions.
172  int CostPerUse = 0;
173
174  // CoveredBySubRegs - When this bit is set, the value of this register is
175  // completely determined by the value of its sub-registers.  For example, the
176  // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
177  // covered by its sub-register AX.
178  bit CoveredBySubRegs = 0;
179
180  // HWEncoding - The target specific hardware encoding for this register.
181  bits<16> HWEncoding = 0;
182
183  bit isArtificial = 0;
184}
185
186// RegisterWithSubRegs - This can be used to define instances of Register which
187// need to specify sub-registers.
188// List "subregs" specifies which registers are sub-registers to this one. This
189// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
190// This allows the code generator to be careful not to put two values with
191// overlapping live ranges into registers which alias.
192class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
193  let SubRegs = subregs;
194}
195
196// DAGOperand - An empty base class that unifies RegisterClass's and other forms
197// of Operand's that are legal as type qualifiers in DAG patterns.  This should
198// only ever be used for defining multiclasses that are polymorphic over both
199// RegisterClass's and other Operand's.
200class DAGOperand {
201  string OperandNamespace = "MCOI";
202  string DecoderMethod = "";
203}
204
205// RegisterClass - Now that all of the registers are defined, and aliases
206// between registers are defined, specify which registers belong to which
207// register classes.  This also defines the default allocation order of
208// registers by register allocators.
209//
210class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
211                    dag regList, RegAltNameIndex idx = NoRegAltName>
212  : DAGOperand {
213  string Namespace = namespace;
214
215  // The register size/alignment information, parameterized by a HW mode.
216  RegInfoByHwMode RegInfos;
217
218  // RegType - Specify the list ValueType of the registers in this register
219  // class.  Note that all registers in a register class must have the same
220  // ValueTypes.  This is a list because some targets permit storing different
221  // types in same register, for example vector values with 128-bit total size,
222  // but different count/size of items, like SSE on x86.
223  //
224  list<ValueType> RegTypes = regTypes;
225
226  // Size - Specify the spill size in bits of the registers.  A default value of
227  // zero lets tablegen pick an appropriate size.
228  int Size = 0;
229
230  // Alignment - Specify the alignment required of the registers when they are
231  // stored or loaded to memory.
232  //
233  int Alignment = alignment;
234
235  // CopyCost - This value is used to specify the cost of copying a value
236  // between two registers in this register class. The default value is one
237  // meaning it takes a single instruction to perform the copying. A negative
238  // value means copying is extremely expensive or impossible.
239  int CopyCost = 1;
240
241  // MemberList - Specify which registers are in this class.  If the
242  // allocation_order_* method are not specified, this also defines the order of
243  // allocation used by the register allocator.
244  //
245  dag MemberList = regList;
246
247  // AltNameIndex - The alternate register name to use when printing operands
248  // of this register class. Every register in the register class must have
249  // a valid alternate name for the given index.
250  RegAltNameIndex altNameIndex = idx;
251
252  // isAllocatable - Specify that the register class can be used for virtual
253  // registers and register allocation.  Some register classes are only used to
254  // model instruction operand constraints, and should have isAllocatable = 0.
255  bit isAllocatable = 1;
256
257  // AltOrders - List of alternative allocation orders. The default order is
258  // MemberList itself, and that is good enough for most targets since the
259  // register allocators automatically remove reserved registers and move
260  // callee-saved registers to the end.
261  list<dag> AltOrders = [];
262
263  // AltOrderSelect - The body of a function that selects the allocation order
264  // to use in a given machine function. The code will be inserted in a
265  // function like this:
266  //
267  //   static inline unsigned f(const MachineFunction &MF) { ... }
268  //
269  // The function should return 0 to select the default order defined by
270  // MemberList, 1 to select the first AltOrders entry and so on.
271  code AltOrderSelect = [{}];
272
273  // Specify allocation priority for register allocators using a greedy
274  // heuristic. Classes with higher priority values are assigned first. This is
275  // useful as it is sometimes beneficial to assign registers to highly
276  // constrained classes first. The value has to be in the range [0,63].
277  int AllocationPriority = 0;
278
279  // Generate register pressure set for this register class and any class
280  // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
281  bit GeneratePressureSet = 1;
282
283  // Weight override for register pressure calculation. This is the value
284  // TargetRegisterClass::getRegClassWeight() will return. The weight is in
285  // units of pressure for this register class. If unset tablegen will
286  // calculate a weight based on a number of register units in this register
287  // class registers. The weight is per register.
288  int Weight = ?;
289
290  // The diagnostic type to present when referencing this operand in a match
291  // failure error message. If this is empty, the default Match_InvalidOperand
292  // diagnostic type will be used. If this is "<name>", a Match_<name> enum
293  // value will be generated and used for this operand type. The target
294  // assembly parser is responsible for converting this into a user-facing
295  // diagnostic message.
296  string DiagnosticType = "";
297
298  // A diagnostic message to emit when an invalid value is provided for this
299  // register class when it is being used an an assembly operand. If this is
300  // non-empty, an anonymous diagnostic type enum value will be generated, and
301  // the assembly matcher will provide a function to map from diagnostic types
302  // to message strings.
303  string DiagnosticString = "";
304}
305
306// The memberList in a RegisterClass is a dag of set operations. TableGen
307// evaluates these set operations and expand them into register lists. These
308// are the most common operation, see test/TableGen/SetTheory.td for more
309// examples of what is possible:
310//
311// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
312// register class, or a sub-expression. This is also the way to simply list
313// registers.
314//
315// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
316//
317// (and GPR, CSR) - Set intersection. All registers from the first set that are
318// also in the second set.
319//
320// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
321// numbered registers.  Takes an optional 4th operand which is a stride to use
322// when generating the sequence.
323//
324// (shl GPR, 4) - Remove the first N elements.
325//
326// (trunc GPR, 4) - Truncate after the first N elements.
327//
328// (rotl GPR, 1) - Rotate N places to the left.
329//
330// (rotr GPR, 1) - Rotate N places to the right.
331//
332// (decimate GPR, 2) - Pick every N'th element, starting with the first.
333//
334// (interleave A, B, ...) - Interleave the elements from each argument list.
335//
336// All of these operators work on ordered sets, not lists. That means
337// duplicates are removed from sub-expressions.
338
339// Set operators. The rest is defined in TargetSelectionDAG.td.
340def sequence;
341def decimate;
342def interleave;
343
344// RegisterTuples - Automatically generate super-registers by forming tuples of
345// sub-registers. This is useful for modeling register sequence constraints
346// with pseudo-registers that are larger than the architectural registers.
347//
348// The sub-register lists are zipped together:
349//
350//   def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
351//
352// Generates the same registers as:
353//
354//   let SubRegIndices = [sube, subo] in {
355//     def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
356//     def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
357//   }
358//
359// The generated pseudo-registers inherit super-classes and fields from their
360// first sub-register. Most fields from the Register class are inferred, and
361// the AsmName and Dwarf numbers are cleared.
362//
363// RegisterTuples instances can be used in other set operations to form
364// register classes and so on. This is the only way of using the generated
365// registers.
366//
367// RegNames may be specified to supply asm names for the generated tuples.
368// If used must have the same size as the list of produced registers.
