1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/IntrinsicsAArch64.h"
45 #include "llvm/IR/IntrinsicsAMDGPU.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/KnownBits.h"
55 #include "llvm/Support/MathExtras.h"
56 #include <cassert>
57 #include <cerrno>
58 #include <cfenv>
59 #include <cmath>
60 #include <cstddef>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
67                                   ArrayRef<Constant *> Ops,
68                                   const DataLayout &DL,
69                                   const TargetLibraryInfo *TLI,
70                                   bool ForLoadOperand);
71 
72 //===----------------------------------------------------------------------===//
73 // Constant Folding internal helper functions
74 //===----------------------------------------------------------------------===//
75 
76 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
77                                         Constant *C, Type *SrcEltTy,
78                                         unsigned NumSrcElts,
79                                         const DataLayout &DL) {
80   // Now that we know that the input value is a vector of integers, just shift
81   // and insert them into our result.
82   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
83   for (unsigned i = 0; i != NumSrcElts; ++i) {
84     Constant *Element;
85     if (DL.isLittleEndian())
86       Element = C->getAggregateElement(NumSrcElts - i - 1);
87     else
88       Element = C->getAggregateElement(i);
89 
90     if (Element && isa<UndefValue>(Element)) {
91       Result <<= BitShift;
92       continue;
93     }
94 
95     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
96     if (!ElementCI)
97       return ConstantExpr::getBitCast(C, DestTy);
98 
99     Result <<= BitShift;
100     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
101   }
102 
103   return nullptr;
104 }
105 
106 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
107 /// This always returns a non-null constant, but it may be a
108 /// ConstantExpr if unfoldable.
109 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
110   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
111          "Invalid constantexpr bitcast!");
112 
113   // Catch the obvious splat cases.
114   if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
115     return Constant::getNullValue(DestTy);
116   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
117       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
118     return Constant::getAllOnesValue(DestTy);
119 
120   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
121     // Handle a vector->scalar integer/fp cast.
122     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
123       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
124       Type *SrcEltTy = VTy->getElementType();
125 
126       // If the vector is a vector of floating point, convert it to vector of int
127       // to simplify things.
128       if (SrcEltTy->isFloatingPointTy()) {
129         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
130         auto *SrcIVTy = FixedVectorType::get(
131             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
132         // Ask IR to do the conversion now that #elts line up.
133         C = ConstantExpr::getBitCast(C, SrcIVTy);
134       }
135 
136       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
137       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
138                                                 SrcEltTy, NumSrcElts, DL))
139         return CE;
140 
141       if (isa<IntegerType>(DestTy))
142         return ConstantInt::get(DestTy, Result);
143 
144       APFloat FP(DestTy->getFltSemantics(), Result);
145       return ConstantFP::get(DestTy->getContext(), FP);
146     }
147   }
148 
149   // The code below only handles casts to vectors currently.
150   auto *DestVTy = dyn_cast<VectorType>(DestTy);
151   if (!DestVTy)
152     return ConstantExpr::getBitCast(C, DestTy);
153 
154   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
155   // vector so the code below can handle it uniformly.
156   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
157     Constant *Ops = C; // don't take the address of C!
158     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
159   }
160 
161   // If this is a bitcast from constant vector -> vector, fold it.
162   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
163     return ConstantExpr::getBitCast(C, DestTy);
164 
165   // If the element types match, IR can fold it.
166   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
167   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
168   if (NumDstElt == NumSrcElt)
169     return ConstantExpr::getBitCast(C, DestTy);
170 
171   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
172   Type *DstEltTy = DestVTy->getElementType();
173 
174   // Otherwise, we're changing the number of elements in a vector, which
175   // requires endianness information to do the right thing.  For example,
176   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
177   // folds to (little endian):
178   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
179   // and to (big endian):
180   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
181 
182   // First thing is first.  We only want to think about integer here, so if
183   // we have something in FP form, recast it as integer.
184   if (DstEltTy->isFloatingPointTy()) {
185     // Fold to an vector of integers with same size as our FP type.
186     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
187     auto *DestIVTy = FixedVectorType::get(
188         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
189     // Recursively handle this integer conversion, if possible.
190     C = FoldBitCast(C, DestIVTy, DL);
191 
192     // Finally, IR can handle this now that #elts line up.
193     return ConstantExpr::getBitCast(C, DestTy);
194   }
195 
196   // Okay, we know the destination is integer, if the input is FP, convert
197   // it to integer first.
198   if (SrcEltTy->isFloatingPointTy()) {
199     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
200     auto *SrcIVTy = FixedVectorType::get(
201         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
202     // Ask IR to do the conversion now that #elts line up.
203     C = ConstantExpr::getBitCast(C, SrcIVTy);
204     // If IR wasn't able to fold it, bail out.
205     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
206         !isa<ConstantDataVector>(C))
207       return C;
208   }
209 
210   // Now we know that the input and output vectors are both integer vectors
211   // of the same size, and that their #elements is not the same.  Do the
212   // conversion here, which depends on whether the input or output has
213   // more elements.
214   bool isLittleEndian = DL.isLittleEndian();
215 
216   SmallVector<Constant*, 32> Result;
217   if (NumDstElt < NumSrcElt) {
218     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
219     Constant *Zero = Constant::getNullValue(DstEltTy);
220     unsigned Ratio = NumSrcElt/NumDstElt;
221     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
222     unsigned SrcElt = 0;
223     for (unsigned i = 0; i != NumDstElt; ++i) {
224       // Build each element of the result.
225       Constant *Elt = Zero;
226       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
227       for (unsigned j = 0; j != Ratio; ++j) {
228         Constant *Src = C->getAggregateElement(SrcElt++);
229         if (Src && isa<UndefValue>(Src))
230           Src = Constant::getNullValue(
231               cast<VectorType>(C->getType())->getElementType());
232         else
233           Src = dyn_cast_or_null<ConstantInt>(Src);
234         if (!Src)  // Reject constantexpr elements.
235           return ConstantExpr::getBitCast(C, DestTy);
236 
237         // Zero extend the element to the right size.
238         Src = ConstantExpr::getZExt(Src, Elt->getType());
239 
240         // Shift it to the right place, depending on endianness.
241         Src = ConstantExpr::getShl(Src,
242                                    ConstantInt::get(Src->getType(), ShiftAmt));
243         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
244 
245         // Mix it in.
246         Elt = ConstantExpr::getOr(Elt, Src);
247       }
248       Result.push_back(Elt);
249     }
250     return ConstantVector::get(Result);
251   }
252 
253   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
254   unsigned Ratio = NumDstElt/NumSrcElt;
255   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
256 
257   // Loop over each source value, expanding into multiple results.
258   for (unsigned i = 0; i != NumSrcElt; ++i) {
259     auto *Element = C->getAggregateElement(i);
260 
261     if (!Element) // Reject constantexpr elements.
262       return ConstantExpr::getBitCast(C, DestTy);
263 
264     if (isa<UndefValue>(Element)) {
265       // Correctly Propagate undef values.
266       Result.append(Ratio, UndefValue::get(DstEltTy));
267       continue;
268     }
269 
270     auto *Src = dyn_cast<ConstantInt>(Element);
271     if (!Src)
272       return ConstantExpr::getBitCast(C, DestTy);
273 
274     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
275     for (unsigned j = 0; j != Ratio; ++j) {
276       // Shift the piece of the value into the right place, depending on
277       // endianness.
278       Constant *Elt = ConstantExpr::getLShr(Src,
279                                   ConstantInt::get(Src->getType(), ShiftAmt));
280       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
281 
282       // Truncate the element to an integer with the same pointer size and
283       // convert the element back to a pointer using a inttoptr.
284       if (DstEltTy->isPointerTy()) {
285         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
286         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
287         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
288         continue;
289       }
290 
291       // Truncate and remember this piece.
292       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
293     }
294   }
295 
296   return ConstantVector::get(Result);
297 }
298 
299 } // end anonymous namespace
300 
301 /// If this constant is a constant offset from a global, return the global and
302 /// the constant. Because of constantexprs, this function is recursive.
303 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
304                                       APInt &Offset, const DataLayout &DL,
305                                       DSOLocalEquivalent **DSOEquiv) {
306   if (DSOEquiv)
307     *DSOEquiv = nullptr;
308 
309   // Trivial case, constant is the global.
310   if ((GV = dyn_cast<GlobalValue>(C))) {
311     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
312     Offset = APInt(BitWidth, 0);
313     return true;
314   }
315 
316   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
317     if (DSOEquiv)
318       *DSOEquiv = FoundDSOEquiv;
319     GV = FoundDSOEquiv->getGlobalValue();
320     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
321     Offset = APInt(BitWidth, 0);
322     return true;
323   }
324 
325   // Otherwise, if this isn't a constant expr, bail out.
326   auto *CE = dyn_cast<ConstantExpr>(C);
327   if (!CE) return false;
328 
329   // Look through ptr->int and ptr->ptr casts.
330   if (CE->getOpcode() == Instruction::PtrToInt ||
331       CE->getOpcode() == Instruction::BitCast)
332     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
333                                       DSOEquiv);
334 
335   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
336   auto *GEP = dyn_cast<GEPOperator>(CE);
337   if (!GEP)
338     return false;
339 
340   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
341   APInt TmpOffset(BitWidth, 0);
342 
343   // If the base isn't a global+constant, we aren't either.
344   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
345                                   DSOEquiv))
346     return false;
347 
348   // Otherwise, add any offset that our operands provide.
349   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
350     return false;
351 
352   Offset = TmpOffset;
353   return true;
354 }
355 
356 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
357                                          const DataLayout &DL) {
358   do {
359     Type *SrcTy = C->getType();
360     uint64_t DestSize = DL.getTypeSizeInBits(DestTy);
361     uint64_t SrcSize = DL.getTypeSizeInBits(SrcTy);
362     if (SrcSize < DestSize)
363       return nullptr;
364 
365     // Catch the obvious splat cases (since all-zeros can coerce non-integral
366     // pointers legally).
367     if (C->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy())
368       return Constant::getNullValue(DestTy);
369     if (C->isAllOnesValue() &&
370         (DestTy->isIntegerTy() || DestTy->isFloatingPointTy() ||
371          DestTy->isVectorTy()) &&
372         !DestTy->isX86_AMXTy() && !DestTy->isX86_MMXTy() &&
373         !DestTy->isPtrOrPtrVectorTy())
374       // Get ones when the input is trivial, but
375       // only for supported types inside getAllOnesValue.
376       return Constant::getAllOnesValue(DestTy);
377 
378     // If the type sizes are the same and a cast is legal, just directly
379     // cast the constant.
380     // But be careful not to coerce non-integral pointers illegally.
381     if (SrcSize == DestSize &&
382         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
383             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
384       Instruction::CastOps Cast = Instruction::BitCast;
385       // If we are going from a pointer to int or vice versa, we spell the cast
386       // differently.
387       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
388         Cast = Instruction::IntToPtr;
389       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
390         Cast = Instruction::PtrToInt;
391 
392       if (CastInst::castIsValid(Cast, C, DestTy))
393         return ConstantExpr::getCast(Cast, C, DestTy);
394     }
395 
396     // If this isn't an aggregate type, there is nothing we can do to drill down
397     // and find a bitcastable constant.
398     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
399       return nullptr;
400 
401     // We're simulating a load through a pointer that was bitcast to point to
402     // a different type, so we can try to walk down through the initial
403     // elements of an aggregate to see if some part of the aggregate is
404     // castable to implement the "load" semantic model.
405     if (SrcTy->isStructTy()) {
406       // Struct types might have leading zero-length elements like [0 x i32],
407       // which are certainly not what we are looking for, so skip them.
408       unsigned Elem = 0;
409       Constant *ElemC;
410       do {
411         ElemC = C->getAggregateElement(Elem++);
412       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
413       C = ElemC;
414     } else {
415       C = C->getAggregateElement(0u);
416     }
417   } while (C);
418 
419   return nullptr;
420 }
421 
422 namespace {
423 
424 /// Recursive helper to read bits out of global. C is the constant being copied
425 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
426 /// results into and BytesLeft is the number of bytes left in
427 /// the CurPtr buffer. DL is the DataLayout.
428 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
429                         unsigned BytesLeft, const DataLayout &DL) {
430   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
431          "Out of range access");
432 
433   // If this element is zero or undefined, we can just return since *CurPtr is
434   // zero initialized.
435   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
436     return true;
437 
438   if (auto *CI = dyn_cast<ConstantInt>(C)) {
439     if (CI->getBitWidth() > 64 ||
440         (CI->getBitWidth() & 7) != 0)
441       return false;
442 
443     uint64_t Val = CI->getZExtValue();
444     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
445 
446     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
447       int n = ByteOffset;
448       if (!DL.isLittleEndian())
449         n = IntBytes - n - 1;
450       CurPtr[i] = (unsigned char)(Val >> (n * 8));
451       ++ByteOffset;
452     }
453     return true;
454   }
455 
456   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
457     if (CFP->getType()->isDoubleTy()) {
458       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
459       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
460     }
461     if (CFP->getType()->isFloatTy()){
462       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
463       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
464     }
465     if (CFP->getType()->isHalfTy()){
466       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
467       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
468     }
469     return false;
470   }
471 
472   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
473     const StructLayout *SL = DL.getStructLayout(CS->getType());
474     unsigned Index = SL->getElementContainingOffset(ByteOffset);
475     uint64_t CurEltOffset = SL->getElementOffset(Index);
476     ByteOffset -= CurEltOffset;
477 
478     while (true) {
479       // If the element access is to the element itself and not to tail padding,
480       // read the bytes from the element.
481       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
482 
483       if (ByteOffset < EltSize &&
484           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
485                               BytesLeft, DL))
486         return false;
487 
488       ++Index;
489 
490       // Check to see if we read from the last struct element, if so we're done.
491       if (Index == CS->getType()->getNumElements())
492         return true;
493 
494       // If we read all of the bytes we needed from this element we're done.
