1//===- TargetInstrPredicate.td - ---------------------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines class MCInstPredicate and its subclasses.
10//
11// MCInstPredicate definitions are used by target scheduling models to describe
12// constraints on instructions.
13//
14// Here is an example of an MCInstPredicate definition in TableGen:
15//
16// def MCInstPredicateExample : CheckAll<[
17//    CheckOpcode<[BLR]>,
18//    CheckIsRegOperand<0>,
19//    CheckNot<CheckRegOperand<0, LR>>]>;
20//
21// The syntax for MCInstPredicate is declarative, and predicate definitions can
22// be composed together in order to generate more complex constraints.
23//
24// The `CheckAll` from the example defines a composition of three different
25// predicates.  Definition `MCInstPredicateExample` identifies instructions
26// whose opcode is BLR, and whose first operand is a register different from
27// register `LR`.
28//
29// Every MCInstPredicate class has a well-known semantic in tablegen. For
30// example, `CheckOpcode` is a special type of predicate used to describe a
31// constraint on the value of an instruction opcode.
32//
33// MCInstPredicate definitions are typically used by scheduling models to
34// construct MCSchedPredicate definitions (see the definition of class
35// MCSchedPredicate in llvm/Target/TargetSchedule.td).
36// In particular, an MCSchedPredicate can be used instead of a SchedPredicate
37// when defining the set of SchedReadVariant and SchedWriteVariant of a
38// processor scheduling model.
39//
40// The `MCInstPredicateExample` definition above is equivalent (and therefore
41// could replace) the following definition from a previous ExynosM3 model (see
42// AArch64SchedExynosM3.td):
43//
44// def M3BranchLinkFastPred  : SchedPredicate<[{
45//    MI->getOpcode() == AArch64::BLR &&
46//    MI->getOperand(0).isReg() &&
47//    MI->getOperand(0).getReg() != AArch64::LR}]>;
48//
49// The main advantage of using MCInstPredicate instead of SchedPredicate is
50// portability: users don't need to specify predicates in C++. As a consequence
51// of this, MCInstPredicate definitions are not bound to a particular
52// representation (i.e. MachineInstr vs MCInst).
53//
54// Tablegen backends know how to expand MCInstPredicate definitions into actual
55// C++ code that works on MachineInstr (and/or MCInst).
56//
57// Instances of class PredicateExpander (see utils/Tablegen/PredicateExpander.h)
58// know how to expand a predicate. For each MCInstPredicate class, there must be
59// an "expand" method available in the PredicateExpander interface.
60//
61// For example, a `CheckOpcode` predicate is expanded using method
62// `PredicateExpander::expandCheckOpcode()`.
63//
64// New MCInstPredicate classes must be added to this file. For each new class
65// XYZ, an "expandXYZ" method must be added to the PredicateExpander.
66//
67//===----------------------------------------------------------------------===//
68
69// Forward declarations.
70class Instruction;
71class SchedMachineModel;
72
73// A generic machine instruction predicate.
74class MCInstPredicate;
75
76class MCTrue  : MCInstPredicate;   // A predicate that always evaluates to True.
77class MCFalse : MCInstPredicate;   // A predicate that always evaluates to False.
78def TruePred  : MCTrue;
79def FalsePred : MCFalse;
80
81// A predicate used to negate the outcome of another predicate.
82// It allows to easily express "set difference" operations. For example, it
83// makes it easy to describe a check that tests if an opcode is not part of a
84// set of opcodes.
85class CheckNot<MCInstPredicate P> : MCInstPredicate {
86  MCInstPredicate Pred = P;
87}
88
89// This class is used as a building block to define predicates on instruction
90// operands. It is used to reference a specific machine operand.
91class MCOperandPredicate<int Index> : MCInstPredicate {
92  int OpIndex = Index;
93}
94
95// Return true if machine operand at position `Index` is a register operand.
96class CheckIsRegOperand<int Index> : MCOperandPredicate<Index>;
97
98// Return true if machine operand at position `Index` is an immediate operand.
99class CheckIsImmOperand<int Index> : MCOperandPredicate<Index>;
100
101// Check if machine operands at index `First` and index `Second` both reference
102// the same register.