369class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
370                     list<string> RegNames = []> {
371  // SubRegs - N lists of registers to be zipped up. Super-registers are
372  // synthesized from the first element of each SubRegs list, the second
373  // element and so on.
374  list<dag> SubRegs = Regs;
375
376  // SubRegIndices - N SubRegIndex instances. This provides the names of the
377  // sub-registers in the synthesized super-registers.
378  list<SubRegIndex> SubRegIndices = Indices;
379
380  // List of asm names for the generated tuple registers.
381  list<string> RegAsmNames = RegNames;
382}
383
384
385//===----------------------------------------------------------------------===//
386// DwarfRegNum - This class provides a mapping of the llvm register enumeration
387// to the register numbering used by gcc and gdb.  These values are used by a
388// debug information writer to describe where values may be located during
389// execution.
390class DwarfRegNum<list<int> Numbers> {
391  // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
392  // These values can be determined by locating the <target>.h file in the
393  // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES.  The
394  // order of these names correspond to the enumeration used by gcc.  A value of
395  // -1 indicates that the gcc number is undefined and -2 that register number
396  // is invalid for this mode/flavour.
397  list<int> DwarfNumbers = Numbers;
398}
399
400// DwarfRegAlias - This class declares that a given register uses the same dwarf
401// numbers as another one. This is useful for making it clear that the two
402// registers do have the same number. It also lets us build a mapping
403// from dwarf register number to llvm register.
404class DwarfRegAlias<Register reg> {
405      Register DwarfAlias = reg;
406}
407
408//===----------------------------------------------------------------------===//
409// Pull in the common support for MCPredicate (portable scheduling predicates).
410//
411include "llvm/Target/TargetInstrPredicate.td"
412
413//===----------------------------------------------------------------------===//
414// Pull in the common support for scheduling
415//
416include "llvm/Target/TargetSchedule.td"
417
418class Predicate; // Forward def
419
420class InstructionEncoding {
421  // Size of encoded instruction.
422  int Size;
423
424  // The "namespace" in which this instruction exists, on targets like ARM
425  // which multiple ISA namespaces exist.
426  string DecoderNamespace = "";
427
428  // List of predicates which will be turned into isel matching code.
429  list<Predicate> Predicates = [];
430
431  string DecoderMethod = "";
432
433  // Is the instruction decoder method able to completely determine if the
434  // given instruction is valid or not. If the TableGen definition of the
435  // instruction specifies bitpattern A??B where A and B are static bits, the
436  // hasCompleteDecoder flag says whether the decoder method fully handles the
437  // ?? space, i.e. if it is a final arbiter for the instruction validity.
438  // If not then the decoder attempts to continue decoding when the decoder
439  // method fails.
440  //
441  // This allows to handle situations where the encoding is not fully
442  // orthogonal. Example:
443  // * InstA with bitpattern 0b0000????,
444  // * InstB with bitpattern 0b000000?? but the associated decoder method
445  //   DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
446  //
447  // The decoder tries to decode a bitpattern that matches both InstA and
448  // InstB bitpatterns first as InstB (because it is the most specific
449  // encoding). In the default case (hasCompleteDecoder = 1), when
450  // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
451  // hasCompleteDecoder = 0 in InstB, the decoder is informed that
452  // DecodeInstB() is not able to determine if all possible values of ?? are
453  // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
454  // decode the bitpattern as InstA too.
455  bit hasCompleteDecoder = 1;
456}
457
458// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
459// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
460// to encode and decode based on HwMode.
461class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
462    : HwModeSelect<Ms> {
463  // The length of this list must be the same as the length of Ms.
464  list<InstructionEncoding> Objects = Ts;
465}
466
467//===----------------------------------------------------------------------===//
468// Instruction set description - These classes correspond to the C++ classes in
469// the Target/TargetInstrInfo.h file.
470//
471class Instruction : InstructionEncoding {
472  string Namespace = "";
473
474  dag OutOperandList;       // An dag containing the MI def operand list.
475  dag InOperandList;        // An dag containing the MI use operand list.
476  string AsmString = "";    // The .s format to print the instruction with.
477
478  // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
479  // the Inst member of this Instruction is ignored.
480  EncodingByHwMode EncodingInfos;
481
482  // Pattern - Set to the DAG pattern for this instruction, if we know of one,
483  // otherwise, uninitialized.
484  list<dag> Pattern;
485
486  // The follow state will eventually be inferred automatically from the
487  // instruction pattern.
488
489  list<Register> Uses = []; // Default to using no non-operand registers
490  list<Register> Defs = []; // Default to modifying no non-operand registers
491
492  // Predicates - List of predicates which will be turned into isel matching
493  // code.
494  list<Predicate> Predicates = [];
495
496  // Size - Size of encoded instruction, or zero if the size cannot be determined
497  // from the opcode.
498  int Size = 0;
499
500  // Code size, for instruction selection.
501  // FIXME: What does this actually mean?
502  int CodeSize = 0;
503
504  // Added complexity passed onto matching pattern.
505  int AddedComplexity  = 0;
506
507  // Indicates if this is a pre-isel opcode that should be
508  // legalized/regbankselected/selected.
509  bit isPreISelOpcode = 0;
510
511  // These bits capture information about the high-level semantics of the
512  // instruction.
513  bit isReturn     = 0;     // Is this instruction a return instruction?
514  bit isBranch     = 0;     // Is this instruction a branch instruction?
515  bit isEHScopeReturn = 0;  // Does this instruction end an EH scope?
516  bit isIndirectBranch = 0; // Is this instruction an indirect branch?
517  bit isCompare    = 0;     // Is this instruction a comparison instruction?
518  bit isMoveImm    = 0;     // Is this instruction a move immediate instruction?
519  bit isMoveReg    = 0;     // Is this instruction a move register instruction?
520  bit isBitcast    = 0;     // Is this instruction a bitcast instruction?
521  bit isSelect     = 0;     // Is this instruction a select instruction?
522  bit isBarrier    = 0;     // Can control flow fall through this instruction?
523  bit isCall       = 0;     // Is this instruction a call instruction?
524  bit isAdd        = 0;     // Is this instruction an add instruction?
525  bit isTrap       = 0;     // Is this instruction a trap instruction?
526  bit canFoldAsLoad = 0;    // Can this be folded as a simple memory operand?
527  bit mayLoad      = ?;     // Is it possible for this inst to read memory?
528  bit mayStore     = ?;     // Is it possible for this inst to write memory?
529  bit mayRaiseFPException = 0; // Can this raise a floating-point exception?
530  bit isConvertibleToThreeAddress = 0;  // Can this 2-addr instruction promote?
531  bit isCommutable = 0;     // Is this 3 operand instruction commutable?
532  bit isTerminator = 0;     // Is this part of the terminator for a basic block?
533  bit isReMaterializable = 0; // Is this instruction re-materializable?
534  bit isPredicable = 0;     // 1 means this instruction is predicable
535                            // even if it does not have any operand
536                            // tablegen can identify as a predicate
537  bit isUnpredicable = 0;   // 1 means this instruction is not predicable
538                            // even if it _does_ have a predicate operand
539  bit hasDelaySlot = 0;     // Does this instruction have an delay slot?
540  bit usesCustomInserter = 0; // Pseudo instr needing special help.
541  bit hasPostISelHook = 0;  // To be *adjusted* after isel by target hook.