495       uint64_t NextEltOffset = SL->getElementOffset(Index);
496 
497       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
498         return true;
499 
500       // Move to the next element of the struct.
501       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
502       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
503       ByteOffset = 0;
504       CurEltOffset = NextEltOffset;
505     }
506     // not reached.
507   }
508 
509   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
510       isa<ConstantDataSequential>(C)) {
511     uint64_t NumElts;
512     Type *EltTy;
513     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
514       NumElts = AT->getNumElements();
515       EltTy = AT->getElementType();
516     } else {
517       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
518       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
519     }
520     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
521     uint64_t Index = ByteOffset / EltSize;
522     uint64_t Offset = ByteOffset - Index * EltSize;
523 
524     for (; Index != NumElts; ++Index) {
525       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
526                               BytesLeft, DL))
527         return false;
528 
529       uint64_t BytesWritten = EltSize - Offset;
530       assert(BytesWritten <= EltSize && "Not indexing into this element?");
531       if (BytesWritten >= BytesLeft)
532         return true;
533 
534       Offset = 0;
535       BytesLeft -= BytesWritten;
536       CurPtr += BytesWritten;
537     }
538     return true;
539   }
540 
541   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
542     if (CE->getOpcode() == Instruction::IntToPtr &&
543         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
544       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
545                                 BytesLeft, DL);
546     }
547   }
548 
549   // Otherwise, unknown initializer type.
550   return false;
551 }
552 
553 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
554                                           const DataLayout &DL) {
555   // Bail out early. Not expect to load from scalable global variable.
556   if (isa<ScalableVectorType>(LoadTy))
557     return nullptr;
558 
559   auto *PTy = cast<PointerType>(C->getType());
560   auto *IntType = dyn_cast<IntegerType>(LoadTy);
561 
562   // If this isn't an integer load we can't fold it directly.
563   if (!IntType) {
564     unsigned AS = PTy->getAddressSpace();
565 
566     // If this is a float/double load, we can try folding it as an int32/64 load
567     // and then bitcast the result.  This can be useful for union cases.  Note
568     // that address spaces don't matter here since we're not going to result in
569     // an actual new load.
570     Type *MapTy;
571     if (LoadTy->isHalfTy())
572       MapTy = Type::getInt16Ty(C->getContext());
573     else if (LoadTy->isFloatTy())
574       MapTy = Type::getInt32Ty(C->getContext());
575     else if (LoadTy->isDoubleTy())
576       MapTy = Type::getInt64Ty(C->getContext());
577     else if (LoadTy->isVectorTy()) {
578       MapTy = PointerType::getIntNTy(
579           C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
580     } else
581       return nullptr;
582 
583     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
584     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
585       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
586           !LoadTy->isX86_AMXTy())
587         // Materializing a zero can be done trivially without a bitcast
588         return Constant::getNullValue(LoadTy);
589       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
590       Res = FoldBitCast(Res, CastTy, DL);
591       if (LoadTy->isPtrOrPtrVectorTy()) {
592         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
593         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
594             !LoadTy->isX86_AMXTy())
595           return Constant::getNullValue(LoadTy);
596         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
597           // Be careful not to replace a load of an addrspace value with an inttoptr here
598           return nullptr;
599         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
600       }
601       return Res;
602     }
603     return nullptr;
604   }
605 
606   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
607   if (BytesLoaded > 32 || BytesLoaded == 0)
608     return nullptr;
609 
610   GlobalValue *GVal;
611   APInt OffsetAI;
612   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
613     return nullptr;
614 
615   auto *GV = dyn_cast<GlobalVariable>(GVal);
616   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
617       !GV->getInitializer()->getType()->isSized())
618     return nullptr;
619 
620   int64_t Offset = OffsetAI.getSExtValue();
621   int64_t InitializerSize =
622       DL.getTypeAllocSize(GV->getInitializer()->getType()).getFixedSize();
623 
624   // If we're not accessing anything in this constant, the result is undefined.
625   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
626     return UndefValue::get(IntType);
627 
628   // If we're not accessing anything in this constant, the result is undefined.
629   if (Offset >= InitializerSize)
630     return UndefValue::get(IntType);
631 
632   unsigned char RawBytes[32] = {0};
633   unsigned char *CurPtr = RawBytes;
634   unsigned BytesLeft = BytesLoaded;
635 
636   // If we're loading off the beginning of the global, some bytes may be valid.
637   if (Offset < 0) {
638     CurPtr += -Offset;
639     BytesLeft += Offset;
640     Offset = 0;
641   }
642 
643   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
644     return nullptr;
645 
646   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
647   if (DL.isLittleEndian()) {
648     ResultVal = RawBytes[BytesLoaded - 1];
649     for (unsigned i = 1; i != BytesLoaded; ++i) {
650       ResultVal <<= 8;
651       ResultVal |= RawBytes[BytesLoaded - 1 - i];
652     }
653   } else {
654     ResultVal = RawBytes[0];
655     for (unsigned i = 1; i != BytesLoaded; ++i) {
656       ResultVal <<= 8;
657       ResultVal |= RawBytes[i];
658     }
659   }
660 
661   return ConstantInt::get(IntType->getContext(), ResultVal);
662 }
663 
664 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
665                                              const DataLayout &DL) {
666   auto *SrcPtr = CE->getOperand(0);
667   if (!SrcPtr->getType()->isPointerTy())
668     return nullptr;
669 
670   return ConstantFoldLoadFromConstPtr(SrcPtr, DestTy, DL);
671 }
672 
673 } // end anonymous namespace
674 
675 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
676                                              const DataLayout &DL) {
677   // First, try the easy cases:
678   if (auto *GV = dyn_cast<GlobalVariable>(C))
679     if (GV->isConstant() && GV->hasDefinitiveInitializer())
680       return ConstantFoldLoadThroughBitcast(GV->getInitializer(), Ty, DL);
681 
682   if (auto *GA = dyn_cast<GlobalAlias>(C))
683     if (GA->getAliasee() && !GA->isInterposable())
684       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
685 
686   // If the loaded value isn't a constant expr, we can't handle it.
687   auto *CE = dyn_cast<ConstantExpr>(C);
688   if (!CE)
689     return nullptr;
690 
691   if (CE->getOpcode() == Instruction::GetElementPtr) {
692     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
693       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
694         if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
695                 GV->getInitializer(), CE, Ty, DL))
696           return V;
697       }
698     } else {
699       // Try to simplify GEP if the pointer operand wasn't a GlobalVariable.
700       // SymbolicallyEvaluateGEP() with `ForLoadOperand = true` can potentially
701       // simplify the GEP more than it normally would have been, but should only
702       // be used for const folding loads.
703       SmallVector<Constant *> Ops;
704       for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
705         Ops.push_back(cast<Constant>(CE->getOperand(I)));
706       if (auto *Simplified = dyn_cast_or_null<ConstantExpr>(
707               SymbolicallyEvaluateGEP(cast<GEPOperator>(CE), Ops, DL, nullptr,
708                                       /*ForLoadOperand*/ true))) {
709         // If the symbolically evaluated GEP is another GEP, we can only const
710         // fold it if the resulting pointer operand is a GlobalValue. Otherwise
711         // there is nothing else to simplify since the GEP is already in the
712         // most simplified form.
713         if (isa<GEPOperator>(Simplified)) {
714           if (auto *GV = dyn_cast<GlobalVariable>(Simplified->getOperand(0))) {
715             if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
716               if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(
717                       GV->getInitializer(), Simplified, Ty, DL))
718                 return V;
719             }
720           }
721         } else {
722           return ConstantFoldLoadFromConstPtr(Simplified, Ty, DL);
723         }
724       }
725     }
726   }
727 
728   if (CE->getOpcode() == Instruction::BitCast)
729     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
730       return LoadedC;
731 
732   // Instead of loading constant c string, use corresponding integer value
733   // directly if string length is small enough.
734   StringRef Str;
735   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
736     size_t StrLen = Str.size();
737     unsigned NumBits = Ty->getPrimitiveSizeInBits();
738     // Replace load with immediate integer if the result is an integer or fp
739     // value.
740     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
741         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
742       APInt StrVal(NumBits, 0);
743       APInt SingleChar(NumBits, 0);
744       if (DL.isLittleEndian()) {
745         for (unsigned char C : reverse(Str.bytes())) {
746           SingleChar = static_cast<uint64_t>(C);
747           StrVal = (StrVal << 8) | SingleChar;
748         }
749       } else {
750         for (unsigned char C : Str.bytes()) {
751           SingleChar = static_cast<uint64_t>(C);
752           StrVal = (StrVal << 8) | SingleChar;
753         }
754         // Append NULL at the end.
755         SingleChar = 0;
756         StrVal = (StrVal << 8) | SingleChar;
757       }
758 
759       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
760       if (Ty->isFloatingPointTy())
761         Res = ConstantExpr::getBitCast(Res, Ty);
762       return Res;
763     }
764   }
765 
766   // If this load comes from anywhere in a constant global, and if the global
767   // is all undef or zero, we know what it loads.
768   if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(CE))) {
769     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
770       if (GV->getInitializer()->isNullValue())
771         return Constant::getNullValue(Ty);
772       if (isa<UndefValue>(GV->getInitializer()))
773         return UndefValue::get(Ty);
774     }
775   }
776 
777   // Try hard to fold loads from bitcasted strange and non-type-safe things.
778   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
779 }
780 
781 namespace {
782 
783 /// One of Op0/Op1 is a constant expression.
784 /// Attempt to symbolically evaluate the result of a binary operator merging
785 /// these together.  If target data info is available, it is provided as DL,
786 /// otherwise DL is null.
787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
788                                     const DataLayout &DL) {
789   // SROA
790 
791   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
792   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
793   // bits.
794 
795   if (Opc == Instruction::And) {
796     KnownBits Known0 = computeKnownBits(Op0, DL);
797     KnownBits Known1 = computeKnownBits(Op1, DL);
798     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
799       // All the bits of Op0 that the 'and' could be masking are already zero.
800       return Op0;
801     }
802     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
803       // All the bits of Op1 that the 'and' could be masking are already zero.
804       return Op1;
805     }
806 
807     Known0 &= Known1;
808     if (Known0.isConstant())
809       return ConstantInt::get(Op0->getType(), Known0.getConstant());
810   }
811 
812   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
813   // constant.  This happens frequently when iterating over a global array.
814   if (Opc == Instruction::Sub) {
815     GlobalValue *GV1, *GV2;
816     APInt Offs1, Offs2;
817 
818     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
819       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
820         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
821 
822         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
823         // PtrToInt may change the bitwidth so we have convert to the right size
824         // first.
825         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
826                                                 Offs2.zextOrTrunc(OpSize));
827       }
828   }
829 
830   return nullptr;
831 }
832 
833 /// If array indices are not pointer-sized integers, explicitly cast them so
834 /// that they aren't implicitly casted by the getelementptr.
835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
836                          Type *ResultTy, Optional<unsigned> InRangeIndex,
837                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
838   Type *IntIdxTy = DL.getIndexType(ResultTy);
839   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
840 
841   bool Any = false;
842   SmallVector<Constant*, 32> NewIdxs;
843   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
844     if ((i == 1 ||
845          !isa<StructType>(GetElementPtrInst::getIndexedType(
846              SrcElemTy, Ops.slice(1, i - 1)))) &&
847         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
848       Any = true;
849       Type *NewType = Ops[i]->getType()->isVectorTy()
850                           ? IntIdxTy
851                           : IntIdxScalarTy;
852       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
853                                                                       true,
854                                                                       NewType,
855                                                                       true),
856                                               Ops[i], NewType));
857     } else
858       NewIdxs.push_back(Ops[i]);
859   }
860 
861   if (!Any)
862     return nullptr;
863 
864   Constant *C = ConstantExpr::getGetElementPtr(
865       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
866   return ConstantFoldConstant(C, DL, TLI);
867 }
868 
869 /// Strip the pointer casts, but preserve the address space information.
870 Constant *StripPtrCastKeepAS(Constant *Ptr, bool ForLoadOperand) {
871   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
872   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
873   Ptr = cast<Constant>(Ptr->stripPointerCasts());
874   if (ForLoadOperand) {
875     while (isa<GlobalAlias>(Ptr) && !cast<GlobalAlias>(Ptr)->isInterposable() &&
876            !cast<GlobalAlias>(Ptr)->getBaseObject()->isInterposable()) {
877       Ptr = cast<GlobalAlias>(Ptr)->getAliasee();
878     }
879   }
880 
881   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
882 
883   // Preserve the address space number of the pointer.
884   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
885     Ptr = ConstantExpr::getPointerCast(
886         Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
887                                                  OldPtrTy->getAddressSpace()));
888   }
889   return Ptr;
890 }
891 
892 /// If we can symbolically evaluate the GEP constant expression, do so.
893 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
894                                   ArrayRef<Constant *> Ops,
895                                   const DataLayout &DL,
896                                   const TargetLibraryInfo *TLI,
897                                   bool ForLoadOperand) {
898   const GEPOperator *InnermostGEP = GEP;
899   bool InBounds = GEP->isInBounds();
900 
901   Type *SrcElemTy = GEP->getSourceElementType();
902   Type *ResElemTy = GEP->getResultElementType();
903   Type *ResTy = GEP->getType();
904   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
905     return nullptr;
906 
907   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
908                                    GEP->getInRangeIndex(), DL, TLI))
909     return C;
910 
911   Constant *Ptr = Ops[0];
912   if (!Ptr->getType()->isPointerTy())
913     return nullptr;
914 
915   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
916 
917   // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
918   // "inttoptr (sub (ptrtoint Ptr), V)"
919   if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
920     auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
921     assert((!CE || CE->getType() == IntIdxTy) &&
922            "CastGEPIndices didn't canonicalize index types!");
923     if (CE && CE->getOpcode() == Instruction::Sub &&
924         CE->getOperand(0)->isNullValue()) {
925       Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
926       Res = ConstantExpr::getSub(Res, CE->getOperand(1));
927       Res = ConstantExpr::getIntToPtr(Res, ResTy);
928       return ConstantFoldConstant(Res, DL, TLI);
929     }
930   }
931 
932   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
933     if (!isa<ConstantInt>(Ops[i]))
934       return nullptr;
935 
936   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
937   APInt Offset =
938       APInt(BitWidth,
939             DL.getIndexedOffsetInType(
940                 SrcElemTy,
941                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
942   Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
943 
944   // If this is a GEP of a GEP, fold it all into a single GEP.
