1 //===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file provides the interface for the instcombine pass implementation.
11 /// The interface is used for generic transformations in this folder and
12 /// target specific combinations in the targets.
13 /// The visitor implementation is in \c InstCombinerImpl in
14 /// \c InstCombineInternal.h.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H
19 #define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H
20 
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
29 #include <cassert>
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 namespace llvm {
34 
35 class AAResults;
36 class AssumptionCache;
37 class ProfileSummaryInfo;
38 class TargetLibraryInfo;
39 class TargetTransformInfo;
40 
41 /// The core instruction combiner logic.
42 ///
43 /// This class provides both the logic to recursively visit instructions and
44 /// combine them.
45 class LLVM_LIBRARY_VISIBILITY InstCombiner {
46   /// Only used to call target specific inst combining.
47   TargetTransformInfo &TTI;
48 
49 public:
50   /// Maximum size of array considered when transforming.
51   uint64_t MaxArraySizeForCombine = 0;
52 
53   /// An IRBuilder that automatically inserts new instructions into the
54   /// worklist.
55   using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
56   BuilderTy &Builder;
57 
58 protected:
59   /// A worklist of the instructions that need to be simplified.
60   InstCombineWorklist &Worklist;
61 
62   // Mode in which we are running the combiner.
63   const bool MinimizeSize;
64 
65   AAResults *AA;
66 
67   // Required analyses.
68   AssumptionCache &AC;
69   TargetLibraryInfo &TLI;
70   DominatorTree &DT;
71   const DataLayout &DL;
72   const SimplifyQuery SQ;
73   OptimizationRemarkEmitter &ORE;
74   BlockFrequencyInfo *BFI;
75   ProfileSummaryInfo *PSI;
76 
77   // Optional analyses. When non-null, these can both be used to do better
78   // combining and will be updated to reflect any changes.
79   LoopInfo *LI;
80 
81   bool MadeIRChange = false;
82 
83 public:
84   InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
85                bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
86                TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
87                DominatorTree &DT, OptimizationRemarkEmitter &ORE,
88                BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
89                const DataLayout &DL, LoopInfo *LI)
90       : TTI(TTI), Builder(Builder), Worklist(Worklist),
91         MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL),
92         SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
93 
94   virtual ~InstCombiner() {}
95 
96   /// Return the source operand of a potentially bitcasted value while
97   /// optionally checking if it has one use. If there is no bitcast or the one
98   /// use check is not met, return the input value itself.
99   static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
100     if (auto *BitCast = dyn_cast<BitCastInst>(V))
101       if (!OneUseOnly || BitCast->hasOneUse())
102         return BitCast->getOperand(0);
103 
104     // V is not a bitcast or V has more than one use and OneUseOnly is true.
105     return V;
106   }
107 
108   /// Assign a complexity or rank value to LLVM Values. This is used to reduce
109   /// the amount of pattern matching needed for compares and commutative
110   /// instructions. For example, if we have:
111   ///   icmp ugt X, Constant
112   /// or
113   ///   xor (add X, Constant), cast Z
114   ///
115   /// We do not have to consider the commuted variants of these patterns because
116   /// canonicalization based on complexity guarantees the above ordering.
117   ///
118   /// This routine maps IR values to various complexity ranks:
119   ///   0 -> undef
120   ///   1 -> Constants
121   ///   2 -> Other non-instructions
122   ///   3 -> Arguments
123   ///   4 -> Cast and (f)neg/not instructions
124   ///   5 -> Other instructions
125   static unsigned getComplexity(Value *V) {
126     if (isa<Instruction>(V)) {
127       if (isa<CastInst>(V) || match(V, m_Neg(PatternMatch::m_Value())) ||
128           match(V, m_Not(PatternMatch::m_Value())) ||
129           match(V, m_FNeg(PatternMatch::m_Value())))
130         return 4;
131       return 5;
132     }
133     if (isa<Argument>(V))
134       return 3;
135     return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
136   }
137 
138   /// Predicate canonicalization reduces the number of patterns that need to be
139   /// matched by other transforms. For example, we may swap the operands of a
140   /// conditional branch or select to create a compare with a canonical
141   /// (inverted) predicate which is then more likely to be matched with other
142   /// values.