542  bit hasCtrlDep   = 0;     // Does this instruction r/w ctrl-flow chains?
543  bit isNotDuplicable = 0;  // Is it unsafe to duplicate this instruction?
544  bit isConvergent = 0;     // Is this instruction convergent?
545  bit isAuthenticated = 0;  // Does this instruction authenticate a pointer?
546  bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
547  bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
548  bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
549  bit isRegSequence = 0;    // Is this instruction a kind of reg sequence?
550                            // If so, make sure to override
551                            // TargetInstrInfo::getRegSequenceLikeInputs.
552  bit isPseudo     = 0;     // Is this instruction a pseudo-instruction?
553                            // If so, won't have encoding information for
554                            // the [MC]CodeEmitter stuff.
555  bit isExtractSubreg = 0;  // Is this instruction a kind of extract subreg?
556                             // If so, make sure to override
557                             // TargetInstrInfo::getExtractSubregLikeInputs.
558  bit isInsertSubreg = 0;   // Is this instruction a kind of insert subreg?
559                            // If so, make sure to override
560                            // TargetInstrInfo::getInsertSubregLikeInputs.
561  bit variadicOpsAreDefs = 0; // Are variadic operands definitions?
562
563  // Does the instruction have side effects that are not captured by any
564  // operands of the instruction or other flags?
565  bit hasSideEffects = ?;
566
567  // Is this instruction a "real" instruction (with a distinct machine
568  // encoding), or is it a pseudo instruction used for codegen modeling
569  // purposes.
570  // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
571  // instructions can (and often do) still have encoding information
572  // associated with them. Once we've migrated all of them over to true
573  // pseudo-instructions that are lowered to real instructions prior to
574  // the printer/emitter, we can remove this attribute and just use isPseudo.
575  //
576  // The intended use is:
577  // isPseudo: Does not have encoding information and should be expanded,
578  //   at the latest, during lowering to MCInst.
579  //
580  // isCodeGenOnly: Does have encoding information and can go through to the
581  //   CodeEmitter unchanged, but duplicates a canonical instruction
582  //   definition's encoding and should be ignored when constructing the
583  //   assembler match tables.
584  bit isCodeGenOnly = 0;
585
586  // Is this instruction a pseudo instruction for use by the assembler parser.
587  bit isAsmParserOnly = 0;
588
589  // This instruction is not expected to be queried for scheduling latencies
590  // and therefore needs no scheduling information even for a complete
591  // scheduling model.
592  bit hasNoSchedulingInfo = 0;
593
594  InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
595
596  // Scheduling information from TargetSchedule.td.
597  list<SchedReadWrite> SchedRW;
598
599  string Constraints = "";  // OperandConstraint, e.g. $src = $dst.
600
601  /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
602  /// be encoded into the output machineinstr.
603  string DisableEncoding = "";
604
605  string PostEncoderMethod = "";
606
607  /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
608  bits<64> TSFlags = 0;
609
610  ///@name Assembler Parser Support
611  ///@{
612
613  string AsmMatchConverter = "";
614
615  /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
616  /// two-operand matcher inst-alias for a three operand instruction.
617  /// For example, the arm instruction "add r3, r3, r5" can be written
618  /// as "add r3, r5". The constraint is of the same form as a tied-operand
619  /// constraint. For example, "$Rn = $Rd".
620  string TwoOperandAliasConstraint = "";
621
622  /// Assembler variant name to use for this instruction. If specified then
623  /// instruction will be presented only in MatchTable for this variant. If
624  /// not specified then assembler variants will be determined based on
625  /// AsmString
626  string AsmVariantName = "";
627
628  ///@}
629
630  /// UseNamedOperandTable - If set, the operand indices of this instruction
631  /// can be queried via the getNamedOperandIdx() function which is generated
632  /// by TableGen.
633  bit UseNamedOperandTable = 0;
634
635  /// Should FastISel ignore this instruction. For certain ISAs, they have
636  /// instructions which map to the same ISD Opcode, value type operands and
637  /// instruction selection predicates. FastISel cannot handle such cases, but
638  /// SelectionDAG can.
639  bit FastISelShouldIgnore = 0;
640}
641
642/// Defines an additional encoding that disassembles to the given instruction
643/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
644// to specify their size.
645class AdditionalEncoding<Instruction I> : InstructionEncoding {
646  Instruction AliasOf = I;
647}
648
649/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
650/// Which instruction it expands to and how the operands map from the
651/// pseudo.
652class PseudoInstExpansion<dag Result> {
653  dag ResultInst = Result;     // The instruction to generate.
654  bit isPseudo = 1;
655}
656
657/// Predicates - These are extra conditionals which are turned into instruction
658/// selector matching code. Currently each predicate is just a string.
659class Predicate<string cond> {
660  string CondString = cond;
661
662  /// AssemblerMatcherPredicate - If this feature can be used by the assembler
663  /// matcher, this is true.  Targets should set this by inheriting their
664  /// feature from the AssemblerPredicate class in addition to Predicate.
665  bit AssemblerMatcherPredicate = 0;
666
667  /// AssemblerCondDag - Set of subtarget features being tested used
668  /// as alternative condition string used for assembler matcher. Must be used
669  /// with (all_of) to indicate that all features must be present, or (any_of)
670  /// to indicate that at least one must be. The required lack of presence of
671  /// a feature can be tested using a (not) node including the feature.
672  /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
673  ///      "(all_of (not ModeThumb))" is translated to
674  ///      "(Bits & ModeThumb) == 0".
675  ///      "(all_of ModeThumb, FeatureThumb2)" is translated to
676  ///      "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
677  ///      "(any_of ModeTumb, FeatureThumb2)" is translated to
678  ///      "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
679  /// all_of and any_of cannot be combined in a single dag, instead multiple
680  /// predicates can be placed onto Instruction definitions.
681  dag AssemblerCondDag;
682
683  /// PredicateName - User-level name to use for the predicate. Mainly for use
684  /// in diagnostics such as missing feature errors in the asm matcher.
685  string PredicateName = "";
686
687  /// Setting this to '1' indicates that the predicate must be recomputed on
688  /// every function change. Most predicates can leave this at '0'.
689  ///
690  /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
691  bit RecomputePerFunction = 0;
692}
693
694/// NoHonorSignDependentRounding - This predicate is true if support for
695/// sign-dependent-rounding is not enabled.
696def NoHonorSignDependentRounding
697 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
698
699class Requires<list<Predicate> preds> {
700  list<Predicate> Predicates = preds;
701}
702
703/// ops definition - This is just a simple marker used to identify the operand
704/// list for an instruction. outs and ins are identical both syntactically and
705/// semantically; they are used to define def operands and use operands to
706/// improve readability. This should be used like this:
707///     (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
708def ops;
709def outs;
710def ins;
711
712/// variable_ops definition - Mark this instruction as taking a variable number
713/// of operands.
714def variable_ops;
715
716
717/// PointerLikeRegClass - Values that are designed to have pointer width are
718/// derived from this.  TableGen treats the register class as having a symbolic
719/// type that it doesn't know, and resolves the actual regclass to use by using
720/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
721class PointerLikeRegClass<int Kind> {
722  int RegClassKind = Kind;
723}
724
725
726/// ptr_rc definition - Mark this operand as being a pointer value whose
727/// register class is resolved dynamically via a callback to TargetInstrInfo.