945   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
946     InnermostGEP = GEP;
947     InBounds &= GEP->isInBounds();
948 
949     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
950 
951     // Do not try the incorporate the sub-GEP if some index is not a number.
952     bool AllConstantInt = true;
953     for (Value *NestedOp : NestedOps)
954       if (!isa<ConstantInt>(NestedOp)) {
955         AllConstantInt = false;
956         break;
957       }
958     if (!AllConstantInt)
959       break;
960 
961     Ptr = cast<Constant>(GEP->getOperand(0));
962     SrcElemTy = GEP->getSourceElementType();
963     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
964     Ptr = StripPtrCastKeepAS(Ptr, ForLoadOperand);
965   }
966 
967   // If the base value for this address is a literal integer value, fold the
968   // getelementptr to the resulting integer value casted to the pointer type.
969   APInt BasePtr(BitWidth, 0);
970   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
971     if (CE->getOpcode() == Instruction::IntToPtr) {
972       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
973         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
974     }
975   }
976 
977   auto *PTy = cast<PointerType>(Ptr->getType());
978   if ((Ptr->isNullValue() || BasePtr != 0) &&
979       !DL.isNonIntegralPointerType(PTy)) {
980     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
981     return ConstantExpr::getIntToPtr(C, ResTy);
982   }
983 
984   // Otherwise form a regular getelementptr. Recompute the indices so that
985   // we eliminate over-indexing of the notional static type array bounds.
986   // This makes it easy to determine if the getelementptr is "inbounds".
987   // Also, this helps GlobalOpt do SROA on GlobalVariables.
988   SmallVector<Constant *, 32> NewIdxs;
989   Type *Ty = PTy;
990   SrcElemTy = PTy->getElementType();
991 
992   do {
993     if (!Ty->isStructTy()) {
994       if (Ty->isPointerTy()) {
995         // The only pointer indexing we'll do is on the first index of the GEP.
996         if (!NewIdxs.empty())
997           break;
998 
999         Ty = SrcElemTy;
1000 
1001         // Only handle pointers to sized types, not pointers to functions.
1002         if (!Ty->isSized())
1003           return nullptr;
1004       } else {
1005         Type *NextTy = GetElementPtrInst::getTypeAtIndex(Ty, (uint64_t)0);
1006         if (!NextTy)
1007           break;
1008         Ty = NextTy;
1009       }
1010 
1011       // Determine which element of the array the offset points into.
1012       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
1013       if (ElemSize == 0) {
1014         // The element size is 0. This may be [0 x Ty]*, so just use a zero
1015         // index for this level and proceed to the next level to see if it can
1016         // accommodate the offset.
1017         NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
1018       } else {
1019         // The element size is non-zero divide the offset by the element
1020         // size (rounding down), to compute the index at this level.
1021         bool Overflow;
1022         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
1023         if (Overflow)
1024           break;
1025         Offset -= NewIdx * ElemSize;
1026         NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
1027       }
1028     } else {
1029       auto *STy = cast<StructType>(Ty);
1030       // If we end up with an offset that isn't valid for this struct type, we
1031       // can't re-form this GEP in a regular form, so bail out. The pointer
1032       // operand likely went through casts that are necessary to make the GEP
1033       // sensible.
1034       const StructLayout &SL = *DL.getStructLayout(STy);
1035       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
1036         break;
1037 
1038       // Determine which field of the struct the offset points into. The
1039       // getZExtValue is fine as we've already ensured that the offset is
1040       // within the range representable by the StructLayout API.
1041       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
1042       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1043                                          ElIdx));
1044       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
1045       Ty = STy->getTypeAtIndex(ElIdx);
1046     }
1047   } while (Ty != ResElemTy);
1048 
1049   // If we haven't used up the entire offset by descending the static
1050   // type, then the offset is pointing into the middle of an indivisible
1051   // member, so we can't simplify it.
1052   if (Offset != 0)
1053     return nullptr;
1054 
1055   // Preserve the inrange index from the innermost GEP if possible. We must
1056   // have calculated the same indices up to and including the inrange index.
1057   Optional<unsigned> InRangeIndex;
1058   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
1059     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
1060         NewIdxs.size() > *LastIRIndex) {
1061       InRangeIndex = LastIRIndex;
1062       for (unsigned I = 0; I <= *LastIRIndex; ++I)
1063         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
1064           return nullptr;
1065     }
1066 
1067   // Create a GEP.
1068   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1069                                                InBounds, InRangeIndex);
1070   assert(C->getType()->getPointerElementType() == Ty &&
1071          "Computed GetElementPtr has unexpected type!");
1072 
1073   // If we ended up indexing a member with a type that doesn't match
1074   // the type of what the original indices indexed, add a cast.
1075   if (C->getType() != ResTy)
1076     C = FoldBitCast(C, ResTy, DL);
1077 
1078   return C;
1079 }
1080 
1081 /// Attempt to constant fold an instruction with the
1082 /// specified opcode and operands.  If successful, the constant result is
1083 /// returned, if not, null is returned.  Note that this function can fail when
1084 /// attempting to fold instructions like loads and stores, which have no
1085 /// constant expression form.
1086 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1087                                        ArrayRef<Constant *> Ops,
1088                                        const DataLayout &DL,
1089                                        const TargetLibraryInfo *TLI) {
1090   Type *DestTy = InstOrCE->getType();
1091 
1092   if (Instruction::isUnaryOp(Opcode))
1093     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1094 
1095   if (Instruction::isBinaryOp(Opcode))
1096     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1097 
1098   if (Instruction::isCast(Opcode))
1099     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1100 
1101   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1102     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI,
1103                                               /*ForLoadOperand*/ false))
1104       return C;
1105 
1106     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1107                                           Ops.slice(1), GEP->isInBounds(),
1108                                           GEP->getInRangeIndex());
1109   }
1110 
1111   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1112     return CE->getWithOperands(Ops);
1113 
1114   switch (Opcode) {
1115   default: return nullptr;
1116   case Instruction::ICmp:
1117   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1118   case Instruction::Freeze:
1119     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1120   case Instruction::Call:
1121     if (auto *F = dyn_cast<Function>(Ops.back())) {
1122       const auto *Call = cast<CallBase>(InstOrCE);
1123       if (canConstantFoldCallTo(Call, F))
1124         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1125     }
1126     return nullptr;
1127   case Instruction::Select:
1128     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1129   case Instruction::ExtractElement:
1130     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1131   case Instruction::ExtractValue:
1132     return ConstantExpr::getExtractValue(
1133         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1134   case Instruction::InsertElement:
1135     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1136   case Instruction::ShuffleVector:
1137     return ConstantExpr::getShuffleVector(
1138         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1139   }
1140 }
1141 
1142 } // end anonymous namespace
1143 
1144 //===----------------------------------------------------------------------===//
1145 // Constant Folding public APIs
1146 //===----------------------------------------------------------------------===//
1147 
1148 namespace {
1149 
1150 Constant *
1151 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1152                          const TargetLibraryInfo *TLI,
1153                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1154   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1155     return const_cast<Constant *>(C);
1156 
1157   SmallVector<Constant *, 8> Ops;
1158   for (const Use &OldU : C->operands()) {
1159     Constant *OldC = cast<Constant>(&OldU);
1160     Constant *NewC = OldC;
1161     // Recursively fold the ConstantExpr's operands. If we have already folded
1162     // a ConstantExpr, we don't have to process it again.
1163     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1164       auto It = FoldedOps.find(OldC);
1165       if (It == FoldedOps.end()) {
1166         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1167         FoldedOps.insert({OldC, NewC});
1168       } else {
1169         NewC = It->second;
1170       }
1171     }
1172     Ops.push_back(NewC);
1173   }
1174 
1175   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1176     if (CE->isCompare())
1177       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1178                                              DL, TLI);
1179 
1180     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1181   }
1182 
1183   assert(isa<ConstantVector>(C));
1184   return ConstantVector::get(Ops);
1185 }
1186 
1187 } // end anonymous namespace
1188 
1189 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1190                                         const TargetLibraryInfo *TLI) {
1191   // Handle PHI nodes quickly here...
1192   if (auto *PN = dyn_cast<PHINode>(I)) {
1193     Constant *CommonValue = nullptr;
1194 
1195     SmallDenseMap<Constant *, Constant *> FoldedOps;
1196     for (Value *Incoming : PN->incoming_values()) {
1197       // If the incoming value is undef then skip it.  Note that while we could
1198       // skip the value if it is equal to the phi node itself we choose not to
1199       // because that would break the rule that constant folding only applies if
1200       // all operands are constants.
1201       if (isa<UndefValue>(Incoming))
1202         continue;
1203       // If the incoming value is not a constant, then give up.
1204       auto *C = dyn_cast<Constant>(Incoming);
1205       if (!C)
1206         return nullptr;
1207       // Fold the PHI's operands.
1208       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1209       // If the incoming value is a different constant to
1210       // the one we saw previously, then give up.
1211       if (CommonValue && C != CommonValue)
1212         return nullptr;
1213       CommonValue = C;
1214     }
1215 
1216     // If we reach here, all incoming values are the same constant or undef.
1217     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1218   }
1219 
1220   // Scan the operand list, checking to see if they are all constants, if so,
1221   // hand off to ConstantFoldInstOperandsImpl.
1222   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1223     return nullptr;
1224 
1225   SmallDenseMap<Constant *, Constant *> FoldedOps;
1226   SmallVector<Constant *, 8> Ops;
1227   for (const Use &OpU : I->operands()) {
1228     auto *Op = cast<Constant>(&OpU);
1229     // Fold the Instruction's operands.
1230     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1231     Ops.push_back(Op);
1232   }
1233 
1234   if (const auto *CI = dyn_cast<CmpInst>(I))
1235     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1236                                            DL, TLI);
1237 
1238   if (const auto *LI = dyn_cast<LoadInst>(I)) {
1239     if (LI->isVolatile())
1240       return nullptr;
1241     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1242   }
1243 
1244   if (auto *IVI = dyn_cast<InsertValueInst>(I))
1245     return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
1246 
1247   if (auto *EVI = dyn_cast<ExtractValueInst>(I))
1248     return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
1249 
1250   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1251 }
1252 
1253 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1254                                      const TargetLibraryInfo *TLI) {
1255   SmallDenseMap<Constant *, Constant *> FoldedOps;
1256   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1257 }
1258 
1259 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1260                                          ArrayRef<Constant *> Ops,
1261                                          const DataLayout &DL,
1262                                          const TargetLibraryInfo *TLI) {
1263   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1264 }
1265 
1266 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1267                                                 Constant *Ops0, Constant *Ops1,
1268                                                 const DataLayout &DL,
1269                                                 const TargetLibraryInfo *TLI) {
1270   // fold: icmp (inttoptr x), null         -> icmp x, 0
1271   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1272   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1273   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1274   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1275   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1276   //
1277   // FIXME: The following comment is out of data and the DataLayout is here now.
1278   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1279   // around to know if bit truncation is happening.
1280   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1281     if (Ops1->isNullValue()) {
1282       if (CE0->getOpcode() == Instruction::IntToPtr) {
1283         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1284         // Convert the integer value to the right size to ensure we get the
1285         // proper extension or truncation.
1286         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1287                                                    IntPtrTy, false);
1288         Constant *Null = Constant::getNullValue(C->getType());
1289         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1290       }
1291 
1292       // Only do this transformation if the int is intptrty in size, otherwise
1293       // there is a truncation or extension that we aren't modeling.
1294       if (CE0->getOpcode() == Instruction::PtrToInt) {
1295         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1296         if (CE0->getType() == IntPtrTy) {
1297           Constant *C = CE0->getOperand(0);
1298           Constant *Null = Constant::getNullValue(C->getType());
1299           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1300         }
1301       }
1302     }
1303 
1304     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1305       if (CE0->getOpcode() == CE1->getOpcode()) {
1306         if (CE0->getOpcode() == Instruction::IntToPtr) {
1307           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1308 
1309           // Convert the integer value to the right size to ensure we get the
1310           // proper extension or truncation.
1311           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1312                                                       IntPtrTy, false);
1313           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1314                                                       IntPtrTy, false);
1315           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1316         }
1317 
1318         // Only do this transformation if the int is intptrty in size, otherwise
1319         // there is a truncation or extension that we aren't modeling.
1320         if (CE0->getOpcode() == Instruction::PtrToInt) {
1321           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1322           if (CE0->getType() == IntPtrTy &&
1323               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1324             return ConstantFoldCompareInstOperands(
1325                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1326           }
1327         }
1328       }
1329     }
1330 
1331     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1332     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1333     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1334         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1335       Constant *LHS = ConstantFoldCompareInstOperands(
1336           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1337       Constant *RHS = ConstantFoldCompareInstOperands(
1338           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1339       unsigned OpC =
1340         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1341       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1342     }
1343   } else if (isa<ConstantExpr>(Ops1)) {
1344     // If RHS is a constant expression, but the left side isn't, swap the
1345     // operands and try again.