103class CheckSameRegOperand<int First, int Second> : MCInstPredicate {
104  int FirstIndex = First;
105  int SecondIndex = Second;
106}
107
108// Base class for checks on register/immediate operands.
109// It allows users to define checks like:
110//    MyFunction(MI->getOperand(Index).getImm()) == Val;
111//
112// In the example above, `MyFunction` is a function that takes as input an
113// immediate operand value, and returns another value. Field `FunctionMapper` is
114// the name of the function to call on the operand value.
115class CheckOperandBase<int Index, string Fn = ""> : MCOperandPredicate<Index> {
116  string FunctionMapper = Fn;
117}
118
119// Check that the machine register operand at position `Index` references
120// register R. This predicate assumes that we already checked that the machine
121// operand at position `Index` is a register operand.
122class CheckRegOperand<int Index, Register R> : CheckOperandBase<Index> {
123  Register Reg = R;
124}
125
126// Check if register operand at index `Index` is the invalid register.
127class CheckInvalidRegOperand<int Index> : CheckOperandBase<Index>;
128
129// Return true if machine operand at position `Index` is a valid
130// register operand.
131class CheckValidRegOperand<int Index> :
132  CheckNot<CheckInvalidRegOperand<Index>>;
133
134// Check that the operand at position `Index` is immediate `Imm`.
135// If field `FunctionMapper` is a non-empty string, then function
136// `FunctionMapper` is applied to the operand value, and the return value is then
137// compared against `Imm`.
138class CheckImmOperand<int Index, int Imm> : CheckOperandBase<Index> {
139  int ImmVal = Imm;
140}
141
142// Similar to CheckImmOperand, however the immediate is not a literal number.
143// This is useful when we want to compare the value of an operand against an
144// enum value, and we know the actual integer value of that enum.
145class CheckImmOperand_s<int Index, string Value> : CheckOperandBase<Index> {
146  string ImmVal = Value;
147}
148
149// Expands to a call to `FunctionMapper` if field `FunctionMapper` is set.
150// Otherwise, it expands to a CheckNot<CheckInvalidRegOperand<Index>>.
151class CheckRegOperandSimple<int Index> : CheckOperandBase<Index>;
152
153// Expands to a call to `FunctionMapper` if field `FunctionMapper` is set.
154// Otherwise, it simply evaluates to TruePred.
155class CheckImmOperandSimple<int Index> : CheckOperandBase<Index>;
156
157// Check that the operand at position `Index` is immediate value zero.
158class CheckZeroOperand<int Index> : CheckImmOperand<Index, 0>;
159
160// Check that the instruction has exactly `Num` operands.
161class CheckNumOperands<int Num> : MCInstPredicate {
162  int NumOps = Num;
163}
164
165// Check that the instruction opcode is one of the opcodes in set `Opcodes`.
166// This is a simple set membership query. The easier way to check if an opcode
167// is not a member of the set is by using a `CheckNot<CheckOpcode<[...]>>`
168// sequence.
169class CheckOpcode<list<Instruction> Opcodes> : MCInstPredicate {
170  list<Instruction> ValidOpcodes = Opcodes;
171}
172
173// Check that the instruction opcode is a pseudo opcode member of the set
174// `Opcodes`.  This check is always expanded to "false" if we are generating
175// code for MCInst.
176class CheckPseudo<list<Instruction> Opcodes> : CheckOpcode<Opcodes>;
177
178// A non-portable predicate. Only to use as a last resort when a block of code
179// cannot possibly be converted in a declarative way using other MCInstPredicate
180// classes. This check is always expanded to "false" when generating code for
181// MCInst.
182class CheckNonPortable<string Code> : MCInstPredicate {
183  string CodeBlock = Code;
184}
185
186// A sequence of predicates. It is used as the base class for CheckAll, and
187// CheckAny. It allows to describe compositions of predicates.
188class CheckPredicateSequence<list<MCInstPredicate> Preds> : MCInstPredicate {
189  list<MCInstPredicate> Predicates = Preds;
190}
191
192// Check that all of the predicates in `Preds` evaluate to true.