728/// FIXME: We should probably change this to a class which contain a list of
729/// flags. But currently we have but one flag.
730def ptr_rc : PointerLikeRegClass<0>;
731
732/// unknown definition - Mark this operand as being of unknown type, causing
733/// it to be resolved by inference in the context it is used.
734class unknown_class;
735def unknown : unknown_class;
736
737/// AsmOperandClass - Representation for the kinds of operands which the target
738/// specific parser can create and the assembly matcher may need to distinguish.
739///
740/// Operand classes are used to define the order in which instructions are
741/// matched, to ensure that the instruction which gets matched for any
742/// particular list of operands is deterministic.
743///
744/// The target specific parser must be able to classify a parsed operand into a
745/// unique class which does not partially overlap with any other classes. It can
746/// match a subset of some other class, in which case the super class field
747/// should be defined.
748class AsmOperandClass {
749  /// The name to use for this class, which should be usable as an enum value.
750  string Name = ?;
751
752  /// The super classes of this operand.
753  list<AsmOperandClass> SuperClasses = [];
754
755  /// The name of the method on the target specific operand to call to test
756  /// whether the operand is an instance of this class. If not set, this will
757  /// default to "isFoo", where Foo is the AsmOperandClass name. The method
758  /// signature should be:
759  ///   bool isFoo() const;
760  string PredicateMethod = ?;
761
762  /// The name of the method on the target specific operand to call to add the
763  /// target specific operand to an MCInst. If not set, this will default to
764  /// "addFooOperands", where Foo is the AsmOperandClass name. The method
765  /// signature should be:
766  ///   void addFooOperands(MCInst &Inst, unsigned N) const;
767  string RenderMethod = ?;
768
769  /// The name of the method on the target specific operand to call to custom
770  /// handle the operand parsing. This is useful when the operands do not relate
771  /// to immediates or registers and are very instruction specific (as flags to
772  /// set in a processor register, coprocessor number, ...).
773  string ParserMethod = ?;
774
775  // The diagnostic type to present when referencing this operand in a
776  // match failure error message. By default, use a generic "invalid operand"
777  // diagnostic. The target AsmParser maps these codes to text.
778  string DiagnosticType = "";
779
780  /// A diagnostic message to emit when an invalid value is provided for this
781  /// operand.
782  string DiagnosticString = "";
783
784  /// Set to 1 if this operand is optional and not always required. Typically,
785  /// the AsmParser will emit an error when it finishes parsing an
786  /// instruction if it hasn't matched all the operands yet.  However, this
787  /// error will be suppressed if all of the remaining unmatched operands are
788  /// marked as IsOptional.
789  ///
790  /// Optional arguments must be at the end of the operand list.
791  bit IsOptional = 0;
792
793  /// The name of the method on the target specific asm parser that returns the
794  /// default operand for this optional operand. This method is only used if
795  /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
796  /// where Foo is the AsmOperandClass name. The method signature should be:
797  ///   std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
798  string DefaultMethod = ?;
799}
800
801def ImmAsmOperand : AsmOperandClass {
802  let Name = "Imm";
803}
804
805/// Operand Types - These provide the built-in operand types that may be used
806/// by a target.  Targets can optionally provide their own operand types as
807/// needed, though this should not be needed for RISC targets.
808class Operand<ValueType ty> : DAGOperand {
809  ValueType Type = ty;
810  string PrintMethod = "printOperand";
811  string EncoderMethod = "";
812  bit hasCompleteDecoder = 1;
813  string OperandType = "OPERAND_UNKNOWN";
814  dag MIOperandInfo = (ops);
815
816  // MCOperandPredicate - Optionally, a code fragment operating on
817  // const MCOperand &MCOp, and returning a bool, to indicate if
818  // the value of MCOp is valid for the specific subclass of Operand
819  code MCOperandPredicate;
820
821  // ParserMatchClass - The "match class" that operands of this type fit
822  // in. Match classes are used to define the order in which instructions are
823  // match, to ensure that which instructions gets matched is deterministic.
824  //
825  // The target specific parser must be able to classify an parsed operand into
826  // a unique class, which does not partially overlap with any other classes. It
827  // can match a subset of some other class, in which case the AsmOperandClass
828  // should declare the other operand as one of its super classes.
829  AsmOperandClass ParserMatchClass = ImmAsmOperand;
830}
831
832class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
833  : DAGOperand {
834  // RegClass - The register class of the operand.
835  RegisterClass RegClass = regclass;
836  // PrintMethod - The target method to call to print register operands of
837  // this type. The method normally will just use an alt-name index to look
838  // up the name to print. Default to the generic printOperand().
839  string PrintMethod = pm;
840
841  // EncoderMethod - The target method name to call to encode this register
842  // operand.
843  string EncoderMethod = "";
844
845  // ParserMatchClass - The "match class" that operands of this type fit
846  // in. Match classes are used to define the order in which instructions are
847  // match, to ensure that which instructions gets matched is deterministic.
848  //
849  // The target specific parser must be able to classify an parsed operand into
850  // a unique class, which does not partially overlap with any other classes. It
851  // can match a subset of some other class, in which case the AsmOperandClass
852  // should declare the other operand as one of its super classes.
853  AsmOperandClass ParserMatchClass;
854
855  string OperandType = "OPERAND_REGISTER";
856
857  // When referenced in the result of a CodeGen pattern, GlobalISel will
858  // normally copy the matched operand to the result. When this is set, it will
859  // emit a special copy that will replace zero-immediates with the specified
860  // zero-register.
861  Register GIZeroRegister = ?;
862}
863
864let OperandType = "OPERAND_IMMEDIATE" in {
865def i1imm  : Operand<i1>;
866def i8imm  : Operand<i8>;
867def i16imm : Operand<i16>;
868def i32imm : Operand<i32>;
869def i64imm : Operand<i64>;
870
871def f32imm : Operand<f32>;
872def f64imm : Operand<f64>;
873}
874
875// Register operands for generic instructions don't have an MVT, but do have
876// constraints linking the operands (e.g. all operands of a G_ADD must
877// have the same LLT).
878class TypedOperand<string Ty> : Operand<untyped> {
879  let OperandType = Ty;
880  bit IsPointer = 0;
881  bit IsImmediate = 0;
882}
883
884def type0 : TypedOperand<"OPERAND_GENERIC_0">;
885def type1 : TypedOperand<"OPERAND_GENERIC_1">;
886def type2 : TypedOperand<"OPERAND_GENERIC_2">;
887def type3 : TypedOperand<"OPERAND_GENERIC_3">;
888def type4 : TypedOperand<"OPERAND_GENERIC_4">;
889def type5 : TypedOperand<"OPERAND_GENERIC_5">;
890
891let IsPointer = 1 in {
892  def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
893  def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
894  def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
895  def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
896  def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
897  def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
898}
899
900// untyped_imm is for operands where isImm() will be true. It currently has no
901// special behaviour and is only used for clarity.
902def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
903  let IsImmediate = 1;
904}
905
906/// zero_reg definition - Special node to stand for the zero register.
907///
908def zero_reg;
909
910/// undef_tied_input - Special node to indicate an input register tied
911/// to an output which defaults to IMPLICIT_DEF.