1346     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1347     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1348   }
1349 
1350   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1351 }
1352 
1353 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1354                                            const DataLayout &DL) {
1355   assert(Instruction::isUnaryOp(Opcode));
1356 
1357   return ConstantExpr::get(Opcode, Op);
1358 }
1359 
1360 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1361                                              Constant *RHS,
1362                                              const DataLayout &DL) {
1363   assert(Instruction::isBinaryOp(Opcode));
1364   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1365     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1366       return C;
1367 
1368   return ConstantExpr::get(Opcode, LHS, RHS);
1369 }
1370 
1371 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1372                                         Type *DestTy, const DataLayout &DL) {
1373   assert(Instruction::isCast(Opcode));
1374   switch (Opcode) {
1375   default:
1376     llvm_unreachable("Missing case");
1377   case Instruction::PtrToInt:
1378     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1379     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1380     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1381       if (CE->getOpcode() == Instruction::IntToPtr) {
1382         Constant *Input = CE->getOperand(0);
1383         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1384         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1385         if (PtrWidth < InWidth) {
1386           Constant *Mask =
1387             ConstantInt::get(CE->getContext(),
1388                              APInt::getLowBitsSet(InWidth, PtrWidth));
1389           Input = ConstantExpr::getAnd(Input, Mask);
1390         }
1391         // Do a zext or trunc to get to the dest size.
1392         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1393       }
1394     }
1395     return ConstantExpr::getCast(Opcode, C, DestTy);
1396   case Instruction::IntToPtr:
1397     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1398     // the int size is >= the ptr size and the address spaces are the same.
1399     // This requires knowing the width of a pointer, so it can't be done in
1400     // ConstantExpr::getCast.
1401     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1402       if (CE->getOpcode() == Instruction::PtrToInt) {
1403         Constant *SrcPtr = CE->getOperand(0);
1404         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1405         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1406 
1407         if (MidIntSize >= SrcPtrSize) {
1408           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1409           if (SrcAS == DestTy->getPointerAddressSpace())
1410             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1411         }
1412       }
1413     }
1414 
1415     return ConstantExpr::getCast(Opcode, C, DestTy);
1416   case Instruction::Trunc:
1417   case Instruction::ZExt:
1418   case Instruction::SExt:
1419   case Instruction::FPTrunc:
1420   case Instruction::FPExt:
1421   case Instruction::UIToFP:
1422   case Instruction::SIToFP:
1423   case Instruction::FPToUI:
1424   case Instruction::FPToSI:
1425   case Instruction::AddrSpaceCast:
1426       return ConstantExpr::getCast(Opcode, C, DestTy);
1427   case Instruction::BitCast:
1428     return FoldBitCast(C, DestTy, DL);
1429   }
1430 }
1431 
1432 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1433                                                        ConstantExpr *CE,
1434                                                        Type *Ty,
1435                                                        const DataLayout &DL) {
1436   if (!CE->getOperand(1)->isNullValue())
1437     return nullptr;  // Do not allow stepping over the value!
1438 
1439   // Loop over all of the operands, tracking down which value we are
1440   // addressing.
1441   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1442     C = C->getAggregateElement(CE->getOperand(i));
1443     if (!C)
1444       return nullptr;
1445   }
1446   return ConstantFoldLoadThroughBitcast(C, Ty, DL);
1447 }
1448 
1449 Constant *
1450 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1451                                         ArrayRef<Constant *> Indices) {
1452   // Loop over all of the operands, tracking down which value we are
1453   // addressing.
1454   for (Constant *Index : Indices) {
1455     C = C->getAggregateElement(Index);
1456     if (!C)
1457       return nullptr;
1458   }
1459   return C;
1460 }
1461 
1462 //===----------------------------------------------------------------------===//
1463 //  Constant Folding for Calls
1464 //
1465 
1466 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1467   if (Call->isNoBuiltin())
1468     return false;
1469   switch (F->getIntrinsicID()) {
1470   // Operations that do not operate floating-point numbers and do not depend on
1471   // FP environment can be folded even in strictfp functions.
1472   case Intrinsic::bswap:
1473   case Intrinsic::ctpop:
1474   case Intrinsic::ctlz:
1475   case Intrinsic::cttz:
1476   case Intrinsic::fshl:
1477   case Intrinsic::fshr:
1478   case Intrinsic::launder_invariant_group:
1479   case Intrinsic::strip_invariant_group:
1480   case Intrinsic::masked_load:
1481   case Intrinsic::get_active_lane_mask:
1482   case Intrinsic::abs:
1483   case Intrinsic::smax:
1484   case Intrinsic::smin:
1485   case Intrinsic::umax:
1486   case Intrinsic::umin:
1487   case Intrinsic::sadd_with_overflow:
1488   case Intrinsic::uadd_with_overflow:
1489   case Intrinsic::ssub_with_overflow:
1490   case Intrinsic::usub_with_overflow:
1491   case Intrinsic::smul_with_overflow:
1492   case Intrinsic::umul_with_overflow:
1493   case Intrinsic::sadd_sat:
1494   case Intrinsic::uadd_sat:
1495   case Intrinsic::ssub_sat:
1496   case Intrinsic::usub_sat:
1497   case Intrinsic::smul_fix:
1498   case Intrinsic::smul_fix_sat:
1499   case Intrinsic::bitreverse:
1500   case Intrinsic::is_constant:
1501   case Intrinsic::vector_reduce_add:
1502   case Intrinsic::vector_reduce_mul:
1503   case Intrinsic::vector_reduce_and:
1504   case Intrinsic::vector_reduce_or:
1505   case Intrinsic::vector_reduce_xor:
1506   case Intrinsic::vector_reduce_smin:
1507   case Intrinsic::vector_reduce_smax:
1508   case Intrinsic::vector_reduce_umin:
1509   case Intrinsic::vector_reduce_umax:
1510   // Target intrinsics
1511   case Intrinsic::amdgcn_perm:
1512   case Intrinsic::arm_mve_vctp8:
1513   case Intrinsic::arm_mve_vctp16:
1514   case Intrinsic::arm_mve_vctp32:
1515   case Intrinsic::arm_mve_vctp64:
1516   case Intrinsic::aarch64_sve_convert_from_svbool:
1517   // WebAssembly float semantics are always known
1518   case Intrinsic::wasm_trunc_signed:
1519   case Intrinsic::wasm_trunc_unsigned:
1520     return true;
1521 
1522   // Floating point operations cannot be folded in strictfp functions in
1523   // general case. They can be folded if FP environment is known to compiler.
1524   case Intrinsic::minnum:
1525   case Intrinsic::maxnum:
1526   case Intrinsic::minimum:
1527   case Intrinsic::maximum:
1528   case Intrinsic::log:
1529   case Intrinsic::log2:
1530   case Intrinsic::log10:
1531   case Intrinsic::exp:
1532   case Intrinsic::exp2:
1533   case Intrinsic::sqrt:
1534   case Intrinsic::sin:
1535   case Intrinsic::cos:
1536   case Intrinsic::pow:
1537   case Intrinsic::powi:
1538   case Intrinsic::fma:
1539   case Intrinsic::fmuladd:
1540   case Intrinsic::fptoui_sat:
1541   case Intrinsic::fptosi_sat:
1542   case Intrinsic::convert_from_fp16:
1543   case Intrinsic::convert_to_fp16:
1544   case Intrinsic::amdgcn_cos:
1545   case Intrinsic::amdgcn_cubeid:
1546   case Intrinsic::amdgcn_cubema:
1547   case Intrinsic::amdgcn_cubesc:
1548   case Intrinsic::amdgcn_cubetc:
1549   case Intrinsic::amdgcn_fmul_legacy:
1550   case Intrinsic::amdgcn_fma_legacy:
1551   case Intrinsic::amdgcn_fract:
1552   case Intrinsic::amdgcn_ldexp:
1553   case Intrinsic::amdgcn_sin:
1554   // The intrinsics below depend on rounding mode in MXCSR.
1555   case Intrinsic::x86_sse_cvtss2si:
1556   case Intrinsic::x86_sse_cvtss2si64:
1557   case Intrinsic::x86_sse_cvttss2si:
1558   case Intrinsic::x86_sse_cvttss2si64:
1559   case Intrinsic::x86_sse2_cvtsd2si:
1560   case Intrinsic::x86_sse2_cvtsd2si64:
1561   case Intrinsic::x86_sse2_cvttsd2si:
1562   case Intrinsic::x86_sse2_cvttsd2si64:
1563   case Intrinsic::x86_avx512_vcvtss2si32:
1564   case Intrinsic::x86_avx512_vcvtss2si64:
1565   case Intrinsic::x86_avx512_cvttss2si:
1566   case Intrinsic::x86_avx512_cvttss2si64:
1567   case Intrinsic::x86_avx512_vcvtsd2si32:
1568   case Intrinsic::x86_avx512_vcvtsd2si64:
1569   case Intrinsic::x86_avx512_cvttsd2si:
1570   case Intrinsic::x86_avx512_cvttsd2si64:
1571   case Intrinsic::x86_avx512_vcvtss2usi32:
1572   case Intrinsic::x86_avx512_vcvtss2usi64:
1573   case Intrinsic::x86_avx512_cvttss2usi:
1574   case Intrinsic::x86_avx512_cvttss2usi64:
1575   case Intrinsic::x86_avx512_vcvtsd2usi32:
1576   case Intrinsic::x86_avx512_vcvtsd2usi64:
1577   case Intrinsic::x86_avx512_cvttsd2usi:
1578   case Intrinsic::x86_avx512_cvttsd2usi64:
1579     return !Call->isStrictFP();
1580 
1581   // Sign operations are actually bitwise operations, they do not raise
1582   // exceptions even for SNANs.
1583   case Intrinsic::fabs:
1584   case Intrinsic::copysign:
1585   // Non-constrained variants of rounding operations means default FP
1586   // environment, they can be folded in any case.
1587   case Intrinsic::ceil:
1588   case Intrinsic::floor:
1589   case Intrinsic::round:
1590   case Intrinsic::roundeven:
1591   case Intrinsic::trunc:
1592   case Intrinsic::nearbyint:
1593   case Intrinsic::rint:
1594   // Constrained intrinsics can be folded if FP environment is known
1595   // to compiler.
1596   case Intrinsic::experimental_constrained_fma:
1597   case Intrinsic::experimental_constrained_fmuladd:
1598   case Intrinsic::experimental_constrained_fadd:
1599   case Intrinsic::experimental_constrained_fsub:
1600   case Intrinsic::experimental_constrained_fmul:
1601   case Intrinsic::experimental_constrained_fdiv:
1602   case Intrinsic::experimental_constrained_frem:
1603   case Intrinsic::experimental_constrained_ceil:
1604   case Intrinsic::experimental_constrained_floor:
1605   case Intrinsic::experimental_constrained_round:
1606   case Intrinsic::experimental_constrained_roundeven:
1607   case Intrinsic::experimental_constrained_trunc:
1608   case Intrinsic::experimental_constrained_nearbyint:
1609   case Intrinsic::experimental_constrained_rint:
1610     return true;
1611   default:
1612     return false;
1613   case Intrinsic::not_intrinsic: break;
1614   }
1615 
1616   if (!F->hasName() || Call->isStrictFP())
1617     return false;
1618 
1619   // In these cases, the check of the length is required.  We don't want to
1620   // return true for a name like "cos\0blah" which strcmp would return equal to
1621   // "cos", but has length 8.
1622   StringRef Name = F->getName();
1623   switch (Name[0]) {
1624   default:
1625     return false;
1626   case 'a':
1627     return Name == "acos" || Name == "acosf" ||
1628            Name == "asin" || Name == "asinf" ||
1629            Name == "atan" || Name == "atanf" ||
1630            Name == "atan2" || Name == "atan2f";
1631   case 'c':
1632     return Name == "ceil" || Name == "ceilf" ||
1633            Name == "cos" || Name == "cosf" ||
1634            Name == "cosh" || Name == "coshf";
1635   case 'e':
1636     return Name == "exp" || Name == "expf" ||
1637            Name == "exp2" || Name == "exp2f";
1638   case 'f':
1639     return Name == "fabs" || Name == "fabsf" ||
1640            Name == "floor" || Name == "floorf" ||
1641            Name == "fmod" || Name == "fmodf";
1642   case 'l':
1643     return Name == "log" || Name == "logf" ||
1644            Name == "log2" || Name == "log2f" ||
1645            Name == "log10" || Name == "log10f";
1646   case 'n':
1647     return Name == "nearbyint" || Name == "nearbyintf";
1648   case 'p':
1649     return Name == "pow" || Name == "powf";
1650   case 'r':
1651     return Name == "remainder" || Name == "remainderf" ||
1652            Name == "rint" || Name == "rintf" ||
1653            Name == "round" || Name == "roundf";
1654   case 's':
1655     return Name == "sin" || Name == "sinf" ||
1656            Name == "sinh" || Name == "sinhf" ||
1657            Name == "sqrt" || Name == "sqrtf";
1658   case 't':
1659     return Name == "tan" || Name == "tanf" ||
1660            Name == "tanh" || Name == "tanhf" ||
1661            Name == "trunc" || Name == "truncf";
1662   case '_':
1663     // Check for various function names that get used for the math functions
1664     // when the header files are preprocessed with the macro
1665     // __FINITE_MATH_ONLY__ enabled.
1666     // The '12' here is the length of the shortest name that can match.
1667     // We need to check the size before looking at Name[1] and Name[2]
1668     // so we may as well check a limit that will eliminate mismatches.
1669     if (Name.size() < 12 || Name[1] != '_')
1670       return false;
1671     switch (Name[2]) {
1672     default:
1673       return false;
1674     case 'a':
1675       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1676              Name == "__asin_finite" || Name == "__asinf_finite" ||
1677              Name == "__atan2_finite" || Name == "__atan2f_finite";
1678     case 'c':
1679       return Name == "__cosh_finite" || Name == "__coshf_finite";
1680     case 'e':
1681       return Name == "__exp_finite" || Name == "__expf_finite" ||
1682              Name == "__exp2_finite" || Name == "__exp2f_finite";
1683     case 'l':
1684       return Name == "__log_finite" || Name == "__logf_finite" ||
1685              Name == "__log10_finite" || Name == "__log10f_finite";
1686     case 'p':
1687       return Name == "__pow_finite" || Name == "__powf_finite";
1688     case 's':
1689       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1690     }
1691   }
1692 }
1693 
1694 namespace {
1695 
1696 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1697   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1698     APFloat APF(V);
1699     bool unused;
1700     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1701     return ConstantFP::get(Ty->getContext(), APF);
1702   }
1703   if (Ty->isDoubleTy())
1704     return ConstantFP::get(Ty->getContext(), APFloat(V));
1705   llvm_unreachable("Can only constant fold half/float/double");
1706 }
1707 
1708 /// Clear the floating-point exception state.