143   static bool isCanonicalPredicate(CmpInst::Predicate Pred) {
144     switch (Pred) {
145     case CmpInst::ICMP_NE:
146     case CmpInst::ICMP_ULE:
147     case CmpInst::ICMP_SLE:
148     case CmpInst::ICMP_UGE:
149     case CmpInst::ICMP_SGE:
150     // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
151     case CmpInst::FCMP_ONE:
152     case CmpInst::FCMP_OLE:
153     case CmpInst::FCMP_OGE:
154       return false;
155     default:
156       return true;
157     }
158   }
159 
160   /// Given an exploded icmp instruction, return true if the comparison only
161   /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if
162   /// the result of the comparison is true when the input value is signed.
163   static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
164                              bool &TrueIfSigned) {
165     switch (Pred) {
166     case ICmpInst::ICMP_SLT: // True if LHS s< 0
167       TrueIfSigned = true;
168       return RHS.isNullValue();
169     case ICmpInst::ICMP_SLE: // True if LHS s<= -1
170       TrueIfSigned = true;
171       return RHS.isAllOnesValue();
172     case ICmpInst::ICMP_SGT: // True if LHS s> -1
173       TrueIfSigned = false;
174       return RHS.isAllOnesValue();
175     case ICmpInst::ICMP_SGE: // True if LHS s>= 0
176       TrueIfSigned = false;
177       return RHS.isNullValue();
178     case ICmpInst::ICMP_UGT:
179       // True if LHS u> RHS and RHS == sign-bit-mask - 1
180       TrueIfSigned = true;
181       return RHS.isMaxSignedValue();
182     case ICmpInst::ICMP_UGE:
183       // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
184       TrueIfSigned = true;
185       return RHS.isMinSignedValue();
186     case ICmpInst::ICMP_ULT:
187       // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc)
188       TrueIfSigned = false;
189       return RHS.isMinSignedValue();
190     case ICmpInst::ICMP_ULE:
191       // True if LHS u<= RHS and RHS == sign-bit-mask - 1
192       TrueIfSigned = false;
193       return RHS.isMaxSignedValue();
194     default:
195       return false;
196     }
197   }
198 
199   /// Add one to a Constant
200   static Constant *AddOne(Constant *C) {
201     return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
202   }
203 
204   /// Subtract one from a Constant
205   static Constant *SubOne(Constant *C) {
206     return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
207   }
208 
209   llvm::Optional<std::pair<
210       CmpInst::Predicate,
211       Constant *>> static getFlippedStrictnessPredicateAndConstant(CmpInst::
212                                                                        Predicate
213                                                                            Pred,
214                                                                    Constant *C);
215 
216   static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) {
217     // a ? b : false and a ? true : b are the canonical form of logical and/or.
218     // This includes !a ? b : false and !a ? true : b. Absorbing the not into
219     // the select by swapping operands would break recognition of this pattern
220     // in other analyses, so don't do that.
221     return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(),
222                                                  PatternMatch::m_Value())) ||
223            match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(),
224                                                 PatternMatch::m_Value()));
225   }
226 
227   /// Return true if the specified value is free to invert (apply ~ to).
228   /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
229   /// is true, work under the assumption that the caller intends to remove all
230   /// uses of V and only keep uses of ~V.
231   ///
232   /// See also: canFreelyInvertAllUsersOf()
233   static bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
234     // ~(~(X)) -> X.
235     if (match(V, m_Not(PatternMatch::m_Value())))
236       return true;
237 
238     // Constants can be considered to be not'ed values.
239     if (match(V, PatternMatch::m_AnyIntegralConstant()))
240       return true;
241 
242     // Compares can be inverted if all of their uses are being modified to use
243     // the ~V.
244     if (isa<CmpInst>(V))
245       return WillInvertAllUses;
246 
247     // If `V` is of the form `A + Constant` then `-1 - V` can be folded into
248     // `(-1 - Constant) - A` if we are willing to invert all of the uses.
249     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
250       if (BO->getOpcode() == Instruction::Add ||
251           BO->getOpcode() == Instruction::Sub)
252         if (isa<Constant>(BO->getOperand(0)) ||
253             isa<Constant>(BO->getOperand(1)))
254           return WillInvertAllUses;
255 
256     // Selects with invertible operands are freely invertible
257     if (match(V,
258               m_Select(PatternMatch::m_Value(), m_Not(PatternMatch::m_Value()),
259                        m_Not(PatternMatch::m_Value()))))
260       return WillInvertAllUses;
261 
262     return false;
263   }
264 
265   /// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
266   /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn.