912def undef_tied_input;
913
914/// All operands which the MC layer classifies as predicates should inherit from
915/// this class in some manner. This is already handled for the most commonly
916/// used PredicateOperand, but may be useful in other circumstances.
917class PredicateOp;
918
919/// OperandWithDefaultOps - This Operand class can be used as the parent class
920/// for an Operand that needs to be initialized with a default value if
921/// no value is supplied in a pattern.  This class can be used to simplify the
922/// pattern definitions for instructions that have target specific flags
923/// encoded as immediate operands.
924class OperandWithDefaultOps<ValueType ty, dag defaultops>
925  : Operand<ty> {
926  dag DefaultOps = defaultops;
927}
928
929/// PredicateOperand - This can be used to define a predicate operand for an
930/// instruction.  OpTypes specifies the MIOperandInfo for the operand, and
931/// AlwaysVal specifies the value of this predicate when set to "always
932/// execute".
933class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
934  : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
935  let MIOperandInfo = OpTypes;
936}
937
938/// OptionalDefOperand - This is used to define a optional definition operand
939/// for an instruction. DefaultOps is the register the operand represents if
940/// none is supplied, e.g. zero_reg.
941class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
942  : OperandWithDefaultOps<ty, defaultops> {
943  let MIOperandInfo = OpTypes;
944}
945
946
947// InstrInfo - This class should only be instantiated once to provide parameters
948// which are global to the target machine.
949//
950class InstrInfo {
951  // Target can specify its instructions in either big or little-endian formats.
952  // For instance, while both Sparc and PowerPC are big-endian platforms, the
953  // Sparc manual specifies its instructions in the format [31..0] (big), while
954  // PowerPC specifies them using the format [0..31] (little).
955  bit isLittleEndianEncoding = 0;
956
957  // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
958  // by default, and TableGen will infer their value from the instruction
959  // pattern when possible.
960  //
961  // Normally, TableGen will issue an error it it can't infer the value of a
962  // property that hasn't been set explicitly. When guessInstructionProperties
963  // is set, it will guess a safe value instead.
964  //
965  // This option is a temporary migration help. It will go away.
966  bit guessInstructionProperties = 1;
967
968  // TableGen's instruction encoder generator has support for matching operands
969  // to bit-field variables both by name and by position. While matching by
970  // name is preferred, this is currently not possible for complex operands,
971  // and some targets still reply on the positional encoding rules. When
972  // generating a decoder for such targets, the positional encoding rules must
973  // be used by the decoder generator as well.
974  //
975  // This option is temporary; it will go away once the TableGen decoder
976  // generator has better support for complex operands and targets have
977  // migrated away from using positionally encoded operands.
978  bit decodePositionallyEncodedOperands = 0;
979
980  // When set, this indicates that there will be no overlap between those
981  // operands that are matched by ordering (positional operands) and those
982  // matched by name.
983  //
984  // This option is temporary; it will go away once the TableGen decoder
985  // generator has better support for complex operands and targets have
986  // migrated away from using positionally encoded operands.
987  bit noNamedPositionallyEncodedOperands = 0;
988}
989
990// Standard Pseudo Instructions.
991// This list must match TargetOpcodes.def.
992// Only these instructions are allowed in the TargetOpcode namespace.
993// Ensure mayLoad and mayStore have a default value, so as not to break
994// targets that set guessInstructionProperties=0. Any local definition of
995// mayLoad/mayStore takes precedence over these default values.
996class StandardPseudoInstruction : Instruction {
997  let mayLoad = 0;
998  let mayStore = 0;
999  let isCodeGenOnly = 1;
1000  let isPseudo = 1;
1001  let hasNoSchedulingInfo = 1;
1002  let Namespace = "TargetOpcode";
1003}
1004def PHI : StandardPseudoInstruction {
1005  let OutOperandList = (outs unknown:$dst);
1006  let InOperandList = (ins variable_ops);
1007  let AsmString = "PHINODE";
1008  let hasSideEffects = 0;
1009}
1010def INLINEASM : StandardPseudoInstruction {
1011  let OutOperandList = (outs);
1012  let InOperandList = (ins variable_ops);
1013  let AsmString = "";
1014  let hasSideEffects = 0;  // Note side effect is encoded in an operand.
1015}
1016def INLINEASM_BR : StandardPseudoInstruction {
1017  let OutOperandList = (outs);
1018  let InOperandList = (ins variable_ops);
1019  let AsmString = "";
1020  // Unlike INLINEASM, this is always treated as having side-effects.
1021  let hasSideEffects = 1;
1022  // Despite potentially branching, this instruction is intentionally _not_
1023  // marked as a terminator or a branch.
1024}
1025def CFI_INSTRUCTION : StandardPseudoInstruction {
1026  let OutOperandList = (outs);
1027  let InOperandList = (ins i32imm:$id);
1028  let AsmString = "";
1029  let hasCtrlDep = 1;
1030  let hasSideEffects = 0;
1031  let isNotDuplicable = 1;
1032}
1033def EH_LABEL : StandardPseudoInstruction {
1034  let OutOperandList = (outs);
1035  let InOperandList = (ins i32imm:$id);
1036  let AsmString = "";
1037  let hasCtrlDep = 1;
1038  let hasSideEffects = 0;
1039  let isNotDuplicable = 1;
1040}
1041def GC_LABEL : StandardPseudoInstruction {
1042  let OutOperandList = (outs);
1043  let InOperandList = (ins i32imm:$id);
1044  let AsmString = "";
1045  let hasCtrlDep = 1;
1046  let hasSideEffects = 0;
1047  let isNotDuplicable = 1;
1048}
1049def ANNOTATION_LABEL : StandardPseudoInstruction {
1050  let OutOperandList = (outs);
1051  let InOperandList = (ins i32imm:$id);
1052  let AsmString = "";
1053  let hasCtrlDep = 1;
1054  let hasSideEffects = 0;
1055  let isNotDuplicable = 1;
1056}
1057def KILL : StandardPseudoInstruction {
1058  let OutOperandList = (outs);
1059  let InOperandList = (ins variable_ops);
1060  let AsmString = "";
1061  let hasSideEffects = 0;
1062}
1063def EXTRACT_SUBREG : StandardPseudoInstruction {
1064  let OutOperandList = (outs unknown:$dst);
1065  let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
1066  let AsmString = "";
1067  let hasSideEffects = 0;
1068}
1069def INSERT_SUBREG : StandardPseudoInstruction {
1070  let OutOperandList = (outs unknown:$dst);
1071  let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
1072  let AsmString = "";
1073  let hasSideEffects = 0;
1074  let Constraints = "$supersrc = $dst";
1075}
1076def IMPLICIT_DEF : StandardPseudoInstruction {
1077  let OutOperandList = (outs unknown:$dst);
1078  let InOperandList = (ins);
1079  let AsmString = "";