1709 inline void llvm_fenv_clearexcept() {
1710 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1711   feclearexcept(FE_ALL_EXCEPT);
1712 #endif
1713   errno = 0;
1714 }
1715 
1716 /// Test if a floating-point exception was raised.
1717 inline bool llvm_fenv_testexcept() {
1718   int errno_val = errno;
1719   if (errno_val == ERANGE || errno_val == EDOM)
1720     return true;
1721 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1722   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1723     return true;
1724 #endif
1725   return false;
1726 }
1727 
1728 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1729                          Type *Ty) {
1730   llvm_fenv_clearexcept();
1731   double Result = NativeFP(V.convertToDouble());
1732   if (llvm_fenv_testexcept()) {
1733     llvm_fenv_clearexcept();
1734     return nullptr;
1735   }
1736 
1737   return GetConstantFoldFPValue(Result, Ty);
1738 }
1739 
1740 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1741                                const APFloat &V, const APFloat &W, Type *Ty) {
1742   llvm_fenv_clearexcept();
1743   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1744   if (llvm_fenv_testexcept()) {
1745     llvm_fenv_clearexcept();
1746     return nullptr;
1747   }
1748 
1749   return GetConstantFoldFPValue(Result, Ty);
1750 }
1751 
1752 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1753   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1754   if (!VT)
1755     return nullptr;
1756 
1757   // This isn't strictly necessary, but handle the special/common case of zero:
1758   // all integer reductions of a zero input produce zero.
1759   if (isa<ConstantAggregateZero>(Op))
1760     return ConstantInt::get(VT->getElementType(), 0);
1761 
1762   // This is the same as the underlying binops - poison propagates.
1763   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1764     return PoisonValue::get(VT->getElementType());
1765 
1766   // TODO: Handle undef.
1767   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1768     return nullptr;
1769 
1770   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1771   if (!EltC)
1772     return nullptr;
1773 
1774   APInt Acc = EltC->getValue();
1775   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1776     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1777       return nullptr;
1778     const APInt &X = EltC->getValue();
1779     switch (IID) {
1780     case Intrinsic::vector_reduce_add:
1781       Acc = Acc + X;
1782       break;
1783     case Intrinsic::vector_reduce_mul:
1784       Acc = Acc * X;
1785       break;
1786     case Intrinsic::vector_reduce_and:
1787       Acc = Acc & X;
1788       break;
1789     case Intrinsic::vector_reduce_or:
1790       Acc = Acc | X;
1791       break;
1792     case Intrinsic::vector_reduce_xor:
1793       Acc = Acc ^ X;
1794       break;
1795     case Intrinsic::vector_reduce_smin:
1796       Acc = APIntOps::smin(Acc, X);
1797       break;
1798     case Intrinsic::vector_reduce_smax:
1799       Acc = APIntOps::smax(Acc, X);
1800       break;
1801     case Intrinsic::vector_reduce_umin:
1802       Acc = APIntOps::umin(Acc, X);
1803       break;
1804     case Intrinsic::vector_reduce_umax:
1805       Acc = APIntOps::umax(Acc, X);
1806       break;
1807     }
1808   }
1809 
1810   return ConstantInt::get(Op->getContext(), Acc);
1811 }
1812 
1813 /// Attempt to fold an SSE floating point to integer conversion of a constant
1814 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1815 /// used (toward nearest, ties to even). This matches the behavior of the
1816 /// non-truncating SSE instructions in the default rounding mode. The desired
1817 /// integer type Ty is used to select how many bits are available for the
1818 /// result. Returns null if the conversion cannot be performed, otherwise
1819 /// returns the Constant value resulting from the conversion.
1820 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1821                                       Type *Ty, bool IsSigned) {
1822   // All of these conversion intrinsics form an integer of at most 64bits.
1823   unsigned ResultWidth = Ty->getIntegerBitWidth();
1824   assert(ResultWidth <= 64 &&
1825          "Can only constant fold conversions to 64 and 32 bit ints");
1826 
1827   uint64_t UIntVal;
1828   bool isExact = false;
1829   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1830                                               : APFloat::rmNearestTiesToEven;
1831   APFloat::opStatus status =
1832       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1833                            IsSigned, mode, &isExact);
1834   if (status != APFloat::opOK &&
1835       (!roundTowardZero || status != APFloat::opInexact))
1836     return nullptr;
1837   return ConstantInt::get(Ty, UIntVal, IsSigned);
1838 }
1839 
1840 double getValueAsDouble(ConstantFP *Op) {
1841   Type *Ty = Op->getType();
1842 
1843   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1844     return Op->getValueAPF().convertToDouble();
1845 
1846   bool unused;
1847   APFloat APF = Op->getValueAPF();
1848   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1849   return APF.convertToDouble();
1850 }
1851 
1852 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1853   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1854     C = &CI->getValue();
1855     return true;
1856   }
1857   if (isa<UndefValue>(Op)) {
1858     C = nullptr;
1859     return true;
1860   }
1861   return false;
1862 }
1863 
1864 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1865 /// to be folded.
1866 ///
1867 /// \param CI Constrained intrinsic call.
1868 /// \param St Exception flags raised during constant evaluation.
1869 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1870                                APFloat::opStatus St) {
1871   Optional<RoundingMode> ORM = CI->getRoundingMode();
1872   Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1873 
1874   // If the operation does not change exception status flags, it is safe
1875   // to fold.
1876   if (St == APFloat::opStatus::opOK) {
1877     // When FP exceptions are not ignored, intrinsic call will not be
1878     // eliminated, because it is considered as having side effect. But we
1879     // know that its evaluation does not raise exceptions, so side effect
1880     // is absent. To allow removing the call, mark it as not accessing memory.
1881     if (EB && *EB != fp::ExceptionBehavior::ebIgnore)
1882       CI->addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
1883     return true;
1884   }
1885 
1886   // If evaluation raised FP exception, the result can depend on rounding
1887   // mode. If the latter is unknown, folding is not possible.
1888   if (!ORM || *ORM == RoundingMode::Dynamic)
1889     return false;
1890 
1891   // If FP exceptions are ignored, fold the call, even if such exception is
1892   // raised.
1893   if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
1894     return true;
1895 
1896   // Leave the calculation for runtime so that exception flags be correctly set
1897   // in hardware.
1898   return false;
1899 }
1900 
1901 /// Returns the rounding mode that should be used for constant evaluation.
1902 static RoundingMode
1903 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1904   Optional<RoundingMode> ORM = CI->getRoundingMode();
1905   if (!ORM || *ORM == RoundingMode::Dynamic)
1906     // Even if the rounding mode is unknown, try evaluating the operation.
1907     // If it does not raise inexact exception, rounding was not applied,
1908     // so the result is exact and does not depend on rounding mode. Whether
1909     // other FP exceptions are raised, it does not depend on rounding mode.
1910     return RoundingMode::NearestTiesToEven;
1911   return *ORM;
1912 }
1913 
1914 static Constant *ConstantFoldScalarCall1(StringRef Name,
1915                                          Intrinsic::ID IntrinsicID,
1916                                          Type *Ty,
1917                                          ArrayRef<Constant *> Operands,
1918                                          const TargetLibraryInfo *TLI,
1919                                          const CallBase *Call) {
1920   assert(Operands.size() == 1 && "Wrong number of operands.");
1921 
1922   if (IntrinsicID == Intrinsic::is_constant) {
1923     // We know we have a "Constant" argument. But we want to only
1924     // return true for manifest constants, not those that depend on
1925     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1926     if (Operands[0]->isManifestConstant())
1927       return ConstantInt::getTrue(Ty->getContext());
1928     return nullptr;
1929   }
1930   if (isa<UndefValue>(Operands[0])) {
1931     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1932     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1933     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
1934     if (IntrinsicID == Intrinsic::cos ||
1935         IntrinsicID == Intrinsic::ctpop ||
1936         IntrinsicID == Intrinsic::fptoui_sat ||
1937         IntrinsicID == Intrinsic::fptosi_sat)
1938       return Constant::getNullValue(Ty);
1939     if (IntrinsicID == Intrinsic::bswap ||
1940         IntrinsicID == Intrinsic::bitreverse ||
1941         IntrinsicID == Intrinsic::launder_invariant_group ||
1942         IntrinsicID == Intrinsic::strip_invariant_group)
1943       return Operands[0];
1944   }
1945 
1946   if (isa<ConstantPointerNull>(Operands[0])) {
1947     // launder(null) == null == strip(null) iff in addrspace 0
1948     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1949         IntrinsicID == Intrinsic::strip_invariant_group) {
1950       // If instruction is not yet put in a basic block (e.g. when cloning
1951       // a function during inlining), Call's caller may not be available.
1952       // So check Call's BB first before querying Call->getCaller.
1953       const Function *Caller =
1954           Call->getParent() ? Call->getCaller() : nullptr;
1955       if (Caller &&
1956           !NullPointerIsDefined(
1957               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1958         return Operands[0];
1959       }
1960       return nullptr;
1961     }
1962   }
1963 
1964   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1965     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1966       APFloat Val(Op->getValueAPF());
1967 
1968       bool lost = false;
1969       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1970 
1971       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1972     }
1973 
1974     APFloat U = Op->getValueAPF();
1975 
1976     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
1977         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
1978       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
1979 
1980       if (U.isNaN())
1981         return nullptr;
1982 
1983       unsigned Width = Ty->getIntegerBitWidth();
1984       APSInt Int(Width, !Signed);
1985       bool IsExact = false;
1986       APFloat::opStatus Status =
1987           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
1988 
1989       if (Status == APFloat::opOK || Status == APFloat::opInexact)
1990         return ConstantInt::get(Ty, Int);
1991 
1992       return nullptr;
1993     }
1994 
1995     if (IntrinsicID == Intrinsic::fptoui_sat ||
1996         IntrinsicID == Intrinsic::fptosi_sat) {
1997       // convertToInteger() already has the desired saturation semantics.
1998       APSInt Int(Ty->getIntegerBitWidth(),
1999                  IntrinsicID == Intrinsic::fptoui_sat);
2000       bool IsExact;
2001       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2002       return ConstantInt::get(Ty, Int);
2003     }
2004 
2005     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2006       return nullptr;
2007 
2008     // Use internal versions of these intrinsics.
2009 
2010     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2011       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2012       return ConstantFP::get(Ty->getContext(), U);
2013     }
2014 
2015     if (IntrinsicID == Intrinsic::round) {
2016       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2017       return ConstantFP::get(Ty->getContext(), U);
2018     }
2019 
2020     if (IntrinsicID == Intrinsic::roundeven) {
2021       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2022       return ConstantFP::get(Ty->getContext(), U);
2023     }
2024 
2025     if (IntrinsicID == Intrinsic::ceil) {
2026       U.roundToIntegral(APFloat::rmTowardPositive);
2027       return ConstantFP::get(Ty->getContext(), U);
2028     }
2029 
2030     if (IntrinsicID == Intrinsic::floor) {
2031       U.roundToIntegral(APFloat::rmTowardNegative);
2032       return ConstantFP::get(Ty->getContext(), U);
2033     }
2034 
2035     if (IntrinsicID == Intrinsic::trunc) {
2036       U.roundToIntegral(APFloat::rmTowardZero);
2037       return ConstantFP::get(Ty->getContext(), U);
2038     }
2039 
2040     if (IntrinsicID == Intrinsic::fabs) {
2041       U.clearSign();
2042       return ConstantFP::get(Ty->getContext(), U);
2043     }
2044 
2045     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2046       // The v_fract instruction behaves like the OpenCL spec, which defines
2047       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2048       //   there to prevent fract(-small) from returning 1.0. It returns the
2049       //   largest positive floating-point number less than 1.0."
2050       APFloat FloorU(U);
2051       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2052       APFloat FractU(U - FloorU);
2053       APFloat AlmostOne(U.getSemantics(), 1);
2054       AlmostOne.next(/*nextDown*/ true);
2055       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2056     }
2057 
2058     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2059     // raise FP exceptions, unless the argument is signaling NaN.
2060 
2061     Optional<APFloat::roundingMode> RM;
2062     switch (IntrinsicID) {
2063     default:
2064       break;
2065     case Intrinsic::experimental_constrained_nearbyint:
2066     case Intrinsic::experimental_constrained_rint: {
2067       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2068       RM = CI->getRoundingMode();
2069       if (!RM || RM.getValue() == RoundingMode::Dynamic)
2070         return nullptr;
2071       break;
2072     }
2073     case Intrinsic::experimental_constrained_round:
2074       RM = APFloat::rmNearestTiesToAway;
2075       break;
2076     case Intrinsic::experimental_constrained_ceil:
2077       RM = APFloat::rmTowardPositive;
2078       break;
2079     case Intrinsic::experimental_constrained_floor:
2080       RM = APFloat::rmTowardNegative;
2081       break;
2082     case Intrinsic::experimental_constrained_trunc:
2083       RM = APFloat::rmTowardZero;
2084       break;
2085     }
2086     if (RM) {
2087       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2088       if (U.isFinite()) {
2089         APFloat::opStatus St = U.roundToIntegral(*RM);
2090         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2091             St == APFloat::opInexact) {
2092           Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2093           if (EB && *EB == fp::ebStrict)
2094             return nullptr;
2095         }
2096       } else if (U.isSignaling()) {
2097         Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2098         if (EB && *EB != fp::ebIgnore)
2099           return nullptr;
2100         U = APFloat::getQNaN(U.getSemantics());
2101       }
2102       return ConstantFP::get(Ty->getContext(), U);
2103     }
2104 
2105     /// We only fold functions with finite arguments. Folding NaN and inf is
2106     /// likely to be aborted with an exception anyway, and some host libms
2107     /// have known errors raising exceptions.