193class CheckAll<list<MCInstPredicate> Sequence>
194    : CheckPredicateSequence<Sequence>;
195
196// Check that at least one of the predicates in `Preds` evaluates to true.
197class CheckAny<list<MCInstPredicate> Sequence>
198    : CheckPredicateSequence<Sequence>;
199
200
201// Used to expand the body of a function predicate. See the definition of
202// TIIPredicate below.
203class MCStatement;
204
205// Expands to a return statement. The return expression is a boolean expression
206// described by a MCInstPredicate.
207class MCReturnStatement<MCInstPredicate predicate> : MCStatement {
208  MCInstPredicate Pred = predicate;
209}
210
211// Used to automatically construct cases of a switch statement where the switch
212// variable is an instruction opcode. There is a 'case' for every opcode in the
213// `opcodes` list, and each case is associated with MCStatement `caseStmt`.
214class MCOpcodeSwitchCase<list<Instruction> opcodes, MCStatement caseStmt> {
215  list<Instruction> Opcodes = opcodes;
216  MCStatement CaseStmt = caseStmt;
217}
218
219// Expands to a switch statement. The switch variable is an instruction opcode.
220// The auto-generated switch is populated by a number of cases based on the
221// `cases` list in input. A default case is automatically generated, and it
222// evaluates to `default`.
223class MCOpcodeSwitchStatement<list<MCOpcodeSwitchCase> cases,
224                              MCStatement default> : MCStatement {
225  list<MCOpcodeSwitchCase> Cases = cases;
226  MCStatement DefaultCase = default;
227}
228
229// Base class for function predicates.
230class FunctionPredicateBase<string name, MCStatement body> {
231  string FunctionName = name;
232  MCStatement Body = body;
233}
234
235// Check that a call to method `Name` in class "XXXInstrInfo" (where XXX is
236// the name of a target) returns true.
237//
238// TIIPredicate definitions are used to model calls to the target-specific
239// InstrInfo. A TIIPredicate is treated specially by the InstrInfoEmitter
240// tablegen backend, which will use it to automatically generate a definition in
241// the target specific `InstrInfo` class.
242//
243// There cannot be multiple TIIPredicate definitions with the same name for the
244// same target.
245class TIIPredicate<string Name, MCStatement body>
246    : FunctionPredicateBase<Name, body>, MCInstPredicate;
247
248// A function predicate that takes as input a machine instruction, and returns
249// a boolean value.
250//
251// This predicate is expanded into a function call by the PredicateExpander.
252// In particular, the PredicateExpander would either expand this predicate into
253// a call to `MCInstFn`, or into a call to`MachineInstrFn` depending on whether
254// it is lowering predicates for MCInst or MachineInstr.
255//
256// In this context, `MCInstFn` and `MachineInstrFn` are both function names.
257class CheckFunctionPredicate<string MCInstFn, string MachineInstrFn> : MCInstPredicate {
258  string MCInstFnName = MCInstFn;
259  string MachineInstrFnName = MachineInstrFn;
260}
261
262// Similar to CheckFunctionPredicate. However it assumes that MachineInstrFn is
263// a method in TargetInstrInfo, and MCInstrFn takes an extra pointer to
264// MCInstrInfo.
265//
266// It Expands to:
267//  - TIIPointer->MachineInstrFn(MI)
268//  - MCInstrFn(MI, MCII);
269class CheckFunctionPredicateWithTII<string MCInstFn, string MachineInstrFn, string
270TIIPointer = "TII"> : MCInstPredicate {
271  string MCInstFnName = MCInstFn;
272  string TIIPtrName = TIIPointer;
273  string MachineInstrFnName = MachineInstrFn;
274}
275
276// Used to classify machine instructions based on a machine instruction
277// predicate.
278//
279// Let IC be an InstructionEquivalenceClass definition, and MI a machine
280// instruction.  We say that MI belongs to the equivalence class described by IC
281// if and only if the following two conditions are met:
282//  a) MI's opcode is in the `opcodes` set, and
283//  b) `Predicate` evaluates to true when applied to MI.
284//
285// Instances of this class can be used by processor scheduling models to
286// describe instructions that have a property in common.  For example,
287// InstructionEquivalenceClass definitions can be used to identify the set of
288// dependency breaking instructions for a processor model.