1080  let hasSideEffects = 0;
1081  let isReMaterializable = 1;
1082  let isAsCheapAsAMove = 1;
1083}
1084def SUBREG_TO_REG : StandardPseudoInstruction {
1085  let OutOperandList = (outs unknown:$dst);
1086  let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
1087  let AsmString = "";
1088  let hasSideEffects = 0;
1089}
1090def COPY_TO_REGCLASS : StandardPseudoInstruction {
1091  let OutOperandList = (outs unknown:$dst);
1092  let InOperandList = (ins unknown:$src, i32imm:$regclass);
1093  let AsmString = "";
1094  let hasSideEffects = 0;
1095  let isAsCheapAsAMove = 1;
1096}
1097def DBG_VALUE : StandardPseudoInstruction {
1098  let OutOperandList = (outs);
1099  let InOperandList = (ins variable_ops);
1100  let AsmString = "DBG_VALUE";
1101  let hasSideEffects = 0;
1102}
1103def DBG_LABEL : StandardPseudoInstruction {
1104  let OutOperandList = (outs);
1105  let InOperandList = (ins unknown:$label);
1106  let AsmString = "DBG_LABEL";
1107  let hasSideEffects = 0;
1108}
1109def REG_SEQUENCE : StandardPseudoInstruction {
1110  let OutOperandList = (outs unknown:$dst);
1111  let InOperandList = (ins unknown:$supersrc, variable_ops);
1112  let AsmString = "";
1113  let hasSideEffects = 0;
1114  let isAsCheapAsAMove = 1;
1115}
1116def COPY : StandardPseudoInstruction {
1117  let OutOperandList = (outs unknown:$dst);
1118  let InOperandList = (ins unknown:$src);
1119  let AsmString = "";
1120  let hasSideEffects = 0;
1121  let isAsCheapAsAMove = 1;
1122  let hasNoSchedulingInfo = 0;
1123}
1124def BUNDLE : StandardPseudoInstruction {
1125  let OutOperandList = (outs);
1126  let InOperandList = (ins variable_ops);
1127  let AsmString = "BUNDLE";
1128  let hasSideEffects = 0;
1129}
1130def LIFETIME_START : StandardPseudoInstruction {
1131  let OutOperandList = (outs);
1132  let InOperandList = (ins i32imm:$id);
1133  let AsmString = "LIFETIME_START";
1134  let hasSideEffects = 0;
1135}
1136def LIFETIME_END : StandardPseudoInstruction {
1137  let OutOperandList = (outs);
1138  let InOperandList = (ins i32imm:$id);
1139  let AsmString = "LIFETIME_END";
1140  let hasSideEffects = 0;
1141}
1142def STACKMAP : StandardPseudoInstruction {
1143  let OutOperandList = (outs);
1144  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1145  let hasSideEffects = 1;
1146  let isCall = 1;
1147  let mayLoad = 1;
1148  let usesCustomInserter = 1;
1149}
1150def PATCHPOINT : StandardPseudoInstruction {
1151  let OutOperandList = (outs unknown:$dst);
1152  let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1153                       i32imm:$nargs, i32imm:$cc, variable_ops);
1154  let hasSideEffects = 1;
1155  let isCall = 1;
1156  let mayLoad = 1;
1157  let usesCustomInserter = 1;
1158}
1159def STATEPOINT : StandardPseudoInstruction {
1160  let OutOperandList = (outs);
1161  let InOperandList = (ins variable_ops);
1162  let usesCustomInserter = 1;
1163  let mayLoad = 1;
1164  let mayStore = 1;
1165  let hasSideEffects = 1;
1166  let isCall = 1;
1167}
1168def LOAD_STACK_GUARD : StandardPseudoInstruction {
1169  let OutOperandList = (outs ptr_rc:$dst);
1170  let InOperandList = (ins);
1171  let mayLoad = 1;
1172  bit isReMaterializable = 1;
1173  let hasSideEffects = 0;
1174  bit isPseudo = 1;
1175}
1176def PREALLOCATED_SETUP : StandardPseudoInstruction {
1177  let OutOperandList = (outs);
1178  let InOperandList = (ins i32imm:$a);
1179  let usesCustomInserter = 1;
1180  let hasSideEffects = 1;
1181}
1182def PREALLOCATED_ARG : StandardPseudoInstruction {
1183  let OutOperandList = (outs ptr_rc:$loc);
1184  let InOperandList = (ins i32imm:$a, i32imm:$b);
1185  let usesCustomInserter = 1;
1186  let hasSideEffects = 1;
1187}
1188def LOCAL_ESCAPE : StandardPseudoInstruction {
1189  // This instruction is really just a label. It has to be part of the chain so
1190  // that it doesn't get dropped from the DAG, but it produces nothing and has
1191  // no side effects.
1192  let OutOperandList = (outs);
1193  let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1194  let hasSideEffects = 0;
1195  let hasCtrlDep = 1;
1196}
1197def FAULTING_OP : StandardPseudoInstruction {
1198  let OutOperandList = (outs unknown:$dst);
1199  let InOperandList = (ins variable_ops);
1200  let usesCustomInserter = 1;
1201  let hasSideEffects = 1;
1202  let mayLoad = 1;
1203  let mayStore = 1;
1204  let isTerminator = 1;
1205  let isBranch = 1;
1206}
1207def PATCHABLE_OP : StandardPseudoInstruction {
1208  let OutOperandList = (outs);
1209  let InOperandList = (ins variable_ops);
1210  let usesCustomInserter = 1;
1211  let mayLoad = 1;
1212  let mayStore = 1;
1213  let hasSideEffects = 1;
1214}
1215def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1216  let OutOperandList = (outs);
1217  let InOperandList = (ins);
1218  let AsmString = "# XRay Function Enter.";
1219  let usesCustomInserter = 1;
1220  let hasSideEffects = 1;
1221}
1222def PATCHABLE_RET : StandardPseudoInstruction {
1223  let OutOperandList = (outs);
1224  let InOperandList = (ins variable_ops);
1225  let AsmString = "# XRay Function Patchable RET.";
1226  let usesCustomInserter = 1;
1227  let hasSideEffects = 1;
1228  let isTerminator = 1;
1229  let isReturn = 1;
1230}
1231def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1232  let OutOperandList = (outs);
1233  let InOperandList = (ins);
1234  let AsmString = "# XRay Function Exit.";
1235  let usesCustomInserter = 1;
1236  let hasSideEffects = 1;
1237  let isReturn = 0; // Original return instruction will follow
1238}
1239def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
1240  let OutOperandList = (outs);
1241  let InOperandList = (ins variable_ops);
1242  let AsmString = "# XRay Tail Call Exit.";
1243  let usesCustomInserter = 1;
1244  let hasSideEffects = 1;
1245  let isReturn = 1;
1246}
1247def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1248  let OutOperandList = (outs);
1249  let InOperandList = (ins ptr_rc:$event, unknown:$size);
1250  let AsmString = "# XRay Custom Event Log.";
1251  let usesCustomInserter = 1;
1252  let isCall = 1;
1253  let mayLoad = 1;
1254  let mayStore = 1;
1255  let hasSideEffects = 1;
1256}
1257def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1258  let OutOperandList = (outs);
1259  let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
1260  let AsmString = "# XRay Typed Event Log.";
1261  let usesCustomInserter = 1;
1262  let isCall = 1;
1263  let mayLoad = 1;
1264  let mayStore = 1;
1265  let hasSideEffects = 1;
1266}
1267def FENTRY_CALL : StandardPseudoInstruction {
1268  let OutOperandList = (outs);
1269  let InOperandList = (ins);
1270  let AsmString = "# FEntry call";
1271  let usesCustomInserter = 1;
1272  let mayLoad = 1;
1273  let mayStore = 1;
1274  let hasSideEffects = 1;
1275}
1276def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1277  let OutOperandList = (outs);
1278  let InOperandList = (ins variable_ops);
1279  let AsmString = "";
1280  let hasSideEffects = 1;
1281}
1282
1283// Generic opcodes used in GlobalISel.