2108     if (!U.isFinite())
2109       return nullptr;
2110 
2111     /// Currently APFloat versions of these functions do not exist, so we use
2112     /// the host native double versions.  Float versions are not called
2113     /// directly but for all these it is true (float)(f((double)arg)) ==
2114     /// f(arg).  Long double not supported yet.
2115     APFloat APF = Op->getValueAPF();
2116 
2117     switch (IntrinsicID) {
2118       default: break;
2119       case Intrinsic::log:
2120         return ConstantFoldFP(log, APF, Ty);
2121       case Intrinsic::log2:
2122         // TODO: What about hosts that lack a C99 library?
2123         return ConstantFoldFP(Log2, APF, Ty);
2124       case Intrinsic::log10:
2125         // TODO: What about hosts that lack a C99 library?
2126         return ConstantFoldFP(log10, APF, Ty);
2127       case Intrinsic::exp:
2128         return ConstantFoldFP(exp, APF, Ty);
2129       case Intrinsic::exp2:
2130         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2131         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2132       case Intrinsic::sin:
2133         return ConstantFoldFP(sin, APF, Ty);
2134       case Intrinsic::cos:
2135         return ConstantFoldFP(cos, APF, Ty);
2136       case Intrinsic::sqrt:
2137         return ConstantFoldFP(sqrt, APF, Ty);
2138       case Intrinsic::amdgcn_cos:
2139       case Intrinsic::amdgcn_sin: {
2140         double V = getValueAsDouble(Op);
2141         if (V < -256.0 || V > 256.0)
2142           // The gfx8 and gfx9 architectures handle arguments outside the range
2143           // [-256, 256] differently. This should be a rare case so bail out
2144           // rather than trying to handle the difference.
2145           return nullptr;
2146         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2147         double V4 = V * 4.0;
2148         if (V4 == floor(V4)) {
2149           // Force exact results for quarter-integer inputs.
2150           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2151           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2152         } else {
2153           if (IsCos)
2154             V = cos(V * 2.0 * numbers::pi);
2155           else
2156             V = sin(V * 2.0 * numbers::pi);
2157         }
2158         return GetConstantFoldFPValue(V, Ty);
2159       }
2160     }
2161 
2162     if (!TLI)
2163       return nullptr;
2164 
2165     LibFunc Func = NotLibFunc;
2166     TLI->getLibFunc(Name, Func);
2167     switch (Func) {
2168     default:
2169       break;
2170     case LibFunc_acos:
2171     case LibFunc_acosf:
2172     case LibFunc_acos_finite:
2173     case LibFunc_acosf_finite:
2174       if (TLI->has(Func))
2175         return ConstantFoldFP(acos, APF, Ty);
2176       break;
2177     case LibFunc_asin:
2178     case LibFunc_asinf:
2179     case LibFunc_asin_finite:
2180     case LibFunc_asinf_finite:
2181       if (TLI->has(Func))
2182         return ConstantFoldFP(asin, APF, Ty);
2183       break;
2184     case LibFunc_atan:
2185     case LibFunc_atanf:
2186       if (TLI->has(Func))
2187         return ConstantFoldFP(atan, APF, Ty);
2188       break;
2189     case LibFunc_ceil:
2190     case LibFunc_ceilf:
2191       if (TLI->has(Func)) {
2192         U.roundToIntegral(APFloat::rmTowardPositive);
2193         return ConstantFP::get(Ty->getContext(), U);
2194       }
2195       break;
2196     case LibFunc_cos:
2197     case LibFunc_cosf:
2198       if (TLI->has(Func))
2199         return ConstantFoldFP(cos, APF, Ty);
2200       break;
2201     case LibFunc_cosh:
2202     case LibFunc_coshf:
2203     case LibFunc_cosh_finite:
2204     case LibFunc_coshf_finite:
2205       if (TLI->has(Func))
2206         return ConstantFoldFP(cosh, APF, Ty);
2207       break;
2208     case LibFunc_exp:
2209     case LibFunc_expf:
2210     case LibFunc_exp_finite:
2211     case LibFunc_expf_finite:
2212       if (TLI->has(Func))
2213         return ConstantFoldFP(exp, APF, Ty);
2214       break;
2215     case LibFunc_exp2:
2216     case LibFunc_exp2f:
2217     case LibFunc_exp2_finite:
2218     case LibFunc_exp2f_finite:
2219       if (TLI->has(Func))
2220         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2221         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2222       break;
2223     case LibFunc_fabs:
2224     case LibFunc_fabsf:
2225       if (TLI->has(Func)) {
2226         U.clearSign();
2227         return ConstantFP::get(Ty->getContext(), U);
2228       }
2229       break;
2230     case LibFunc_floor:
2231     case LibFunc_floorf:
2232       if (TLI->has(Func)) {
2233         U.roundToIntegral(APFloat::rmTowardNegative);
2234         return ConstantFP::get(Ty->getContext(), U);
2235       }
2236       break;
2237     case LibFunc_log:
2238     case LibFunc_logf:
2239     case LibFunc_log_finite:
2240     case LibFunc_logf_finite:
2241       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2242         return ConstantFoldFP(log, APF, Ty);
2243       break;
2244     case LibFunc_log2:
2245     case LibFunc_log2f:
2246     case LibFunc_log2_finite:
2247     case LibFunc_log2f_finite:
2248       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2249         // TODO: What about hosts that lack a C99 library?
2250         return ConstantFoldFP(Log2, APF, Ty);
2251       break;
2252     case LibFunc_log10:
2253     case LibFunc_log10f:
2254     case LibFunc_log10_finite:
2255     case LibFunc_log10f_finite:
2256       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2257         // TODO: What about hosts that lack a C99 library?
2258         return ConstantFoldFP(log10, APF, Ty);
2259       break;
2260     case LibFunc_nearbyint:
2261     case LibFunc_nearbyintf:
2262     case LibFunc_rint:
2263     case LibFunc_rintf:
2264       if (TLI->has(Func)) {
2265         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2266         return ConstantFP::get(Ty->getContext(), U);
2267       }
2268       break;
2269     case LibFunc_round:
2270     case LibFunc_roundf:
2271       if (TLI->has(Func)) {
2272         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2273         return ConstantFP::get(Ty->getContext(), U);
2274       }
2275       break;
2276     case LibFunc_sin:
2277     case LibFunc_sinf:
2278       if (TLI->has(Func))
2279         return ConstantFoldFP(sin, APF, Ty);
2280       break;
2281     case LibFunc_sinh:
2282     case LibFunc_sinhf:
2283     case LibFunc_sinh_finite:
2284     case LibFunc_sinhf_finite:
2285       if (TLI->has(Func))
2286         return ConstantFoldFP(sinh, APF, Ty);
2287       break;
2288     case LibFunc_sqrt:
2289     case LibFunc_sqrtf:
2290       if (!APF.isNegative() && TLI->has(Func))
2291         return ConstantFoldFP(sqrt, APF, Ty);
2292       break;
2293     case LibFunc_tan:
2294     case LibFunc_tanf:
2295       if (TLI->has(Func))
2296         return ConstantFoldFP(tan, APF, Ty);
2297       break;
2298     case LibFunc_tanh:
2299     case LibFunc_tanhf:
2300       if (TLI->has(Func))
2301         return ConstantFoldFP(tanh, APF, Ty);
2302       break;
2303     case LibFunc_trunc:
2304     case LibFunc_truncf:
2305       if (TLI->has(Func)) {
2306         U.roundToIntegral(APFloat::rmTowardZero);
2307         return ConstantFP::get(Ty->getContext(), U);
2308       }
2309       break;
2310     }
2311     return nullptr;
2312   }
2313 
2314   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2315     switch (IntrinsicID) {
2316     case Intrinsic::bswap:
2317       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2318     case Intrinsic::ctpop:
2319       return ConstantInt::get(Ty, Op->getValue().countPopulation());
2320     case Intrinsic::bitreverse:
2321       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2322     case Intrinsic::convert_from_fp16: {
2323       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2324 
2325       bool lost = false;
2326       APFloat::opStatus status = Val.convert(
2327           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2328 
2329       // Conversion is always precise.
2330       (void)status;
2331       assert(status == APFloat::opOK && !lost &&
2332              "Precision lost during fp16 constfolding");
2333 
2334       return ConstantFP::get(Ty->getContext(), Val);
2335     }
2336     default:
2337       return nullptr;
2338     }
2339   }
2340 
2341   switch (IntrinsicID) {
2342   default: break;
2343   case Intrinsic::vector_reduce_add:
2344   case Intrinsic::vector_reduce_mul:
2345   case Intrinsic::vector_reduce_and:
2346   case Intrinsic::vector_reduce_or:
2347   case Intrinsic::vector_reduce_xor:
2348   case Intrinsic::vector_reduce_smin:
2349   case Intrinsic::vector_reduce_smax:
2350   case Intrinsic::vector_reduce_umin:
2351   case Intrinsic::vector_reduce_umax:
2352     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2353       return C;
2354     break;
2355   }
2356 
2357   // Support ConstantVector in case we have an Undef in the top.
2358   if (isa<ConstantVector>(Operands[0]) ||
2359       isa<ConstantDataVector>(Operands[0])) {
2360     auto *Op = cast<Constant>(Operands[0]);
2361     switch (IntrinsicID) {
2362     default: break;
2363     case Intrinsic::x86_sse_cvtss2si:
2364     case Intrinsic::x86_sse_cvtss2si64:
2365     case Intrinsic::x86_sse2_cvtsd2si:
2366     case Intrinsic::x86_sse2_cvtsd2si64:
2367       if (ConstantFP *FPOp =
2368               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2369         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2370                                            /*roundTowardZero=*/false, Ty,
2371                                            /*IsSigned*/true);
2372       break;
2373     case Intrinsic::x86_sse_cvttss2si:
2374     case Intrinsic::x86_sse_cvttss2si64:
2375     case Intrinsic::x86_sse2_cvttsd2si:
2376     case Intrinsic::x86_sse2_cvttsd2si64:
2377       if (ConstantFP *FPOp =
2378               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2379         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2380                                            /*roundTowardZero=*/true, Ty,
2381                                            /*IsSigned*/true);
2382       break;
2383     }
2384   }
2385 
2386   return nullptr;
2387 }
2388 
2389 static Constant *ConstantFoldScalarCall2(StringRef Name,
2390                                          Intrinsic::ID IntrinsicID,
2391                                          Type *Ty,
2392                                          ArrayRef<Constant *> Operands,
2393                                          const TargetLibraryInfo *TLI,
2394                                          const CallBase *Call) {
2395   assert(Operands.size() == 2 && "Wrong number of operands.");
2396 
2397   if (Ty->isFloatingPointTy()) {
2398     // TODO: We should have undef handling for all of the FP intrinsics that
2399     //       are attempted to be folded in this function.
2400     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2401     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2402     switch (IntrinsicID) {
2403     case Intrinsic::maxnum:
2404     case Intrinsic::minnum:
2405     case Intrinsic::maximum:
2406     case Intrinsic::minimum:
2407       // If one argument is undef, return the other argument.
2408       if (IsOp0Undef)
2409         return Operands[1];
2410       if (IsOp1Undef)
2411         return Operands[0];
2412       break;
2413     }
2414   }
2415 
2416   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2417     if (!Ty->isFloatingPointTy())
2418       return nullptr;
2419     APFloat Op1V = Op1->getValueAPF();
2420 
2421     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2422       if (Op2->getType() != Op1->getType())
2423         return nullptr;
2424       APFloat Op2V = Op2->getValueAPF();
2425 
2426       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2427         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2428         APFloat Res = Op1V;
2429         APFloat::opStatus St;
2430         switch (IntrinsicID) {
2431         default:
2432           return nullptr;
2433         case Intrinsic::experimental_constrained_fadd:
2434           St = Res.add(Op2V, RM);
2435           break;
2436         case Intrinsic::experimental_constrained_fsub:
2437           St = Res.subtract(Op2V, RM);
2438           break;
2439         case Intrinsic::experimental_constrained_fmul:
2440           St = Res.multiply(Op2V, RM);
2441           break;
2442         case Intrinsic::experimental_constrained_fdiv:
2443           St = Res.divide(Op2V, RM);
2444           break;
2445         case Intrinsic::experimental_constrained_frem:
2446           St = Res.mod(Op2V);
2447           break;
2448         }
2449         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2450                                St))
2451           return ConstantFP::get(Ty->getContext(), Res);
2452         return nullptr;
2453       }
2454 
2455       switch (IntrinsicID) {
2456       default:
2457         break;
2458       case Intrinsic::copysign:
2459         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2460       case Intrinsic::minnum:
2461         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2462       case Intrinsic::maxnum:
2463         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2464       case Intrinsic::minimum:
2465         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2466       case Intrinsic::maximum:
2467         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2468       }
2469 
2470       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2471         return nullptr;
2472 
2473       switch (IntrinsicID) {
2474       default:
2475         break;
2476       case Intrinsic::pow:
2477         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2478       case Intrinsic::amdgcn_fmul_legacy:
2479         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2480         // NaN or infinity, gives +0.0.