267   ///
268   /// See also: isFreeToInvert()
269   static bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
270     // Look at every user of V.
271     for (Use &U : V->uses()) {
272       if (U.getUser() == IgnoredUser)
273         continue; // Don't consider this user.
274 
275       auto *I = cast<Instruction>(U.getUser());
276       switch (I->getOpcode()) {
277       case Instruction::Select:
278         if (U.getOperandNo() != 0) // Only if the value is used as select cond.
279           return false;
280         if (shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(I)))
281           return false;
282         break;
283       case Instruction::Br:
284         assert(U.getOperandNo() == 0 && "Must be branching on that value.");
285         break; // Free to invert by swapping true/false values/destinations.
286       case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring
287                              // it.
288         if (!match(I, m_Not(PatternMatch::m_Value())))
289           return false; // Not a 'not'.
290         break;
291       default:
292         return false; // Don't know, likely not freely invertible.
293       }
294       // So far all users were free to invert...
295     }
296     return true; // Can freely invert all users!
297   }
298 
299   /// Some binary operators require special handling to avoid poison and
300   /// undefined behavior. If a constant vector has undef elements, replace those
301   /// undefs with identity constants if possible because those are always safe
302   /// to execute. If no identity constant exists, replace undef with some other
303   /// safe constant.
304   static Constant *
305   getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In,
306                                 bool IsRHSConstant) {
307     auto *InVTy = cast<FixedVectorType>(In->getType());
308 
309     Type *EltTy = InVTy->getElementType();
310     auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
311     if (!SafeC) {
312       // TODO: Should this be available as a constant utility function? It is
313       // similar to getBinOpAbsorber().
314       if (IsRHSConstant) {
315         switch (Opcode) {
316         case Instruction::SRem: // X % 1 = 0
317         case Instruction::URem: // X %u 1 = 0
318           SafeC = ConstantInt::get(EltTy, 1);
319           break;
320         case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
321           SafeC = ConstantFP::get(EltTy, 1.0);
322           break;
323         default:
324           llvm_unreachable(
325               "Only rem opcodes have no identity constant for RHS");
326         }
327       } else {
328         switch (Opcode) {
329         case Instruction::Shl:  // 0 << X = 0
330         case Instruction::LShr: // 0 >>u X = 0
331         case Instruction::AShr: // 0 >> X = 0
332         case Instruction::SDiv: // 0 / X = 0
333         case Instruction::UDiv: // 0 /u X = 0
334         case Instruction::SRem: // 0 % X = 0
335         case Instruction::URem: // 0 %u X = 0
336         case Instruction::Sub:  // 0 - X (doesn't simplify, but it is safe)
337         case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
338         case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
339         case Instruction::FRem: // 0.0 % X = 0
340           SafeC = Constant::getNullValue(EltTy);
341           break;
342         default:
343           llvm_unreachable("Expected to find identity constant for opcode");
344         }
345       }
346     }
347     assert(SafeC && "Must have safe constant for binop");
348     unsigned NumElts = InVTy->getNumElements();
349     SmallVector<Constant *, 16> Out(NumElts);
350     for (unsigned i = 0; i != NumElts; ++i) {
351       Constant *C = In->getAggregateElement(i);
352       Out[i] = isa<UndefValue>(C) ? SafeC : C;
353     }
354     return ConstantVector::get(Out);
355   }
356 
357   /// Create and insert the idiom we use to indicate a block is unreachable
358   /// without having to rewrite the CFG from within InstCombine.
359   static void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
360     auto &Ctx = InsertAt->getContext();
361     new StoreInst(ConstantInt::getTrue(Ctx),
362                   UndefValue::get(Type::getInt1PtrTy(Ctx)), InsertAt);
363   }
364 
365   void addToWorklist(Instruction *I) { Worklist.push(I); }
366 
367   AssumptionCache &getAssumptionCache() const { return AC; }
368   TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
369   DominatorTree &getDominatorTree() const { return DT; }
370   const DataLayout &getDataLayout() const { return DL; }
371   const SimplifyQuery &getSimplifyQuery() const { return SQ; }
372   OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const {
373     return ORE;
374   }
375   BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; }
376   ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; }
377   LoopInfo *getLoopInfo() const { return LI; }
378 
379   // Call target specific combiners
380   Optional<Instruction *> targetInstCombineIntrinsic(IntrinsicInst &II);
381   Optional<Value *>
382   targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask,
383                                          KnownBits &Known,
384                                          bool &KnownBitsComputed);
385   Optional<Value *> targetSimplifyDemandedVectorEltsIntrinsic(
386       IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
387       APInt &UndefElts2, APInt &UndefElts3,
388       std::function<void(Instruction *, unsigned, APInt, APInt &)>
389           SimplifyAndSetOp);
390 
391   /// Inserts an instruction \p New before instruction \p Old
392   ///
393   /// Also adds the new instruction to the worklist and returns \p New so that
394   /// it is suitable for use as the return from the visitation patterns.