1284include "llvm/Target/GenericOpcodes.td"
1285
1286//===----------------------------------------------------------------------===//
1287// AsmParser - This class can be implemented by targets that wish to implement
1288// .s file parsing.
1289//
1290// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1291// syntax on X86 for example).
1292//
1293class AsmParser {
1294  // AsmParserClassName - This specifies the suffix to use for the asmparser
1295  // class.  Generated AsmParser classes are always prefixed with the target
1296  // name.
1297  string AsmParserClassName  = "AsmParser";
1298
1299  // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1300  // function of the AsmParser class to call on every matched instruction.
1301  // This can be used to perform target specific instruction post-processing.
1302  string AsmParserInstCleanup  = "";
1303
1304  // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1305  // written register name matcher
1306  bit ShouldEmitMatchRegisterName = 1;
1307
1308  // Set to true if the target needs a generated 'alternative register name'
1309  // matcher.
1310  //
1311  // This generates a function which can be used to lookup registers from
1312  // their aliases. This function will fail when called on targets where
1313  // several registers share the same alias (i.e. not a 1:1 mapping).
1314  bit ShouldEmitMatchRegisterAltName = 0;
1315
1316  // Set to true if MatchRegisterName and MatchRegisterAltName functions
1317  // should be generated even if there are duplicate register names. The
1318  // target is responsible for coercing aliased registers as necessary
1319  // (e.g. in validateTargetOperandClass), and there are no guarantees about
1320  // which numeric register identifier will be returned in the case of
1321  // multiple matches.
1322  bit AllowDuplicateRegisterNames = 0;
1323
1324  // HasMnemonicFirst - Set to false if target instructions don't always
1325  // start with a mnemonic as the first token.
1326  bit HasMnemonicFirst = 1;
1327
1328  // ReportMultipleNearMisses -
1329  // When 0, the assembly matcher reports an error for one encoding or operand
1330  // that did not match the parsed instruction.
1331  // When 1, the assembly matcher returns a list of encodings that were close
1332  // to matching the parsed instruction, so to allow more detailed error
1333  // messages.
1334  bit ReportMultipleNearMisses = 0;
1335}
1336def DefaultAsmParser : AsmParser;
1337
1338//===----------------------------------------------------------------------===//
1339// AsmParserVariant - Subtargets can have multiple different assembly parsers
1340// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1341// implemented by targets to describe such variants.
1342//
1343class AsmParserVariant {
1344  // Variant - AsmParsers can be of multiple different variants.  Variants are
1345  // used to support targets that need to parser multiple formats for the
1346  // assembly language.
1347  int Variant = 0;
1348
1349  // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1350  string Name = "";
1351
1352  // CommentDelimiter - If given, the delimiter string used to recognize
1353  // comments which are hard coded in the .td assembler strings for individual
1354  // instructions.
1355  string CommentDelimiter = "";
1356
1357  // RegisterPrefix - If given, the token prefix which indicates a register
1358  // token. This is used by the matcher to automatically recognize hard coded
1359  // register tokens as constrained registers, instead of tokens, for the
1360  // purposes of matching.
1361  string RegisterPrefix = "";
1362
1363  // TokenizingCharacters - Characters that are standalone tokens
1364  string TokenizingCharacters = "[]*!";
1365
1366  // SeparatorCharacters - Characters that are not tokens
1367  string SeparatorCharacters = " \t,";
1368
1369  // BreakCharacters - Characters that start new identifiers
1370  string BreakCharacters = "";
1371}
1372def DefaultAsmParserVariant : AsmParserVariant;
1373
1374// Operators for combining SubtargetFeatures in AssemblerPredicates
1375def any_of;
1376def all_of;
1377
1378/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1379/// matches instructions and aliases.
1380class AssemblerPredicate<dag cond, string name = ""> {
1381  bit AssemblerMatcherPredicate = 1;
1382  dag AssemblerCondDag = cond;
1383  string PredicateName = name;
1384}
1385
1386/// TokenAlias - This class allows targets to define assembler token
1387/// operand aliases. That is, a token literal operand which is equivalent
1388/// to another, canonical, token literal. For example, ARM allows:
1389///   vmov.u32 s4, #0  -> vmov.i32, #0
1390/// 'u32' is a more specific designator for the 32-bit integer type specifier
1391/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1392///   def : TokenAlias<".u32", ".i32">;
1393///
1394/// This works by marking the match class of 'From' as a subclass of the
1395/// match class of 'To'.
1396class TokenAlias<string From, string To> {
1397  string FromToken = From;
1398  string ToToken = To;
1399}
1400
1401/// MnemonicAlias - This class allows targets to define assembler mnemonic
1402/// aliases.  This should be used when all forms of one mnemonic are accepted
1403/// with a different mnemonic.  For example, X86 allows:
1404///   sal %al, 1    -> shl %al, 1
1405///   sal %ax, %cl  -> shl %ax, %cl
1406///   sal %eax, %cl -> shl %eax, %cl
1407/// etc.  Though "sal" is accepted with many forms, all of them are directly
1408/// translated to a shl, so it can be handled with (in the case of X86, it
1409/// actually has one for each suffix as well):
1410///   def : MnemonicAlias<"sal", "shl">;
1411///
1412/// Mnemonic aliases are mapped before any other translation in the match phase,
1413/// and do allow Requires predicates, e.g.:
1414///
1415///  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1416///  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1417///
1418/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1419///
1420///  def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1421///
1422/// If no variant (e.g., "att" or "intel") is specified then the alias is
1423/// applied unconditionally.
1424class MnemonicAlias<string From, string To, string VariantName = ""> {
1425  string FromMnemonic = From;
1426  string ToMnemonic = To;
1427  string AsmVariantName = VariantName;
1428
1429  // Predicates - Predicates that must be true for this remapping to happen.
1430  list<Predicate> Predicates = [];
1431}
1432
1433/// InstAlias - This defines an alternate assembly syntax that is allowed to
1434/// match an instruction that has a different (more canonical) assembly
1435/// representation.
1436class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
1437  string AsmString = Asm;      // The .s format to match the instruction with.
1438  dag ResultInst = Result;     // The MCInst to generate.
1439
1440  // This determines which order the InstPrinter detects aliases for
1441  // printing. A larger value makes the alias more likely to be
1442  // emitted. The Instruction's own definition is notionally 0.5, so 0
1443  // disables printing and 1 enables it if there are no conflicting aliases.
1444  int EmitPriority = Emit;
1445
1446  // Predicates - Predicates that must be true for this to match.
1447  list<Predicate> Predicates = [];
1448
1449  // If the instruction specified in Result has defined an AsmMatchConverter
1450  // then setting this to 1 will cause the alias to use the AsmMatchConverter
1451  // function when converting the OperandVector into an MCInst instead of the
1452  // function that is generated by the dag Result.
1453  // Setting this to 0 will cause the alias to ignore the Result instruction's
1454  // defined AsmMatchConverter and instead use the function generated by the
1455  // dag Result.