2481         if (Op1V.isZero() || Op2V.isZero())
2482           return ConstantFP::getNullValue(Ty);
2483         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2484       }
2485 
2486       if (!TLI)
2487         return nullptr;
2488 
2489       LibFunc Func = NotLibFunc;
2490       TLI->getLibFunc(Name, Func);
2491       switch (Func) {
2492       default:
2493         break;
2494       case LibFunc_pow:
2495       case LibFunc_powf:
2496       case LibFunc_pow_finite:
2497       case LibFunc_powf_finite:
2498         if (TLI->has(Func))
2499           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2500         break;
2501       case LibFunc_fmod:
2502       case LibFunc_fmodf:
2503         if (TLI->has(Func)) {
2504           APFloat V = Op1->getValueAPF();
2505           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2506             return ConstantFP::get(Ty->getContext(), V);
2507         }
2508         break;
2509       case LibFunc_remainder:
2510       case LibFunc_remainderf:
2511         if (TLI->has(Func)) {
2512           APFloat V = Op1->getValueAPF();
2513           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2514             return ConstantFP::get(Ty->getContext(), V);
2515         }
2516         break;
2517       case LibFunc_atan2:
2518       case LibFunc_atan2f:
2519       case LibFunc_atan2_finite:
2520       case LibFunc_atan2f_finite:
2521         if (TLI->has(Func))
2522           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2523         break;
2524       }
2525     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2526       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2527         return nullptr;
2528       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2529         return ConstantFP::get(
2530             Ty->getContext(),
2531             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2532                                     (int)Op2C->getZExtValue())));
2533       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2534         return ConstantFP::get(
2535             Ty->getContext(),
2536             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2537                                     (int)Op2C->getZExtValue())));
2538       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2539         return ConstantFP::get(
2540             Ty->getContext(),
2541             APFloat((double)std::pow(Op1V.convertToDouble(),
2542                                      (int)Op2C->getZExtValue())));
2543 
2544       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2545         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2546         // everywhere else.
2547 
2548         // scalbn is equivalent to ldexp with float radix 2
2549         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2550                                 APFloat::rmNearestTiesToEven);
2551         return ConstantFP::get(Ty->getContext(), Result);
2552       }
2553     }
2554     return nullptr;
2555   }
2556 
2557   if (Operands[0]->getType()->isIntegerTy() &&
2558       Operands[1]->getType()->isIntegerTy()) {
2559     const APInt *C0, *C1;
2560     if (!getConstIntOrUndef(Operands[0], C0) ||
2561         !getConstIntOrUndef(Operands[1], C1))
2562       return nullptr;
2563 
2564     unsigned BitWidth = Ty->getScalarSizeInBits();
2565     switch (IntrinsicID) {
2566     default: break;
2567     case Intrinsic::smax:
2568       if (!C0 && !C1)
2569         return UndefValue::get(Ty);
2570       if (!C0 || !C1)
2571         return ConstantInt::get(Ty, APInt::getSignedMaxValue(BitWidth));
2572       return ConstantInt::get(Ty, C0->sgt(*C1) ? *C0 : *C1);
2573 
2574     case Intrinsic::smin:
2575       if (!C0 && !C1)
2576         return UndefValue::get(Ty);
2577       if (!C0 || !C1)
2578         return ConstantInt::get(Ty, APInt::getSignedMinValue(BitWidth));
2579       return ConstantInt::get(Ty, C0->slt(*C1) ? *C0 : *C1);
2580 
2581     case Intrinsic::umax:
2582       if (!C0 && !C1)
2583         return UndefValue::get(Ty);
2584       if (!C0 || !C1)
2585         return ConstantInt::get(Ty, APInt::getMaxValue(BitWidth));
2586       return ConstantInt::get(Ty, C0->ugt(*C1) ? *C0 : *C1);
2587 
2588     case Intrinsic::umin:
2589       if (!C0 && !C1)
2590         return UndefValue::get(Ty);
2591       if (!C0 || !C1)
2592         return ConstantInt::get(Ty, APInt::getMinValue(BitWidth));
2593       return ConstantInt::get(Ty, C0->ult(*C1) ? *C0 : *C1);
2594 
2595     case Intrinsic::usub_with_overflow:
2596     case Intrinsic::ssub_with_overflow:
2597       // X - undef -> { 0, false }
2598       // undef - X -> { 0, false }
2599       if (!C0 || !C1)
2600         return Constant::getNullValue(Ty);
2601       LLVM_FALLTHROUGH;
2602     case Intrinsic::uadd_with_overflow:
2603     case Intrinsic::sadd_with_overflow:
2604       // X + undef -> { -1, false }
2605       // undef + x -> { -1, false }
2606       if (!C0 || !C1) {
2607         return ConstantStruct::get(
2608             cast<StructType>(Ty),
2609             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2610              Constant::getNullValue(Ty->getStructElementType(1))});
2611       }
2612       LLVM_FALLTHROUGH;
2613     case Intrinsic::smul_with_overflow:
2614     case Intrinsic::umul_with_overflow: {
2615       // undef * X -> { 0, false }
2616       // X * undef -> { 0, false }
2617       if (!C0 || !C1)
2618         return Constant::getNullValue(Ty);
2619 
2620       APInt Res;
2621       bool Overflow;
2622       switch (IntrinsicID) {
2623       default: llvm_unreachable("Invalid case");
2624       case Intrinsic::sadd_with_overflow:
2625         Res = C0->sadd_ov(*C1, Overflow);
2626         break;
2627       case Intrinsic::uadd_with_overflow:
2628         Res = C0->uadd_ov(*C1, Overflow);
2629         break;
2630       case Intrinsic::ssub_with_overflow:
2631         Res = C0->ssub_ov(*C1, Overflow);
2632         break;
2633       case Intrinsic::usub_with_overflow:
2634         Res = C0->usub_ov(*C1, Overflow);
2635         break;
2636       case Intrinsic::smul_with_overflow:
2637         Res = C0->smul_ov(*C1, Overflow);
2638         break;
2639       case Intrinsic::umul_with_overflow:
2640         Res = C0->umul_ov(*C1, Overflow);
2641         break;
2642       }
2643       Constant *Ops[] = {
2644         ConstantInt::get(Ty->getContext(), Res),
2645         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2646       };
2647       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2648     }
2649     case Intrinsic::uadd_sat:
2650     case Intrinsic::sadd_sat:
2651       if (!C0 && !C1)
2652         return UndefValue::get(Ty);
2653       if (!C0 || !C1)
2654         return Constant::getAllOnesValue(Ty);
2655       if (IntrinsicID == Intrinsic::uadd_sat)
2656         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2657       else
2658         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2659     case Intrinsic::usub_sat:
2660     case Intrinsic::ssub_sat:
2661       if (!C0 && !C1)
2662         return UndefValue::get(Ty);
2663       if (!C0 || !C1)
2664         return Constant::getNullValue(Ty);
2665       if (IntrinsicID == Intrinsic::usub_sat)
2666         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2667       else
2668         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2669     case Intrinsic::cttz:
2670     case Intrinsic::ctlz:
2671       assert(C1 && "Must be constant int");
2672 
2673       // cttz(0, 1) and ctlz(0, 1) are undef.
2674       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2675         return UndefValue::get(Ty);
2676       if (!C0)
2677         return Constant::getNullValue(Ty);
2678       if (IntrinsicID == Intrinsic::cttz)
2679         return ConstantInt::get(Ty, C0->countTrailingZeros());
2680       else
2681         return ConstantInt::get(Ty, C0->countLeadingZeros());
2682 
2683     case Intrinsic::abs:
2684       // Undef or minimum val operand with poison min --> undef
2685       assert(C1 && "Must be constant int");
2686       if (C1->isOneValue() && (!C0 || C0->isMinSignedValue()))
2687         return UndefValue::get(Ty);
2688 
2689       // Undef operand with no poison min --> 0 (sign bit must be clear)
2690       if (C1->isNullValue() && !C0)
2691         return Constant::getNullValue(Ty);
2692 
2693       return ConstantInt::get(Ty, C0->abs());
2694     }
2695 
2696     return nullptr;
2697   }
2698 
2699   // Support ConstantVector in case we have an Undef in the top.
2700   if ((isa<ConstantVector>(Operands[0]) ||
2701        isa<ConstantDataVector>(Operands[0])) &&
2702       // Check for default rounding mode.
2703       // FIXME: Support other rounding modes?
2704       isa<ConstantInt>(Operands[1]) &&
2705       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2706     auto *Op = cast<Constant>(Operands[0]);
2707     switch (IntrinsicID) {
2708     default: break;
2709     case Intrinsic::x86_avx512_vcvtss2si32:
2710     case Intrinsic::x86_avx512_vcvtss2si64:
2711     case Intrinsic::x86_avx512_vcvtsd2si32:
2712     case Intrinsic::x86_avx512_vcvtsd2si64:
2713       if (ConstantFP *FPOp =
2714               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2715         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2716                                            /*roundTowardZero=*/false, Ty,
2717                                            /*IsSigned*/true);
2718       break;
2719     case Intrinsic::x86_avx512_vcvtss2usi32:
2720     case Intrinsic::x86_avx512_vcvtss2usi64:
2721     case Intrinsic::x86_avx512_vcvtsd2usi32:
2722     case Intrinsic::x86_avx512_vcvtsd2usi64:
2723       if (ConstantFP *FPOp =
2724               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2725         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2726                                            /*roundTowardZero=*/false, Ty,
2727                                            /*IsSigned*/false);
2728       break;
2729     case Intrinsic::x86_avx512_cvttss2si:
2730     case Intrinsic::x86_avx512_cvttss2si64:
2731     case Intrinsic::x86_avx512_cvttsd2si:
2732     case Intrinsic::x86_avx512_cvttsd2si64:
2733       if (ConstantFP *FPOp =
2734               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2735         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2736                                            /*roundTowardZero=*/true, Ty,
2737                                            /*IsSigned*/true);
2738       break;
2739     case Intrinsic::x86_avx512_cvttss2usi:
2740     case Intrinsic::x86_avx512_cvttss2usi64:
2741     case Intrinsic::x86_avx512_cvttsd2usi:
2742     case Intrinsic::x86_avx512_cvttsd2usi64:
2743       if (ConstantFP *FPOp =
2744               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2745         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2746                                            /*roundTowardZero=*/true, Ty,
2747                                            /*IsSigned*/false);
2748       break;
2749     }
2750   }
2751   return nullptr;
2752 }
2753 
2754 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2755                                                const APFloat &S0,
2756                                                const APFloat &S1,
2757                                                const APFloat &S2) {
2758   unsigned ID;
2759   const fltSemantics &Sem = S0.getSemantics();
2760   APFloat MA(Sem), SC(Sem), TC(Sem);
2761   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2762     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2763       // S2 < 0
2764       ID = 5;
2765       SC = -S0;
2766     } else {
2767       ID = 4;
2768       SC = S0;
2769     }
2770     MA = S2;
2771     TC = -S1;
2772   } else if (abs(S1) >= abs(S0)) {
2773     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2774       // S1 < 0
2775       ID = 3;
2776       TC = -S2;
2777     } else {
2778       ID = 2;
2779       TC = S2;
2780     }
2781     MA = S1;
2782     SC = S0;
2783   } else {
2784     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2785       // S0 < 0
2786       ID = 1;
2787       SC = S2;
2788     } else {
2789       ID = 0;
2790       SC = -S2;
2791     }
2792     MA = S0;
2793     TC = -S1;
2794   }
2795   switch (IntrinsicID) {
2796   default:
2797     llvm_unreachable("unhandled amdgcn cube intrinsic");
2798   case Intrinsic::amdgcn_cubeid:
2799     return APFloat(Sem, ID);
2800   case Intrinsic::amdgcn_cubema:
2801     return MA + MA;
2802   case Intrinsic::amdgcn_cubesc:
2803     return SC;
2804   case Intrinsic::amdgcn_cubetc:
2805     return TC;
2806   }
2807 }
2808 
2809 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2810                                                  Type *Ty) {
2811   const APInt *C0, *C1, *C2;
2812   if (!getConstIntOrUndef(Operands[0], C0) ||
2813       !getConstIntOrUndef(Operands[1], C1) ||
2814       !getConstIntOrUndef(Operands[2], C2))
2815     return nullptr;
2816 
2817   if (!C2)
2818     return UndefValue::get(Ty);
2819 
2820   APInt Val(32, 0);
2821   unsigned NumUndefBytes = 0;
2822   for (unsigned I = 0; I < 32; I += 8) {
2823     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2824     unsigned B = 0;
2825 
2826     if (Sel >= 13)
2827       B = 0xff;
2828     else if (Sel == 12)
2829       B = 0x00;
2830     else {
2831       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2832       if (!Src)
2833         ++NumUndefBytes;
2834       else if (Sel < 8)
2835         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2836       else
2837         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2838     }
2839 
2840     Val.insertBits(B, I, 8);
2841   }
2842 
2843   if (NumUndefBytes == 4)
2844     return UndefValue::get(Ty);
2845 
2846   return ConstantInt::get(Ty, Val);
2847 }
2848 
2849 static Constant *ConstantFoldScalarCall3(StringRef Name,
2850                                          Intrinsic::ID IntrinsicID,
2851                                          Type *Ty,
2852                                          ArrayRef<Constant *> Operands,
2853                                          const TargetLibraryInfo *TLI,
2854                                          const CallBase *Call) {
2855   assert(Operands.size() == 3 && "Wrong number of operands.");
2856 
2857   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2858     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2859       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2860         const APFloat &C1 = Op1->getValueAPF();
2861         const APFloat &C2 = Op2->getValueAPF();
2862         const APFloat &C3 = Op3->getValueAPF();
2863 
2864         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2865           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2866           APFloat Res = C1;
2867           APFloat::opStatus St;
2868           switch (IntrinsicID) {
2869           default:
2870             return nullptr;
2871           case Intrinsic::experimental_constrained_fma:
2872           case Intrinsic::experimental_constrained_fmuladd:
2873             St = Res.fusedMultiplyAdd(C2, C3, RM);
2874             break;
2875           }
2876           if (mayFoldConstrained(
2877                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
2878             return ConstantFP::get(Ty->getContext(), Res);
2879           return nullptr;
2880         }
2881 
2882         switch (IntrinsicID) {
2883         default: break;
2884         case Intrinsic::amdgcn_fma_legacy: {
2885           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2886           // NaN or infinity, gives +0.0.
2887           if (C1.isZero() || C2.isZero()) {
2888             // It's tempting to just return C3 here, but that would give the
2889             // wrong result if C3 was -0.0.