395   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
396     assert(New && !New->getParent() &&
397            "New instruction already inserted into a basic block!");
398     BasicBlock *BB = Old.getParent();
399     BB->getInstList().insert(Old.getIterator(), New); // Insert inst
400     Worklist.push(New);
401     return New;
402   }
403 
404   /// Same as InsertNewInstBefore, but also sets the debug loc.
405   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
406     New->setDebugLoc(Old.getDebugLoc());
407     return InsertNewInstBefore(New, Old);
408   }
409 
410   /// A combiner-aware RAUW-like routine.
411   ///
412   /// This method is to be used when an instruction is found to be dead,
413   /// replaceable with another preexisting expression. Here we add all uses of
414   /// I to the worklist, replace all uses of I with the new value, then return
415   /// I, so that the inst combiner will know that I was modified.
416   Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
417     // If there are no uses to replace, then we return nullptr to indicate that
418     // no changes were made to the program.
419     if (I.use_empty())
420       return nullptr;
421 
422     Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
423 
424     // If we are replacing the instruction with itself, this must be in a
425     // segment of unreachable code, so just clobber the instruction.
426     if (&I == V)
427       V = UndefValue::get(I.getType());
428 
429     LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
430                       << "    with " << *V << '\n');
431 
432     I.replaceAllUsesWith(V);
433     return &I;
434   }
435 
436   /// Replace operand of instruction and add old operand to the worklist.
437   Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
438     Worklist.addValue(I.getOperand(OpNum));
439     I.setOperand(OpNum, V);
440     return &I;
441   }
442 
443   /// Replace use and add the previously used value to the worklist.
444   void replaceUse(Use &U, Value *NewValue) {
445     Worklist.addValue(U);
446     U = NewValue;
447   }
448 
449   /// Combiner aware instruction erasure.
450   ///
451   /// When dealing with an instruction that has side effects or produces a void
452   /// value, we can't rely on DCE to delete the instruction. Instead, visit
453   /// methods should return the value returned by this function.
454   virtual Instruction *eraseInstFromFunction(Instruction &I) = 0;
455 
456   void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
457                         const Instruction *CxtI) const {
458     llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
459   }
460 
461   KnownBits computeKnownBits(const Value *V, unsigned Depth,
462                              const Instruction *CxtI) const {
463     return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
464   }
465 
466   bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
467                               unsigned Depth = 0,
468                               const Instruction *CxtI = nullptr) {
469     return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
470   }
471 
472   bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
473                          const Instruction *CxtI = nullptr) const {
474     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
475   }
476 
477   unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
478                               const Instruction *CxtI = nullptr) const {
479     return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
480   }
481 
482   OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
483                                                const Value *RHS,
484                                                const Instruction *CxtI) const {
485     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
486   }
487 
488   OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
489                                              const Instruction *CxtI) const {
490     return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
491   }
492 
493   OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
494                                                const Value *RHS,
495                                                const Instruction *CxtI) const {
496     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
497   }
498 
499   OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
500                                              const Instruction *CxtI) const {
501     return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
502   }
503 
504   OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
505                                                const Value *RHS,
506                                                const Instruction *CxtI) const {
507     return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
508   }
509 
510   OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
511                                              const Instruction *CxtI) const {
512     return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
513   }
514 
515   virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo,
516                                     const APInt &DemandedMask, KnownBits &Known,
517                                     unsigned Depth = 0) = 0;
518   virtual Value *
519   SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
520                              unsigned Depth = 0,
521                              bool AllowMultipleUsers = false) = 0;
522 };
523 
524 } // namespace llvm
525 
526 #undef DEBUG_TYPE
527 
528 #endif
529