1456  bit UseInstAsmMatchConverter = 1;
1457
1458  // Assembler variant name to use for this alias. If not specified then
1459  // assembler variants will be determined based on AsmString
1460  string AsmVariantName = VariantName;
1461}
1462
1463//===----------------------------------------------------------------------===//
1464// AsmWriter - This class can be implemented by targets that need to customize
1465// the format of the .s file writer.
1466//
1467// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1468// on X86 for example).
1469//
1470class AsmWriter {
1471  // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1472  // class.  Generated AsmWriter classes are always prefixed with the target
1473  // name.
1474  string AsmWriterClassName  = "InstPrinter";
1475
1476  // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1477  // the various print methods.
1478  // FIXME: Remove after all ports are updated.
1479  int PassSubtarget = 0;
1480
1481  // Variant - AsmWriters can be of multiple different variants.  Variants are
1482  // used to support targets that need to emit assembly code in ways that are
1483  // mostly the same for different targets, but have minor differences in
1484  // syntax.  If the asmstring contains {|} characters in them, this integer
1485  // will specify which alternative to use.  For example "{x|y|z}" with Variant
1486  // == 1, will expand to "y".
1487  int Variant = 0;
1488}
1489def DefaultAsmWriter : AsmWriter;
1490
1491
1492//===----------------------------------------------------------------------===//
1493// Target - This class contains the "global" target information
1494//
1495class Target {
1496  // InstructionSet - Instruction set description for this target.
1497  InstrInfo InstructionSet;
1498
1499  // AssemblyParsers - The AsmParser instances available for this target.
1500  list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1501
1502  /// AssemblyParserVariants - The AsmParserVariant instances available for
1503  /// this target.
1504  list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1505
1506  // AssemblyWriters - The AsmWriter instances available for this target.
1507  list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1508
1509  // AllowRegisterRenaming - Controls whether this target allows
1510  // post-register-allocation renaming of registers.  This is done by
1511  // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1512  // for all opcodes if this flag is set to 0.
1513  int AllowRegisterRenaming = 0;
1514}
1515
1516//===----------------------------------------------------------------------===//
1517// SubtargetFeature - A characteristic of the chip set.
1518//
1519class SubtargetFeature<string n, string a,  string v, string d,
1520                       list<SubtargetFeature> i = []> {
1521  // Name - Feature name.  Used by command line (-mattr=) to determine the
1522  // appropriate target chip.
1523  //
1524  string Name = n;
1525
1526  // Attribute - Attribute to be set by feature.
1527  //
1528  string Attribute = a;
1529
1530  // Value - Value the attribute to be set to by feature.
1531  //
1532  string Value = v;
1533
1534  // Desc - Feature description.  Used by command line (-mattr=) to display help
1535  // information.
1536  //
1537  string Desc = d;
1538
1539  // Implies - Features that this feature implies are present. If one of those
1540  // features isn't set, then this one shouldn't be set either.
1541  //
1542  list<SubtargetFeature> Implies = i;
1543}
1544
1545/// Specifies a Subtarget feature that this instruction is deprecated on.
1546class Deprecated<SubtargetFeature dep> {
1547  SubtargetFeature DeprecatedFeatureMask = dep;
1548}
1549
1550/// A custom predicate used to determine if an instruction is
1551/// deprecated or not.
1552class ComplexDeprecationPredicate<string dep> {
1553  string ComplexDeprecationPredicate = dep;
1554}
1555
1556//===----------------------------------------------------------------------===//
1557// Processor chip sets - These values represent each of the chip sets supported
1558// by the scheduler.  Each Processor definition requires corresponding
1559// instruction itineraries.
1560//
1561class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1562  // Name - Chip set name.  Used by command line (-mcpu=) to determine the
1563  // appropriate target chip.
1564  //
1565  string Name = n;
1566
1567  // SchedModel - The machine model for scheduling and instruction cost.
1568  //
1569  SchedMachineModel SchedModel = NoSchedModel;
1570
1571  // ProcItin - The scheduling information for the target processor.
1572  //
1573  ProcessorItineraries ProcItin = pi;
1574
1575  // Features - list of
1576  list<SubtargetFeature> Features = f;
1577}
1578
1579// ProcessorModel allows subtargets to specify the more general
1580// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1581// gradually move to this newer form.
1582//
1583// Although this class always passes NoItineraries to the Processor
1584// class, the SchedMachineModel may still define valid Itineraries.
1585class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1586  : Processor<n, NoItineraries, f> {
1587  let SchedModel = m;
1588}
1589
1590//===----------------------------------------------------------------------===//
1591// InstrMapping - This class is used to create mapping tables to relate
1592// instructions with each other based on the values specified in RowFields,
1593// ColFields, KeyCol and ValueCols.
1594//
1595class InstrMapping {
1596  // FilterClass - Used to limit search space only to the instructions that
1597  // define the relationship modeled by this InstrMapping record.
1598  string FilterClass;
1599
1600  // RowFields - List of fields/attributes that should be same for all the
1601  // instructions in a row of the relation table. Think of this as a set of
1602  // properties shared by all the instructions related by this relationship
1603  // model and is used to categorize instructions into subgroups. For instance,
1604  // if we want to define a relation that maps 'Add' instruction to its
1605  // predicated forms, we can define RowFields like this:
1606  //
1607  // let RowFields = BaseOp
1608  // All add instruction predicated/non-predicated will have to set their BaseOp
1609  // to the same value.
1610  //
1611  // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1612  // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1613  // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false'  }
1614  list<string> RowFields = [];
1615
1616  // List of fields/attributes that are same for all the instructions
1617  // in a column of the relation table.
1618  // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1619  // based on the 'predSense' values. All the instruction in a specific
1620  // column have the same value and it is fixed for the column according
1621  // to the values set in 'ValueCols'.
1622  list<string> ColFields = [];
1623
1624  // Values for the fields/attributes listed in 'ColFields'.
1625  // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1626  // that models this relation) should be non-predicated.
1627  // In the example above, 'Add' is the key instruction.
1628  list<string> KeyCol = [];
1629
1630  // List of values for the fields/attributes listed in 'ColFields', one for
1631  // each column in the relation table.
1632  //
1633  // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1634  // table. First column requires all the instructions to have predSense
1635  // set to 'true' and second column requires it to be 'false'.
1636  list<list<string> > ValueCols = [];
1637}
1638
1639//===----------------------------------------------------------------------===//
1640// Pull in the common support for calling conventions.
1641//
1642include "llvm/Target/TargetCallingConv.td"
1643
1644//===----------------------------------------------------------------------===//
1645// Pull in the common support for DAG isel generation.
1646//
1647include "llvm/Target/TargetSelectionDAG.td"
1648
1649//===----------------------------------------------------------------------===//
1650// Pull in the common support for Global ISel register bank info generation.
1651//
1652include "llvm/Target/GlobalISel/RegisterBank.td"
1653
1654//===----------------------------------------------------------------------===//
1655// Pull in the common support for DAG isel generation.
1656//
1657include "llvm/Target/GlobalISel/Target.td"
1658
1659//===----------------------------------------------------------------------===//
1660// Pull in the common support for the Global ISel DAG-based selector generation.
1661//
1662include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
1663
1664//===----------------------------------------------------------------------===//
1665// Pull in the common support for Pfm Counters generation.
1666//
1667include "llvm/Target/TargetPfmCounters.td"
1668