2890             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
2891           }
2892           LLVM_FALLTHROUGH;
2893         }
2894         case Intrinsic::fma:
2895         case Intrinsic::fmuladd: {
2896           APFloat V = C1;
2897           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
2898           return ConstantFP::get(Ty->getContext(), V);
2899         }
2900         case Intrinsic::amdgcn_cubeid:
2901         case Intrinsic::amdgcn_cubema:
2902         case Intrinsic::amdgcn_cubesc:
2903         case Intrinsic::amdgcn_cubetc: {
2904           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
2905           return ConstantFP::get(Ty->getContext(), V);
2906         }
2907         }
2908       }
2909     }
2910   }
2911 
2912   if (IntrinsicID == Intrinsic::smul_fix ||
2913       IntrinsicID == Intrinsic::smul_fix_sat) {
2914     // poison * C -> poison
2915     // C * poison -> poison
2916     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2917       return PoisonValue::get(Ty);
2918 
2919     const APInt *C0, *C1;
2920     if (!getConstIntOrUndef(Operands[0], C0) ||
2921         !getConstIntOrUndef(Operands[1], C1))
2922       return nullptr;
2923 
2924     // undef * C -> 0
2925     // C * undef -> 0
2926     if (!C0 || !C1)
2927       return Constant::getNullValue(Ty);
2928 
2929     // This code performs rounding towards negative infinity in case the result
2930     // cannot be represented exactly for the given scale. Targets that do care
2931     // about rounding should use a target hook for specifying how rounding
2932     // should be done, and provide their own folding to be consistent with
2933     // rounding. This is the same approach as used by
2934     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2935     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
2936     unsigned Width = C0->getBitWidth();
2937     assert(Scale < Width && "Illegal scale.");
2938     unsigned ExtendedWidth = Width * 2;
2939     APInt Product = (C0->sextOrSelf(ExtendedWidth) *
2940                      C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
2941     if (IntrinsicID == Intrinsic::smul_fix_sat) {
2942       APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2943       APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2944       Product = APIntOps::smin(Product, Max);
2945       Product = APIntOps::smax(Product, Min);
2946     }
2947     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
2948   }
2949 
2950   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2951     const APInt *C0, *C1, *C2;
2952     if (!getConstIntOrUndef(Operands[0], C0) ||
2953         !getConstIntOrUndef(Operands[1], C1) ||
2954         !getConstIntOrUndef(Operands[2], C2))
2955       return nullptr;
2956 
2957     bool IsRight = IntrinsicID == Intrinsic::fshr;
2958     if (!C2)
2959       return Operands[IsRight ? 1 : 0];
2960     if (!C0 && !C1)
2961       return UndefValue::get(Ty);
2962 
2963     // The shift amount is interpreted as modulo the bitwidth. If the shift
2964     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2965     unsigned BitWidth = C2->getBitWidth();
2966     unsigned ShAmt = C2->urem(BitWidth);
2967     if (!ShAmt)
2968       return Operands[IsRight ? 1 : 0];
2969 
2970     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2971     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2972     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2973     if (!C0)
2974       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2975     if (!C1)
2976       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2977     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2978   }
2979 
2980   if (IntrinsicID == Intrinsic::amdgcn_perm)
2981     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
2982 
2983   return nullptr;
2984 }
2985 
2986 static Constant *ConstantFoldScalarCall(StringRef Name,
2987                                         Intrinsic::ID IntrinsicID,
2988                                         Type *Ty,
2989                                         ArrayRef<Constant *> Operands,
2990                                         const TargetLibraryInfo *TLI,
2991                                         const CallBase *Call) {
2992   if (Operands.size() == 1)
2993     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2994 
2995   if (Operands.size() == 2)
2996     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2997 
2998   if (Operands.size() == 3)
2999     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3000 
3001   return nullptr;
3002 }
3003 
3004 static Constant *ConstantFoldFixedVectorCall(
3005     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3006     ArrayRef<Constant *> Operands, const DataLayout &DL,
3007     const TargetLibraryInfo *TLI, const CallBase *Call) {
3008   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3009   SmallVector<Constant *, 4> Lane(Operands.size());
3010   Type *Ty = FVTy->getElementType();
3011 
3012   switch (IntrinsicID) {
3013   case Intrinsic::masked_load: {
3014     auto *SrcPtr = Operands[0];
3015     auto *Mask = Operands[2];
3016     auto *Passthru = Operands[3];
3017 
3018     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3019 
3020     SmallVector<Constant *, 32> NewElements;
3021     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3022       auto *MaskElt = Mask->getAggregateElement(I);
3023       if (!MaskElt)
3024         break;
3025       auto *PassthruElt = Passthru->getAggregateElement(I);
3026       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3027       if (isa<UndefValue>(MaskElt)) {
3028         if (PassthruElt)
3029           NewElements.push_back(PassthruElt);
3030         else if (VecElt)
3031           NewElements.push_back(VecElt);
3032         else
3033           return nullptr;
3034       }
3035       if (MaskElt->isNullValue()) {
3036         if (!PassthruElt)
3037           return nullptr;
3038         NewElements.push_back(PassthruElt);
3039       } else if (MaskElt->isOneValue()) {
3040         if (!VecElt)
3041           return nullptr;
3042         NewElements.push_back(VecElt);
3043       } else {
3044         return nullptr;
3045       }
3046     }
3047     if (NewElements.size() != FVTy->getNumElements())
3048       return nullptr;
3049     return ConstantVector::get(NewElements);
3050   }
3051   case Intrinsic::arm_mve_vctp8:
3052   case Intrinsic::arm_mve_vctp16:
3053   case Intrinsic::arm_mve_vctp32:
3054   case Intrinsic::arm_mve_vctp64: {
3055     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3056       unsigned Lanes = FVTy->getNumElements();
3057       uint64_t Limit = Op->getZExtValue();
3058       // vctp64 are currently modelled as returning a v4i1, not a v2i1. Make
3059       // sure we get the limit right in that case and set all relevant lanes.
3060       if (IntrinsicID == Intrinsic::arm_mve_vctp64)
3061         Limit *= 2;
3062 
3063       SmallVector<Constant *, 16> NCs;
3064       for (unsigned i = 0; i < Lanes; i++) {
3065         if (i < Limit)
3066           NCs.push_back(ConstantInt::getTrue(Ty));
3067         else
3068           NCs.push_back(ConstantInt::getFalse(Ty));
3069       }
3070       return ConstantVector::get(NCs);
3071     }
3072     break;
3073   }
3074   case Intrinsic::get_active_lane_mask: {
3075     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3076     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3077     if (Op0 && Op1) {
3078       unsigned Lanes = FVTy->getNumElements();
3079       uint64_t Base = Op0->getZExtValue();
3080       uint64_t Limit = Op1->getZExtValue();
3081 
3082       SmallVector<Constant *, 16> NCs;
3083       for (unsigned i = 0; i < Lanes; i++) {
3084         if (Base + i < Limit)
3085           NCs.push_back(ConstantInt::getTrue(Ty));
3086         else
3087           NCs.push_back(ConstantInt::getFalse(Ty));
3088       }
3089       return ConstantVector::get(NCs);
3090     }
3091     break;
3092   }
3093   default:
3094     break;
3095   }
3096 
3097   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3098     // Gather a column of constants.
3099     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3100       // Some intrinsics use a scalar type for certain arguments.
3101       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
3102         Lane[J] = Operands[J];
3103         continue;
3104       }
3105 
3106       Constant *Agg = Operands[J]->getAggregateElement(I);
3107       if (!Agg)
3108         return nullptr;
3109 
3110       Lane[J] = Agg;
3111     }
3112 
3113     // Use the regular scalar folding to simplify this column.
3114     Constant *Folded =
3115         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3116     if (!Folded)
3117       return nullptr;
3118     Result[I] = Folded;
3119   }
3120 
3121   return ConstantVector::get(Result);
3122 }
3123 
3124 static Constant *ConstantFoldScalableVectorCall(
3125     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3126     ArrayRef<Constant *> Operands, const DataLayout &DL,
3127     const TargetLibraryInfo *TLI, const CallBase *Call) {
3128   switch (IntrinsicID) {
3129   case Intrinsic::aarch64_sve_convert_from_svbool: {
3130     auto *Src = dyn_cast<Constant>(Operands[0]);
3131     if (!Src || !Src->isNullValue())
3132       break;
3133 
3134     return ConstantInt::getFalse(SVTy);
3135   }
3136   default:
3137     break;
3138   }
3139   return nullptr;
3140 }
3141 
3142 } // end anonymous namespace
3143 
3144 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3145                                  ArrayRef<Constant *> Operands,
3146                                  const TargetLibraryInfo *TLI) {
3147   if (Call->isNoBuiltin())
3148     return nullptr;
3149   if (!F->hasName())
3150     return nullptr;
3151 
3152   // If this is not an intrinsic and not recognized as a library call, bail out.
3153   if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
3154     if (!TLI)
3155       return nullptr;
3156     LibFunc LibF;
3157     if (!TLI->getLibFunc(*F, LibF))
3158       return nullptr;
3159   }
3160 
3161   StringRef Name = F->getName();
3162   Type *Ty = F->getReturnType();
3163   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3164     return ConstantFoldFixedVectorCall(
3165         Name, F->getIntrinsicID(), FVTy, Operands,
3166         F->getParent()->getDataLayout(), TLI, Call);
3167 
3168   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3169     return ConstantFoldScalableVectorCall(
3170         Name, F->getIntrinsicID(), SVTy, Operands,
3171         F->getParent()->getDataLayout(), TLI, Call);
3172 
3173   // TODO: If this is a library function, we already discovered that above,
3174   //       so we should pass the LibFunc, not the name (and it might be better
3175   //       still to separate intrinsic handling from libcalls).
3176   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
3177                                 Call);
3178 }
3179 
3180 bool llvm::isMathLibCallNoop(const CallBase *Call,
3181                              const TargetLibraryInfo *TLI) {
3182   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3183   // (and to some extent ConstantFoldScalarCall).
3184   if (Call->isNoBuiltin() || Call->isStrictFP())
3185     return false;
3186   Function *F = Call->getCalledFunction();
3187   if (!F)
3188     return false;
3189 
3190   LibFunc Func;
3191   if (!TLI || !TLI->getLibFunc(*F, Func))
3192     return false;
3193 
3194   if (Call->getNumArgOperands() == 1) {
3195     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3196       const APFloat &Op = OpC->getValueAPF();
3197       switch (Func) {
3198       case LibFunc_logl:
3199       case LibFunc_log:
3200       case LibFunc_logf:
3201       case LibFunc_log2l:
3202       case LibFunc_log2:
3203       case LibFunc_log2f:
3204       case LibFunc_log10l:
3205       case LibFunc_log10:
3206       case LibFunc_log10f:
3207         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3208 
3209       case LibFunc_expl:
3210       case LibFunc_exp:
3211       case LibFunc_expf:
3212         // FIXME: These boundaries are slightly conservative.
3213         if (OpC->getType()->isDoubleTy())
3214           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3215         if (OpC->getType()->isFloatTy())
3216           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3217         break;
3218 
3219       case LibFunc_exp2l:
3220       case LibFunc_exp2:
3221       case LibFunc_exp2f:
3222         // FIXME: These boundaries are slightly conservative.
3223         if (OpC->getType()->isDoubleTy())
3224           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3225         if (OpC->getType()->isFloatTy())
3226           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3227         break;
3228 
3229       case LibFunc_sinl:
3230       case LibFunc_sin:
3231       case LibFunc_sinf:
3232       case LibFunc_cosl:
3233       case LibFunc_cos:
3234       case LibFunc_cosf:
3235         return !Op.isInfinity();
3236 
3237       case LibFunc_tanl:
3238       case LibFunc_tan:
3239       case LibFunc_tanf: {
3240         // FIXME: Stop using the host math library.
3241         // FIXME: The computation isn't done in the right precision.
3242         Type *Ty = OpC->getType();
3243         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3244           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3245         break;
3246       }
3247 
3248       case LibFunc_asinl:
3249       case LibFunc_asin:
3250       case LibFunc_asinf:
3251       case LibFunc_acosl:
3252       case LibFunc_acos:
3253       case LibFunc_acosf:
3254         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3255                  Op > APFloat(Op.getSemantics(), "1"));
3256 
3257       case LibFunc_sinh:
3258       case LibFunc_cosh:
3259       case LibFunc_sinhf:
3260       case LibFunc_coshf:
3261       case LibFunc_sinhl:
3262       case LibFunc_coshl:
3263         // FIXME: These boundaries are slightly conservative.
3264         if (OpC->getType()->isDoubleTy())
3265           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3266         if (OpC->getType()->isFloatTy())
3267           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3268         break;
3269 
3270       case LibFunc_sqrtl:
3271       case LibFunc_sqrt:
3272       case LibFunc_sqrtf:
3273         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3274 
3275       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3276       // maybe others?
3277       default:
3278         break;
3279       }
3280     }
3281   }
3282 
3283   if (Call->getNumArgOperands() == 2) {
3284     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3285     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3286     if (Op0C && Op1C) {
3287       const APFloat &Op0 = Op0C->getValueAPF();
3288       const APFloat &Op1 = Op1C->getValueAPF();
3289 
3290       switch (Func) {
3291       case LibFunc_powl:
3292       case LibFunc_pow:
3293       case LibFunc_powf: {
3294         // FIXME: Stop using the host math library.
3295         // FIXME: The computation isn't done in the right precision.
3296         Type *Ty = Op0C->getType();
3297         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3298           if (Ty == Op1C->getType())
3299             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3300         }
3301         break;
3302       }
3303 
3304       case LibFunc_fmodl:
3305       case LibFunc_fmod:
3306       case LibFunc_fmodf:
3307       case LibFunc_remainderl:
3308       case LibFunc_remainder:
3309       case LibFunc_remainderf:
3310         return Op0.isNaN() || Op1.isNaN() ||
3311                (!Op0.isInfinity() && !Op1.isZero());
3312 
3313       default:
3314         break;
3315       }
3316     }
3317   }
3318 
3319   return false;
3320 }
3321 
3322 void TargetFolder::anchor() {}
3323