289//
290// An (optional) list of operand indices can be used to further describe
291// properties that apply to instruction operands. For example, it can be used to
292// identify register uses of a dependency breaking instructions that are not in
293// a RAW dependency.
294class InstructionEquivalenceClass<list<Instruction> opcodes,
295                                  MCInstPredicate pred,
296                                  list<int> operands = []> {
297  list<Instruction> Opcodes = opcodes;
298  MCInstPredicate Predicate = pred;
299  list<int> OperandIndices = operands;
300}
301
302// Used by processor models to describe dependency breaking instructions.
303//
304// This is mainly an alias for InstructionEquivalenceClass.  Input operand
305// `BrokenDeps` identifies the set of "broken dependencies". There is one bit
306// per each implicit and explicit input operand.  An empty set of broken
307// dependencies means: "explicit input register operands are independent."
308class DepBreakingClass<list<Instruction> opcodes, MCInstPredicate pred,
309                       list<int> BrokenDeps = []>
310    : InstructionEquivalenceClass<opcodes, pred, BrokenDeps>;
311
312// A function descriptor used to describe the signature of a predicate methods
313// which will be expanded by the STIPredicateExpander into a tablegen'd
314// XXXGenSubtargetInfo class member definition (here, XXX is a target name).
315//
316// It describes the signature of a TargetSubtarget hook, as well as a few extra
317// properties. Examples of extra properties are:
318//  - The default return value for the auto-generate function hook.
319//  - A list of subtarget hooks (Delegates) that are called from this function.
320//
321class STIPredicateDecl<string name, MCInstPredicate default = FalsePred,
322                       bit overrides = true, bit expandForMC = true,
323                       bit updatesOpcodeMask = false,
324                       list<STIPredicateDecl> delegates = []> {
325  string Name = name;
326
327  MCInstPredicate DefaultReturnValue = default;
328
329  // True if this method is declared as virtual in class TargetSubtargetInfo.
330  bit OverridesBaseClassMember = overrides;
331
332  // True if we need an equivalent predicate function in the MC layer.
333  bit ExpandForMC = expandForMC;
334
335  // True if the autogenerated method has a extra in/out APInt param used as a
336  // mask of operands.
337  bit UpdatesOpcodeMask = updatesOpcodeMask;
338
339  // A list of STIPredicates used by this definition to delegate part of the
340  // computation. For example, STIPredicateFunction `isDependencyBreaking()`
341  // delegates to `isZeroIdiom()` part of its computation.
342  list<STIPredicateDecl> Delegates = delegates;
343}
344
345// A predicate function definition member of class `XXXGenSubtargetInfo`.
346//
347// If `Declaration.ExpandForMC` is true, then SubtargetEmitter
348// will also expand another definition of this method that accepts a MCInst.
349class STIPredicate<STIPredicateDecl declaration,
350                   list<InstructionEquivalenceClass> classes> {
351  STIPredicateDecl Declaration = declaration;
352  list<InstructionEquivalenceClass> Classes = classes;
353  SchedMachineModel SchedModel = ?;
354}
355
356// Convenience classes and definitions used by processor scheduling models to
357// describe dependency breaking instructions and move elimination candidates.
358let UpdatesOpcodeMask = true in {
359
360def IsZeroIdiomDecl : STIPredicateDecl<"isZeroIdiom">;
361
362let Delegates = [IsZeroIdiomDecl] in
363def IsDepBreakingDecl : STIPredicateDecl<"isDependencyBreaking">;
364
365} // UpdatesOpcodeMask
366
367def IsOptimizableRegisterMoveDecl
368    : STIPredicateDecl<"isOptimizableRegisterMove">;
369
370class IsZeroIdiomFunction<list<DepBreakingClass> classes>
371    : STIPredicate<IsZeroIdiomDecl, classes>;
372
373class IsDepBreakingFunction<list<DepBreakingClass> classes>
374    : STIPredicate<IsDepBreakingDecl, classes>;
375
376class IsOptimizableRegisterMove<list<InstructionEquivalenceClass> classes>
377    : STIPredicate<IsOptimizableRegisterMoveDecl, classes>;
378